
16-299 Assignment: Controlling a TWIP

Deriving the Dynamics
How could you check my work? One good way is to create a TWIP model in a simulation package
like ODE, Gazebo, or Bullet and see if the resulting simulations matched. Only do this if you think
it will be fun.

It was fun for me. Ode version of dynamics I checked against: http://www.cs.cmu.
edu/˜cga/controls-intro/twip-ode.zip

I also computed the energy of the system (which I had already generated using the Lagrangian
approach), and checked if that was constant when zero torque is applied. The following is inserted
into main.m after the command uu is computed (around line 52):

% Energy check (in Matlab)
th = xx(2);
dx = xx(3);
dth = xx(4);
energy = (I_p*dthˆ2)/2 + (dxˆ2*m_p)/2 ...
+ (dxˆ2*(m_w*r_wˆ2 + I_w))/(2*r_wˆ2) ...
+ (dthˆ2*l_pˆ2*m_p)/2 ...
+ g*l_p*m_p*cos(th) + dth*dx*l_p*m_p*cos(th);
e_array(i,1) = energy;

All this checking led me to find a bug in the dynamics I gave you! See below.
Extra credit/a project is available if you augment the model to include varying ground contact

force, slip, deformable tires, and liftoff, and your controller can handle these issues. ...
I haven’t done this.
Extra credit/a project is available to make a 3D model and control and the lab robot to drive

along paths and turn.
I haven’t done this.
Other projects involve 1) driving over hilly terrain, curbs, and potholes, and 2) getting the

robot to dance to music.
Haven’t done this either.

TWIP dynamics
The dynamics I gave you had an error in it. Here is what I gave you:( Iw

r2w
+mp +mw lp ∗mp ∗ cos(θ)

lp ∗mp ∗ cos(θ) Ip + l2p ∗mp

)(
ẍ

θ̈

)
=

(
rw ∗ (−τ + θ̇2 ∗ lp ∗mp ∗ rw ∗ sin(θ))

τ +G ∗ lp ∗mp ∗ sin(θ)

)
(1)
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Here is the correct dynamics. The top element on the right hand side needed to be divided by
r2w. ( Iw

r2w
+mp +mw lp ∗mp ∗ cos(θ)

lp ∗mp ∗ cos(θ) Ip + l2p ∗mp

)(
ẍ

θ̈

)
=

(
(−τ/rw + θ̇2 ∗ lp ∗mp ∗ sin(θ))

τ +G ∗ lp ∗mp ∗ sin(θ)

)
(2)

http://www.cs.cmu.edu/˜cga/controls-intro/ass1/twip-corrected.m
I will give answers below assuming the model I gave you is correct (which it is not). All the

code I mention is in
http://www.cs.cmu.edu/˜cga/controls-intro/ass1/twip-manual-ass1.

zip

The Actual Assignment

A. Try to design a controller manually
A1) Given the example Matlab program in twip-manual.zip, try to design satisfactory manual
gains.

Many possible answers here. You can check them by running them in a simulation using
main.m. An example answer is

k = [ 1.0 60.0 10.0 10.0 ];

A2) Set the duration to 100.0 (100s). Try to minimize the one step criterion dt ∗ (x2 + θ2 + τ 2) by
manually choosing gains. What are your best gains?

I am using the linearized dynamics and LQR.

>> A = [1 0 0.01 0
0 1 0 0.01
0 -0.066508 1 0
0 0.149644 0 1 ];

>>
>> B = [ 0

0
-0.008271
0.016610 ];

>>
>> Qc = [ 1 0 0 0

0 1 0 0
0 0 0.00000001 0
0 0 0 0.00000001 ];

>>
>>
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>> Rc = [ 1 ];
>>
>> [Kc Sc Ec] = dlqr( A, B, Qc, Rc )

Kc =

0.9606 20.2454 5.1969 7.4260

Sc =

1.0e+03 *

0.5410 0.7730 1.4607 0.7900
0.7730 5.9836 3.3843 2.9580
1.4607 3.3843 6.9223 3.7854
0.7900 2.9580 3.7854 2.3567

Ec =

0.9978 + 0.0020i
0.9978 - 0.0020i
0.9620 + 0.0021i
0.9620 - 0.0021i

B. Linearize the dynamics
Linearize the TWIP dynamics in the straight up configuration. What are A and B? Which of the
symbolic terms in the dynamics in the M(x)a = v(x) equation above could you have ignored in
the first place? Why?

Using http://www.cs.cmu.edu/˜cga/controls-intro/ass1/linearize.m,
I get the following A and B matrices for the twip.m code I gave you (0.01 is the sampling interval,
which multiplies each of the continuous time linearization numbers).

