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_______________________________________________________________________ 
Social interaction plays an important role in our daily lives. It is one of the most important indicators of physical 
or mental changes in aging patients. In this paper, we investigate the problem of detecting social interaction 
patterns of patients in a skilled nursing facility. Our studies consist of both a “wizard of Oz” study and an 
experimental study of various sensors and detection models for detecting and summarizing social interactions 
among aging patients and caregivers. We first simulate plausible sensors using human labeling on top of audio 
and visual data collected from a skilled nursing facility. The most useful sensors and robust detection models 
are determined using the simulated sensors. We then present the implementation of some real sensors based on 
video and audio analysis techniques and evaluate the performance of these implementations in detecting 
interaction. We conclude the paper with discussions and future work. 
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1. INTRODUCTION  

As the elderly population continues to grow, clinicians and geriatric professionals need 

advanced technologies to support them in monitoring and managing patients’ quality of 

life in nursing homes. This research is part of an NSF project, CareMedia1, which aims to 

create a meaningful, manageable information resource that enables more complete and 

accurate assessment, diagnosis, treatment, and evaluation of behavioral problems for 

geriatric patients by capturing a continuous audiovisual record of daily activity in 

common areas in nursing home settings, and automatically extracting relevant 

information from it. In this paper, we investigate the problem of automatically detecting 

social interaction patterns in nursing home settings. Social interaction plays an important 

role in our daily lives. We interact with others in various ways that influence our status 

and roles in social communities. The ways in which people respond to each other are 
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referred to as social interaction patterns, which, to some extent, are independent of any 

particular individual. A study showed that humans spend more than 80% of their waking 

time in the company of other people [12]. We are interested in detecting social 

interactions of geriatric patients for several reasons: 

1. Interaction with others is generally considered a positive and necessary part of life in 

the elderly.  

2. Changes in interaction patterns can reflect changes in the mental or physical status of 

a patient. Naturally, the level of social interaction of a person depends on a wide 

range of factors, such as his/her health condition, personal preference, and aptitude 

for social interaction. Physical disability is not necessarily socially disabling. As we 

have observed from our recorded data, many of the most severely disabled patients 

had daily social interactions. Clinical studies indicate that an elderly patient with 

dementia may exhibit agitated behaviors that reflect increased confusion, delusion, 

and other psychiatric disturbances [39][48]. Most of these agitated behaviors are 

observable during interactions between the patients and their caregivers.  

3. Most social interactions in a public place are observable. This makes it possible to 

detect them automatically.  

4. The detection of social interaction patterns is a very challenging problem that 

requires many basic technologies, which are applicable to individual 

behavior/activity analysis tasks in a nursing home. Existing research mainly focuses 

on analyzing individual human activities and pays little attention to analyzing social 

interaction patterns of people, which consists of multiple individual activities 

occurring together. Through investigating social interaction pattern detection, we are 

able to advance the current technologies to deal with multiple people and complex 

events.  

The worldwide population over age 65 is expected to more than double from 357 million 

in 1990 to 761 million in 2025 [23]. At present, five percent of Americans over age 65 

reside in nursing homes, with up to 50 percent of those over the age of 85 likely to be 

placed in a nursing home at some point in their lives [17][45]. Among these nursing 

home residents, about 80% of them are believed to suffer from a psychiatric disorder, and 
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90% of patients with Alzheimer’s disease experience behavioral complications leading to 

increased functional disability, medical morbidity, mortality, and premature 

institutionalization [51][49]. In many nursing homes, physicians might visit their patients 

for only a short period of time once per week. Assessment of a patient’s progress is thus 

based mainly on reports from staff (nurses and nurse assistants). The reports may be 

incomplete or even biased, due to schedule shift and the fact that each staff person has to 

care for many patients. This may result in insufficient observation for monitoring either 

progressive change, or brief and infrequent occurrences of aberrant activity that might 

lead to diagnosis of some diseases. For example, dementia is very common among 

residents in nursing facilities. One characteristic of dementia is a sustained decline in 

