Frequency Domain Analysis (2)

Wenzhen Yuan 02/24/2022

Carnegie Mellon University
The Robotics Institute

Recap of frequency lecture 1

Laplace transform

$$F(s) = \mathcal{L}\left[f(t)\right] = \int_0^\infty f(t)e^{-st}dt \qquad f(t) = \mathcal{L}^{-1}\left[F(s)\right] = \frac{1}{2\pi i}\int e^{st}F(s)ds$$

How to understand Laplace transform?

What's
$$\mathcal{L}\left[\frac{d}{dt}f(t)\right]$$
? $sF(s)-f(0)$

What's
$$\mathcal{L}\left[\frac{d^n}{dt^n}f(t)\right]$$
?

$$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} \left. \frac{d^{k-1}}{dt^{k-1}} f(t) \right|_{t=0}$$

Recap of frequency lecture 1

• Transfer function Y(s) = H(s)U(s)

$$Y(s) = H(s)U(s)$$

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_0 \frac{d^m u}{dt^m} + b_1 \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_m u, \longrightarrow \sum_{i=0}^n a_i s^i Y(s) = \sum_{i=0}^m b_i s^i U(s)$$

$$H(i\omega)$$
 \longrightarrow $r=\|H(i\omega)\|$ gain $\phi=\angle H(i\omega)$ Phase shift

$$y(t) = \sum_{k} ||H(i\omega_k)|| A_k \sin(\omega_k t + \phi_k + \angle H(i\omega_k))$$

 $H(s) = \frac{B(s)}{A(s)}$

Transfer function and State space

- Transfer function provides a way to get state space representations of a system.
- Let's look at an example:

$$\dot{x}(t)=Ax(t)+Bu(t)$$
 $\qquad \qquad \mathcal{L} \qquad \qquad sX(s)=AX(s)+BU(s)$ $\qquad \qquad Y(s)=CX(s).$ We want to get H: u- > y $\qquad \qquad (sI-A)X(s)=BU(s)$ $\qquad \qquad X(s)=(sI-A)^{-1}BU(s),$ $\qquad \qquad Y(s)=C(sI-A)^{-1}BU(s)$

Transfer function and State space

State space
$$(A,B,C)$$
 Transfer function
$$\dot{x}(t)=Ax(t)+Bu(t) \\ y(t)=Cx(t), \\ Realization$$

(A, B, C) is a realization

A realization only exist when the transfer function is strictly casual n>m

Then there are infinite number of realizations Why?

Using z=Tx, instead of x. What is z->y? What is (u, z)-> dz/dt?

Block diagrams

A typical way to represent a control system

The system/operation could be described in either temporal domain or frequency domains

Linearity in block diagrams

The linearity exists in both time domain and frequency domain

Block in Series

Block in parallel

Feedback

What is Y(s)?

$$Y(s) = H(s)E(s)$$

$$E(s) = U(s) - G(s)Y(s)$$

$$Y(s) = H(s)(U(s) - G(s)Y(s))$$

$$Y = \frac{H}{1 + GH}U$$

So the closed loop transfer function is $T(s) = \frac{H(s)}{1 + G(s)H(s)}$

Zero frequency gain

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_0 \frac{d^m u}{dt^m} + b_1 \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_m u, \qquad Y(s) = H(s)U(s)$$

Zero frequency gain: H(0) What does it mean?

Recap:
$$y(t) = \sum_{k} ||H(i\omega_k)|| A_k \sin(\omega_k t + \phi_k + \angle H(i\omega_k))$$

$$\longrightarrow H(0) = \frac{y_0}{u_0} = \frac{a_n}{b_m}$$
 Why?

The response of the constant component of the signal

Poles and zeros

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = b_0 \frac{d^m u}{dt^m} + b_1 \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_m u, \qquad Y(s) = H(s)U(s)$$

Assuming $H(s)=\dfrac{b(s)}{a(s)}$ The roots of the polynomial a(s) is called the poles of the system, and roots of b(s) are called zeros of the system

What will happen when s=q, while q is one of the zeros of the system?

$$H(s)=0 \longrightarrow Y(s)=0$$
 The output corresponding to $u(t)=e^{st}$ is zero The signal is blocked

What will happen when s=p, while p is one of the poles of the system?

$$y(t) = e^{pt}$$
 is a solution of the differential equation when u=0 u=0, U(s)=0 for all s, what is Y(s)?

Why do we care the solution of u=0?

Poles and zeros

$$m\frac{d^2x(t)}{dt^2} + b\frac{dx(t)}{dt} + kx(t) = f(t)$$

What is x(t) when f(t) = 0?

What is x(t) when f(t) = 0 + f'(t)?

What is x(t) when f(t) = 2 * 0 + f'(t)?

The output x is a combination of a solution to f'(t) and arbitrary combination of the solution to f(t)=0.

A pole p corresponds to a mode of the system with corresponding modal solution ept

The unforced motion of the system after an arbitrary excitation is a weighted sum of modes.

Stability

- What is stability?
- Thinking of the impulse response

There are only two possible responses

When
$$t o \infty$$
 $\begin{cases} y(t) o 0 & \text{The system is } \textit{asymptotically stable} \\ y(t) o 0 & \text{The system is } \textit{unstable} \end{cases}$

y(t) will explode since it's the sum of infinite response to impulse input

Stability of transfer functions

$$Y(s) = H(s)U(s)$$
 $H(s) = \frac{b(s)}{a(s)}$

• A system defined by a transfer function H(s) is stable if and only if all of the poles of H(s) have negative real part. Such system are said to be *Hurwitz*

$$y(t) = A_1 e^{-p_1 t} + A_1 e^{-p_1' t} + A_2 e^{-p_2 t} + y'(t)$$

A1 and A2 are arbitrary numbers

What if real(p_n)<0?

What if real(p_n)>0?