A =


1 0 0.01 0
0 1 0 0.01
0 −0.066508 1 0
0 0.149644 0 1

 (3)
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B =


0
0

−0.008271
0.016610

 (4)

In linearization, cos(θ) → 1 and sin(θ) → θ, for θ ≤ 30◦. and terms including products of
velocity (centripetal and Coriolis terms) are zero, since they are quadratic in small values.

C. Design an LQR controller
C1) Choose an optimization criterion (Q and R) and design a corresponding LQR controller.
Implement it for the simulation (and later for the lab). What is your Q, R, and corresponding K?
Evaluate the resulting control in simulation, and explain why you chose the optimization criterion
you did.

Many possible answers, depending on your linear model and optimization criterion. I initially
made Qc and Rc identity matrices:

Qc =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5)

Rc =
(
1
)

(6)

A = [1 0 0.01 0
0 1 0 0.01
0 -0.066508 1 0
0 0.149644 0 1 ];

B = [ 0
0
-0.008271
0.016610 ];

Qc = [ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 ];

Rc = [ 1 ];
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[Kc Sc Ec] = dlqr( A, B, Qc, Rc )

Kc =

0.9595 20.3625 5.3084 7.6125

Sc =

1.0e+03 *

0.5532 0.7934 1.4776 0.7985
0.7934 6.2228 3.5829 3.0662
1.4776 3.5829 7.1695 3.9166
0.7985 3.0662 3.9166 2.4353

Ec =

0.9978 + 0.0020i
0.9978 - 0.0020i
0.9694 + 0.0000i
0.9524 + 0.0000i

Here are plots of movements to zero starting from [2,0.1,0,0] where R was varied from 1e-8 (cheap
control) to 1e8 (expensive control) while Q was the identity matrix:

One thing to note is that there is little difference between R=1e-8 and R=1e-2, so I am not
plotting everything in between. The TWIP control problem limits the fastest speed the robot can
move, because torques are limited or the pendulum will fall over. Similarly there is a minimum
initial x velocity at the very beginning of the x velocity plot to move the body vertical, or it will
fall over. The maximum body angle, x velocity, body angular velocity, and torque rapidly decrease
as R increases.

In the following plots Q was the identity matrix, and R was 0.01. Q(2, 2), the penalty on body
angle, was varied from 1 to 1000000. The maximum body angle was reduced as Q(2, 2) increased:
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C2) Vary the diagonal components of Q and R over several orders of magnitude (..., 1e-2, 1e-
1, 1, 10, 100, ...) and generate a root locus plot for each component. When do which components
of Q and R matter? What is the minimal set of Q and R components that give you good control
of pole locations?

The root locus plots depend on what Q and R you start with, and what parameter you change.
If you change multiple parameters along a one-dimensional path, the root locus that results depends
on the direction or path in parameter space you take. I will look at root locus plots for two starting
points. One is Q and R are identity matrices.

There are 5 parameters (the non-zero elements of Q and R). However, since scaling the pa-
rameters by the same scale factor has no effect on the gains chosen by LQR design, there are only
4 dimensions to explore. I don’t have a good way to explore 4 dimensions, so I will only search
a single direction for each of the 5 parameters by scaling one parameter at at time up and down.
I indicate the root locus point corresponding to the lowest value of the parameter with an open
circle, and the root locus point corresponding to the highest value of the parameter with an open
square. To figure out how roots move, start at open circles and follow the paths to open squares.

Here are the root locus plots for starting from Q and R are identity matrices, and varying
each parameter (Figures 1, 2, 3, 4, and 5). I used a program I wrote to generate these figures:
http://www.cs.cmu.edu/˜cga/controls-intro/ass1/my_root_locus.m

Now let’s take a different Q and R as the starting point for root locus plots:

Qc =


1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 (7)

Rc =
(
0.01

)
(8)

Look at Figures 6, 7, 8, 9, and 10).
None of these searches found a Q and R that moved all the poles away from (1,0). This meant

some modes were always going to be slow. To explore the space more, I then used a program I
wrote to try out random Q matrices, http://www.cs.cmu.edu/˜cga/controls-intro/
ass1/random_Q.m. (Why didn’t I have to also vary R?) I only paid attention to control designs
that were critically or overdamped in all modes, and had the minimum maximal root magnitude,
to get all poles away from (1,0). The logic here is to find controllers that don’t oscillate and reduce
errors as fast as possible. Some of these designs were nice. Try out the program and see what you
get.
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Figure 1: Varying R(1,1), starting from Q=diag(1,1,1,1), R=1. I want all the roots to be near the
X axis so they don’t cause oscillations, which is achievable. However, no matter what R(1,1) I
choose, there will be some poles with magnitude close to 1, which will decay slowly.

D. Design a Kalman filter
D1) Choose a noise model, design a Kalman filter based on measurement of only x and θ, and
implement it for the simulation (and later for the lab). What is your QKF, RKF, and corresponding
KKF? Evaluate the resulting control in simulation with added noise, and explain why you chose
the optimization criterion you did.