cognitive function and memory [34]. As mentioned before, studies indicate that elderly 

patients suffering from dementia may exhibit observable agitated behaviors that reflect 

increased confusion, delusion, and other psychiatric disturbances [39][48]. In the early 

stage, these agitated behaviors occur occasionally and only last a very short period of 

time. Long-term observation and care thus becomes increasingly important for tracking 

the disease progress of geriatric patients with dementia in nursing homes [13]. Although 

no widely accepted measure exists for dementia care environments [8], quantitative 

measures of daily activities of these patients can be very useful for dementia assessments.  

   

   
Figure 1 Examples of interaction patterns in a nursing home 

 

Previous research has focused on analyzing individual activities of the elderly in 

individual homes [59][60]. Our study focuses on detecting interactions in multi-person 

activities in real data recorded from public areas in a nursing facility. A social interaction 

is a mutual or reciprocal action that involves two or more people and produces various 
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characteristic visual/audio patterns. To simplify the problem, in this paper, we only 

analyze social interactions between two people. Figure 1 illustrates some examples of 

interaction patterns from the data. Automatically interpreting interactions of the elderly 

according to medical needs may require very detailed information about the event, which 

is beyond the capabilities of existing technologies. For example, a physician may want to 

know if a patient cannot understand a conversation with his/her caregiver, which is not 

discernible with the current state of speech recognition technology. The gaps between 

medical needs and technological capabilities can introduce bridge concepts, such as, 

“conversation” in the above example. Conversation detection is a much easier problem 

and can be implemented using current technology. Instead of telling the physician the 

answer to his/her original concern, “does patient A understand his caregiver?”, an 

automatic system can provide the physician a set of detected conversation recordings of 

the patient and allow the physician to make his/her own informed decision. The research 

problems we are investigating are how to find these bridge concepts and how well we 

can implement sensors to detect them. 

This paper addresses the first problem by studying a general event “interaction”. We 

select the most common interaction-related events required by physicians and explore 

their importance in predicting an interaction, assuming that they can be detected by 

(simulated) sensors. Since we at least must detect “interaction” events to provide 

rudimentary information to the physicians, we give higher priority to the events that have 

greater importance in detecting an “interaction” event. To address the second problem, 

we first build detection models using various machine learning methods on the basis of 

simulated sensors. This tells us how well we can detect some general events in an ideal 

case in which all the sensors are available. We then implement some real sensors using 

video and audio analysis techniques and validate the detection performance using only 

the real sensors. 

Due to the fact that human beings infer interaction activities mainly from audio and 

visual cues, our study is performed on the basis of a long-term digital audio and video 

recording of a nursing home environment. We simulate potential useful sensors by 

applying the knowledge of human experts on the audio and visual channels. Both 

physical and algorithmic sensors are considered in detecting social interactions. For 

example, we can use an RF (Radio Frequency) sensor to track the location of each 
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patient, or a speech detector algorithm from the audio signals. This simulation allows us 

to study various combinations of sensors and multiple detection models without the 

development and deployment of physical and algorithmic sensors. The real 

implementations are only focused on the sensors with high importance. We will discuss 

implementation of these sensors and evaluate their performance. 

In the next section, we will view related work on sensing human behavior, which 

grounds our choice of sensors in existing or emerging technologies. The details of this 

study are presented in the following sections: Section 3 introduces data collection and 

sensor selection and simulation. Section 4 provides a study of the strengths of detecting 

social interactions with individual sensors. Section 5 presents a study of detection models 

of interaction events using simulated sensors. Section 6 proposes the implementation of 

some important sensors using video and audio analysis. The validations of the proposed 

implementations are presented in Section 7. We then summarize feasibility and the 

possibility of detecting social interaction and discuss the limitations of the current CHI 

technology in this field. 

2. RELATED WORK 

Social interaction consists of both individual human activity and relations between 

multiple people. Therefore, the work presented in this paper is closely related with 

location awareness and human activity analysis, which have been addressed by many 

researchers in different areas such as multimedia processing, pervasive computing, and 

computer vision.  

 

2.1. Wearable Sensors 

Various wearable sensors have been developed in recent years to address person tracking 

and activity analysis in the ubiquitous computing area. A GPS (Global Position System)-

based system can compute the location of a radar reflection using the difference in time-

of-flight between 3 precisely synchronized satellites [34]. The Active Bat Location 

system [19] obtains the location of a mobile tag using ultrasound sensors mounted on the 

ceiling of a room. PlusOn time-modulated ultra-wideband technology [52] provides 

location measurements to centimeter precision. Some wearable sensors have been applied 

to health monitoring [33], group interaction analysis [20], and memory augmentation 
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[46]. These indoor and outdoor localization systems provide quite precise location 

information but require a user to wear a special receiver or a tag, which may present 

operational difficulties at a nursing facility.  

2.2. Simple Non-contact Sensors 

Elderly individuals are frequently unwilling to adapt to even small changes in their 

environment, including wearable sensors in their clothing. Some non-contact sensors are 

considered more practical in our task. Power line network [7] and Ogawa’s monitoring 

system use switches and motion detectors to track human activities indoors. In these 

systems, the tracking is extended from a person’s body to his environment, for example, 

the water level in the bath. The data provided by switches and motion sensors are reliable 

and very easy to process. However, they cannot provide detailed information. For 

example, a motion sensor can only tell that there is a person in the monitored area but 

cannot tell the exact location. 

2.3. Algorithmic Sensors for People Tracking 

A vision-based system can provide location information while overcoming some of the 

limitations of the above-mentioned systems. Many computer vision algorithms have been 

developed for not only recovering the 3D location of a person, but also for providing 

detailed appearance information about the person and his/her activities.  

Koile et. al. [30] at MIT proposed a computer vision system to monitor the indoor 

location of a person and his/her moving trajectory. The Living Laboratory [29] was 

designed by Kidd, et. al. for monitoring the actions and activities of the elderly. 

Aggarwal, et. al. [1] has reviewed different methods for human motion tracking and 

recognition. Various schemes, including single or multiple cameras, and 2D and 3D 

approaches have been broadly discussed in this review.  

2.4. Algorithmic Sensors for Activity Analysis 

A large number of algorithmic sensors have been proposed to detect activities from audio 

and visual signals, including gait recognition [6], hand gesture analysis [15], facial 

expression understanding [14], sitting, standing and walking analyses [33] and speech 

detection [36]. Hudson et. al examined the feasibility of using sensors and statistical 

models to estimate human interruptibility  in an office environment [24]. These sensors 

are, for the most part, still research challenges today but can be potentially applicable in 
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the future. The combinations of these sensors for analyzing human behaviors have been 

applied in some constrained environments, such as offices [40], meeting rooms [56], and 

sports fields [25][28]. 

2.5. Activity Analysis Models 

Earlier human activity recognition research focused on analyzing individual human 

behaviors and actions. Apart from the work introduced in the last paragraph, Kojima and 

Tamura [31] proposed an individual human action recognition method using a case 

framework, which is widely used in natural language processing. Case frames are defined 

to be action rules organized in a hierarchical structure. Badler [4] proposed a hierarchical 

framework based on a set of motion verbs. A motion verb is actually a human behavior, 

which is modeled using state machines on the basis of rules predefined on static images. 

The system can be extended theoretically for resolving complex events existing in human 

activities. However, the system was only tested in an artificial environment. Other rule-

based methods [2][22] have also shown their merits in action analysis. Rule-based 

systems may have difficulties in defining precise rules for every behavior because some 

behaviors may consist of fuzzy concepts. 