I think the encoder is not noisy, so let’s say the encoder could be off by a count, plus or minus.
One count is pi/780 = 0.004 radians. To put this estimate in the measurement noise matrix R, I
would square 0.004 to get 0.000016.

The accelerometer is very noisy, so let’s say its noise is 0.1 radian. We square that to get 0.01
to put in the measurement noise matrix.

The question should have said you also have a gyro, which turns out to be pretty clean. But we
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Figure 2: Varying Q(1,1), starting from Q=diag(1,1,1,1), R=1. There is not a lot I can do about
those two roots that are close to (1,0).

will answer the question assuming no gyro.
In terms of the process noise matrix Q, I think the “noise” should be low on the encoder and

body angle dynamics, but high on the encoder velocity and body angular velocity dynamics.
So ....

A =


1 0 0.01 0
0 1 0 0.01
0 −0.066508 1 0
0 0.149644 0 1

 (9)

C =

(
1 0 0 0
0 1 0 0

)
(10)
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Figure 3: Varying Q(2,2), starting from Q=diag(1,1,1,1), R=1. There is not a lot I can do about
those two roots that are close to (1,0).

Qf =


0.000016 0 0 0

0 0.000016 0 0
0 0 0.01 0
0 0 0 0.01

 (11)

Rf =

(
0.000016 0

0 0.01

)
(12)

[Kf Sf Ef] = dlqr( A’, C’, Qf, Rf )
Kc = [ 3.6004 31.2493 16.6414 19.0620 ];

This set of numbers worked in simulation, but the noise (especially the body process and mea-
surement noise) is not aesthetically pleasing (Figure 11).
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Figure 4: Varying Q(3,3), starting from Q=diag(1,1,1,1), R=1. There is not a lot I can do about
those two roots that are close to (1,0).

So I tried Q is 0.000001*identity-matrix and R is 0.0001*identity-matrix, and got a more
visually pleasing result (Figure 12).

The code to generate these plots is http://www.cs.cmu.edu/˜cga/controls-intro/
ass1/sim_kf.m

D2) Explore two Kalman filter designs. D2a) Generate a Kalman filter design with time con-
stants much faster than your LQR controller. Plot the pole locations for the combined system. D2b)
Generate a Kalman filter design with time constants about the same as your LQR controller. Plot
the pole locations for the combined system. What is the difference in command response between
this KF+LQR combination, and the same LQR design with full state feedback.

It turns out that if the model is perfect the LQR controller and the Kalman filter do not interact,
and the poles of the combined system are the combination of the poles of each individual system.
This is known as the Separation Principle. It can be best understood by formulating the combined
system in terms of the dynamics of the actual state and the estimation error, the difference between
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Figure 5: Varying Q(4,4), starting from Q=diag(1,1,1,1), R=1. There is not a lot I can do about
those two roots that are close to (1,0).

the belief state and the actual state (e = b− x).

xnext = Ax−BKcb

= Ax−BKc(e+ x)

= (A−BKc)x−BKce

(13)

bnext = (A−BKc)b−Kf (Cb−Cx) (14)

Subtract xnext from both sides of the above equation.

enext = (A−BKc)e+BKce−KfCe

= Ae−KfCe
(15)

Let’s rewrite this as a matrix equation.(
xnext

enext

)
=

(
A−BKc −BKc

0 A−KfC

)(
x
e

)
(16)
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Figure 6: Varying R(1,1), starting from Q=diag(1,10,1,1), R=0.01. There is not a lot I can do about
those two roots that are close to (1,0).

Because the left bottom block of the matrix is zero, the characteristic equation for this matrix is
(A−BKc)(A−KfC), which has the combination of the roots from the LQR controller and the
Kalman Filter. However, when the model is not perfect, the LQR controller and Kalman Filter can
interact badly if the poles are nearby. One rule of thumb is to have estimator poles three or more
times faster than controller poles.

https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/
idsc-dam/Lectures/Digital-Control-Systems/Slides_DigReg_2013.pdf dis-
cusses this in more detail.

E. Robustness
I have not yet answered any of these questions.
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Figure 7: Varying Q(1,1), starting from Q=diag(1,10,1,1), R=0.01. There is not a lot I can do about
those two roots that are close to (1,0).

F. Other approaches and designs
I have not yet answered any of these questions.
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Figure 8: Varying Q(2,2), starting from Q=diag(1,10,1,1), R=0.01. There is not a lot I can do about
those two roots that are close to (1,0).

14



Figure 9: Varying Q(3,3), starting from Q=diag(1,10,1,1), R=0.01. There is not a lot I can do about
those two roots that are close to (1,0).
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Figure 10: Varying Q(4,4), starting from Q=diag(1,10,1,1), R=0.01. There is not a lot I can do
about those two roots that are close to (1,0).

Figure 11: Kalman filter simulation 1
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Figure 12: Kalman filter simulation 2
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