Statistical approaches, from template models and linear models to graphic models, have 

been used in human activity analysis. Davis and Bobick [11] proposed a template model-

based method for tracking human movement. They constructed temporal templates using 

motion energy and motion history. Yacoob and Black [55] used linear models to track 

cyclic human motion. The model consists of the eigenvectors extracted using principal 

component analysis from the observations. Intille and Bobick [25] interpret actions 

(agents) using a Bayesian network among multiple agents. The Bayesian network can 

combine uncertain temporal information and compute the likelihood for the trajectory of 

a set of objects to be a multi-agent action. This work proposed that group actions could 

be “compiled down” into collections of visual features and temporally coordinated 

(individual) activities. Jebara and Pentland [27] employed conditional expectation 

maximization to model and predict the actions. Their system could synthesize a reaction 

based on the predicted action. Hidden Markov models [38], layered hidden Markov 

models [40][37], or coupled hidden Markov models [42] have been used for recognizing 

actions and activities, and have demonstrated their advantages in modeling temporal 

relationships between visual-audio events. However, huge training data is usually 
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required to obtain good models of various actions in the spatiotemporal domain [54]. 

Ivanov [26] proposed a stochastic, context-free grammar to interpret an activity by 

recursively searching for a complete tree in a non-deterministic probabilistic expansion 

of context-free grammar.  

3. SENSOR SIMULATION 

3.1. Data Collection 

To avoid privacy concerns, we collected data from public areas instead of private rooms 

in a nursing home. Cameras and audio collectors were carefully placed in two hallways. 

Each video and its corresponding audio channels were digitized and encoded into 

MPEG-2 streams in real time and recorded onto hard disks through a PC. The video data 

was captured and recorded in 24-bit color with a resolution of 640x480 pixels at 30 

frames per second. The audio data was recorded at 44.1KHz with 16-bit samples. 

Recording was performed from 9am to 5 PM for 10 days. Overall, 80 hours per camera 

were recorded from the nursing facility.  

3.2. Sensor selection 

A sensor is usually defined as a device that receives a signal or stimulus and responds to 

it in a distinctive manner. As we mentioned in introduction, we consider both physical 

and algorithmic sensors in this study. Each sensor should be associated with observable 

events in the video and audio channel so that it can be simulated with the video and audio 

data.  

Table 1 Sensors defined on events and temporal neighborhood 
Approaching  
Standing  
Talking  
Shaking hands  
Hand touch body slowly  
Hand touch body normally - 5s 
Hand touch the body quickly - 4s 
Hugging - 3s 
Face turning - 2s 
Walking (moving) together - 1s 
Leaving   0s 
Hand trembling + 1s 
Pushing someone in a wheelchair + 2s 
Passing + 3s 
Sitting 

× 

+ 4s 

= Sensors 
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Walking + 5s 
Hand in hand  
Kiss  
Kick  
Sitting down  
Temporal interaction reference 

 

 

 

We select candidate sensors related to social interactions observed from the clinical 

research results [58] while considering the limitations of our data collection and the 

possibilities of implementation with current technologies. For example, we did not select 

a sensor to detect whether or not a patient can brush his teeth because the data in the 

bathroom is not available. We omitted the sensor to detect that a patient is verbally 

assaulting others or a patient appears depressed because the current speech recognition 

and facial expression understanding cannot provide such information. We selected 21 

events listed in Table 1 and their occurrences in temporal neighborhoods as simulated 

sensors. One abstract event is included in our list, called “temporal interaction reference” 

to investigate the temporal referencing probability of detecting an interaction if we can 

make a decision in its neighborhood.  

We asked human experts (not clinical experts, just people in our research group) to watch 

each video and label it second by second by selecting sensors in the Table 1. The range 

of the temporal neighborhood is chosen from 5 seconds ahead to 5 seconds behind the 

current frame. Overall, we obtained 230 (21×11-1) simulated sensors including 21 events 

multiplied by 11 temporal neighbors, excluding the “temporal interaction reference (T-

reference)” in the current interval, which is not considered a sensor. All the sensors are 

labeled as binary events since there is no ambiguity in the human experts’ judgments 

during the labeling. A 1-second recording may contain more than one direct or derived 

event detected by the simulated sensors. 

4. STUDY OF INDIVIDUAL SENSORS 

To know which sensors would be most useful, we first analyze the effectiveness of 

individual sensors in detecting social interactions.  

The first measure that we use to study individual sensors is information gain [47]. 

Information gain indicates the potential power of each sensor to predict an interaction. 

We omit the details of this technique in this paper. Table 2 lists the top 42 sensors 

selected by the information gain technique.  
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Table 2 Top 42 sensors selected by information gain technique 
1 T-reference-1 15 Talking-2 29 Walk together+1 
2 T-reference+1 16 Walking+2 30 Hand in hand 0 
3 T-reference-2 17 Talking-3 31 Walk together-1 
4 T-reference+2 18 Talking+2 32 Approaching+2 
5 T-reference-3 19 Approaching 0 33 Hand in hand+1 
6 T-reference+3 20 Walking-2 34 Walking-3 
7 T-reference-4 21 Talking-4 35 Walk together+2 
8 Walking 0 22 Approaching+1 36 Walk together-2 
9 T-reference-5 23 Walk together 0 37 Hand in hand-1 
10 T-reference+4 24 Walking+3 38 Leaving+1 
11 Walking+1 25 Talking-5  39 Talking+4 
12 Walking-1 26 Approaching-1 40 Leaving-1 
13 T-reference+5 27 Talking+3 41 Walking+4 
14 Talking+1 28 Leaving 0 42 Approaching+3 

 

The table shows that the T-reference of an interaction has obvious temporal consistency. 

Most interactions take longer than one second, and this consistency information is so 

important that it occupies the top 7 ranks with respect to the information gain scores. 

Besides the temporal consistency, it also shows that “walking” and “talking” are very 

important cues associated with individual persons and relative location, such as 

approaching, leaving, and walking together, and hand gestures are important between 

two persons. These sensors are clearly important even within our daily experience. 

However, some sensors, such as “hand normal” and “pushing”, which are also obvious 

evidence of an interaction, have very low ranks in information gain. They either co-occur 

with some high rank sensors or are omitted by the information gain technique due to a 

small number of samples. 

Information gain takes an empirical risk to rank the sensors, which can be biased when 

training samples are redundant in some interaction patterns. For example, a long 

sequence of standing conversation in the training set will tend to give “talking” and 

“standing” higher ranks than a short sequence. To avoid this kind of bias, we also 

analyze the power of each sensor using the structural risk based support vector machine 

(SVM) method [5]. This method trains an SVM using a subset of the training set from all 

sensors, and then eliminates sensors with low weight in representing the decision hyper-

plane. Because the decision hyper-plane is trained to maximize the margin between the 

closest positive support vectors and negative support vectors, repeated patterns in the 
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training set do not affect the result. Therefore, it is robust to the training set which 

contains a biased number of training examples for different sensors. 

Table 3 lists the top 42 sensors selected by the SVM method. These 42 sensors cover 19 

events in our total of 21 events. Only “sitting” and “passing” are not included. This 

selection is more reasonable since the high rank sensors, such as “walk together”, “hand 

touch body normally”, “talking”, “pushing”, and “hand in hand”, are obvious evidence of 

an interaction. 

Table 3 Top 42 sensors selected by SVM 
1 T-reference+1 15 Pushing-3 29 Sit down+5 
2 T-reference-1 16 Walking+2 30 Standing-1 
3 Walk together 0 17 Face turning+1 31 Standing 0 
4 Hand normal 0 18 Approaching 0 32 Hand in hand+1 
5 Talking 0 19 Pushing-4 33 Hand in hand+3 
6 Pushing 0 20 Hand normal+3 34 Pushing+2 
7 Talking+1 21 Walk together+4 35 Shaking hand+2 
8 Pushing+4 22 Face turning 0 36 Leaving+1 
9 Hand in hand 0 23 Walk together 0 37 Walk together-5 
10 Kick 0 24 Shaking hand+5 38 Face turn-1 
11 Hand slow 0 25 Pushing+3  39 Approaching+5 
12 Hand-trem 0 26 Hug+2 40 Standing+5 
13 T-reference-2 27 Standing+2 41 Shaking hand+4 
14 Leaving 0 28 T-reference+2 42 Sit down+4 

 

The sensors with the top 2 ranks are still “judgment of an interaction” in the closest 

neighborhoods. This indicates that the 1-second interval is small and precise enough for 

analyzing social interactions in a nursing home environment. 

In comparison with the information gain results, the sensor “talking” is a common 

important sensor selected by both methods. The “walking” sensor is replaced by “walk 

together” and “pushing”. They all overlap the sensor “walking”, but provide more 

specific information. Hand related sensors are also ranked higher, which indicates that 

social interaction may benefit from developing better hand analysis sensors. 

Temporal information is included in our simulated sensors. We evaluated the 

effectiveness of temporal orders by averaging the two selection results together and 

computing the histogram of temporal orders. Figure 2 illustrates the effectiveness of 

temporal order in detecting social interactions. 
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Figure 2 Effectiveness of temporal order. Frequencies are computed by 
choosing the top 20, 30 and 40 sensors ranked by information gain and SVM 

 

The effectiveness of temporal order drops quickly as the time interval between the 

current event and future or past events increases. The effect of events more than 3 

seconds away from the current one is very limited and provides very little useful 

information for analyzing social interactions. The sensor selection only analyzes the 

effectiveness of individual sensors. In the next section we will investigate the power of 

combining sensors using statistical models. 

5. STUDY OF DETECTION MODELS 

It should be noted that there are some overlaps among simulated sensors, e.g., “walking 

together” implies “walking”. The first goal of this section is to explore proper statistical 

models to detect social interactions. We consider the detection of the social interaction as 

a binary classification problem: interaction vs. non-interaction. The other goal of this 

section is to further investigate the associations between different sensors. This will 

enable us to replace some impractical sensors with combinations of sensors that can be 

more easily developed. 

5.1. Statistical models 

Since we have considered including temporal information in the simulated sensors, the 

interaction detection problem can be simplified as a problem of classifying the sensor 

outputs of each 1-second interval into two classes indicating interaction and non-

interaction, respectively.  

To find a proper model for classifying interactions, we evaluated various machine 

learning algorithms: decision trees [43], naive Bayes classifiers [32], Bayes networks 
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[23], logistic regression [18], support vector machines [53], adaboost [35] and logitboost 

[16]. We will not describe the details of these algorithms in this paper. Interested readers 

can find these details in the references. 

Table 4 Performances of interaction detection using different models under the 
ideal condition. 

Model Precision Recall F-measure 
Decision tree 99.5% 99.2% 99.3% 
Naive Bayesian 98.4% 92.9% 95.6% 
Bayes network 98.4% 93.0% 95.6% 
Logistic regression 99.6% 98.7% 99.2% 
SVM 99.5% 99.5% 99.5% 
adaboost 99.7% 99.1% 99.4% 
logitboost 99.7% 99.1% 99.4% 

 

The evaluations are shown in Table 4. We use equal size training and testing data. We 

use a standard 5-fold cross-validation approach to find optimal parameters for each 

model. We then evaluated the resulting optimal models on the testing set to report the 

numbers in Table 4. Performance is reported in terms of precision, recall, and F-measure. 

There are four possible test results for each event in the test set: true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN). Let us denote TP, FP, TN and 

FN as the number of the corresponding results produced by detection. The precision is 

defined as: ( )P TP TP FP= + . The recall is defined as: ( )R TP TP FN= + . The F-measure 

is widely used to measure the precision and recall together, which is defined as: 

2 * ( )F measure P R P R− = + . 

We can see that under the ideal condition (all sensors output correct result without any 

ambiguity), all these models obtain good detection results. To our surprise, the simplest 

method, decision tree, employs only four kinds of sensors: “T-reference”, “talking”, 

“walking” and “leaving”, but achieves very good performance. None of these sensors 

except “T-reference” requires complex visual and audio analysis in comparison to the 

sensors such as “face turning” and “hand in hand”. It seems there is a possibility that 

social interaction can be detected by just developing good “talking”, ”walking” and 

“leaving” sensors. It is true if the “T-reference” sensor can be successfully derived from 

these three kinds of sensors. 

To remove the effect of the temporal information of the derived sensor “T-reference”, we 

assume that the “T-reference” sensor is not available to its neighbors. We remove all “T-
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reference” sensor outputs from feature vectors and evaluate the above methods. The 

results are listed in Table 5. 

Table 5 Performances of interaction detection using different models under the 
condition of no “T-reference” sensor. 

Model Precision Recall F-measure 
Decision tree 97.1% 96.4% 96.8% 
Naive Bayesian 96.3% 90.1% 93.1% 
Bayes network 96.3% 90.4% 93.3% 
Logistic regression 96.5% 94.5% 95.5% 
SVM 98.0% 95.1% 96.5 
adaboost 95.4% 93.9% 94.6% 
logitboost 96.0% 95.6% 95.8% 

After removing the “T-reference” sensor, the performance drop about 3-5%, which 

indicates that we can achieve around 90% accuracy in detecting current interaction with 

the temporal information of interaction decisions in neighborhoods. As we assume 

outputs of other sensors are under the ideal condition, the real accuracy of the current “T-

reference” sensor output is expected to be about 90% of the average accuracy of all the 

other sensors’ outputs.  

The decision tree still achieved the best performance even without the “T-reference” 

sensors. However, the resulting decision tree includes all kinds of sensors. The top 10 

sensors are:  

Rank Sensor Rank Sensor 
1 Talking 6 Hand in hand 
2 Walk together 7 Standing 
3 Walking 8 Leaving 
4 Pushing 9 Approaching 
5 Hand normal 10 Passing 

A drawback of the decision tree is that it is sensitive to noise in sensor outputs. In 

practice, outputs of sensors might be ambiguous or even incorrect. Some of the sensor 

outputs have to be represented by probabilities, e.g., 60% “talking” or 30% “hand in 

hand”. The uncertainties of sensor outputs can only be determined from real experiments. 

What we can do in a simulation is to manually add noise into outputs of sensors. Table 6 

shows the result of adding 20% noise to the data without “T-reference” sensors. 

Table 6 Performances of interaction detection using different models with 20% 
noises. 

Model Precision Recall F-measure 
Decision tree 90.0% 90.4% 90.2% 
Naive Bayesian 88.6% 75.3% 81.4% 
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Bayes network 88.1% 77.6% 82.5% 
Logistic regression 90.1% 93.5% 91.8% 
SVM 91.4% 95.3% 93.3% 
adaboost 89.6% 93.8% 91.6% 
logitboost 90.1% 95.6% 92.8% 

 

The performance of the decision tree decreases from 96.8% (F-measure) to 90.2%, or 

loses 6.6% accuracy. At the same time, the performance of the SVM model decreases 

from 96.5% to 93.3%, or only loses 3.2% accuracy. Notably, the recall of the SVM only 

decreases 0.5% with 20% noise. The logitboost model is also shown to be robust to noisy 

data. The recall of the logitboost model remains the same after adding noise. The F-

measure loses only 3% accuracy. This indicates that SVM model is potentially more 

robust than the decision tree model in real applications.  

Table 7 Detection of the interaction pattern “standing conversation”. 
Model Precision Recall F-measure 
Decision tree 86.0% 95.0% 90.0% 
Bayes network 81.4% 86.0% 83.7% 
SVM 87.4% 98.3% 92.8% 
logitboost 87.1% 98.6% 92.8% 

 

Table 8 Detection of the interaction pattern “walking assistance”. 
Model Precision Recall F-measure 
Decision tree 95.2% 85.9% 91.0% 
Bayes network 85.7% 80.1% 82.9% 
SVM 96.0% 89.4% 92.7% 
logitboost 96.4% 90.1% 93.2% 

 

Let us further define some interaction patterns in simple combinations of the sensors and 

evaluate the detection models on them. We define the first interaction pattern called 

“standing conversation”, which must consist of “talking” and “standing” at the same 

time. The second interaction is called “walking assistance”, which contains either a 

“walk together” or a “pushing”.  

It should be noted that the noise level of 20% is an empirical assumption. Real sensors 

will have different accuracies. To give an idea of the performance of the real sensors, we 

discuss our efforts in implementing some sensors using video analysis in the next 

sections.  
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Figure 3 Sensor implementations using coarse-to-fine interaction events detection. 
 

6. SENSOR IMPLEMENTATIONS USING VIDEO ANALYSIS 

Since many geriatric patients are very sensitive to changes in their environment,  we 

focus on implementing sensors by automatically detecting functionally equivalent events 

in video data. However, due to the low resolution of the video, we cannot detect all the 

important sensors. The sensors that detect small interactions between people, such as 

“hand-in-hand” and “hand normal”, cannot presently be automatically detected and will 

be left to future work. Since the video contains a large amount of data, we propose a 

coarse-to-fine framework (Figure 3), in which we first quickly scan the audio and video 

data to detect the candidate shots that may contain any of the target events with potential 

high negative false alarms, then refine the detection results and further analyze the 

category of each event. 

6.1. Coarse event detection 

Since we only focus on multi-person activities, we developed a preprocessing algorithm 

to segment audio/video streams into shots, and classify the shots into three classes: non-

activity, individual activity and multi-person activity, using audio and video event 

detection techniques.  

6.1.1. Video events detection 

For the video channel, we use a background subtraction algorithm to detect frames that 

contain human activities. To speed up this detection process, video from only one camera 

Coarse event detection 

Video Audio 

Fine interaction events detection 

Interaction events 
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in the network is used. The background of a frame is obtained by the adaptive 

background method [50]. We employ a threshold to extract pixels that have high 

differences between the current frame and its background. To remove noise, we group 

extracted pixels into regions and only keep those regions that contain more than 15 

pixels. We consider the frame f to contain a visual interaction event Vf=1 if any of the 

following rules is satisfied; otherwise Vf=0:  

1. There are two or more regions in the frame. 

2. There is region that does not touch the bottom the frame, whose width to height 

ratio is more than 0.7.  

We chose these thresholds to detect as many interactions as possible without inducing 

excess false alarms.   

The output of the detection is reported every second. For 1 second of NTSC video, we 

output the percentage of visual cues in its 30 frames as: 

∑
=

=
30

130
1

f
fv vC  

 

6.1.2. Audio event detection 

To detect events using an audio stream, we use a very simple power-based method 

similar to the one proposed by Clarkson and Pentland in [9][10].  This method adaptively 

normalizes signal power to zero mean and unity variance using a finite-length window; 

segments where the normalized power exceeds some threshold are designated “events.” 

[9] and [10] describe an ambulatory system which could be exposed to arbitrary acoustic 

environments; adaptive normalization allows such a system to compensate for unusually 

loud or quiet environments and still detect events reliably. Our task differs from that 

system in that we have a stationary system where changes in power level really do 

indicate events and not just changes of venue. As such, instead of adaptive 

normalization, we use global normalization.  That is, a single mean and variance is 

calculated for each two-hour recording and the globally-normalized power is thresholded 

to detect events af.  

In this implementation, we extracted 16-bit mono audio from the audio-video stream, and 

used analysis windows 200ms in length with a 50% overlap. This window length results 

in a frame rate of 10 frames per second, which is more than adequate to detect events 
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using the power-based approach. After signal power is calculated and normalized, it is 

passed through a simple 3-frame averaging filter for smoothing. We then apply the 

power threshold; any segment which exceeds the threshold is designated an event.  We 

also stipulate a minimum event time of 1 second in order to filter out isolated auditory 

transients. The confidence of audio event per second is defined as: 

∑
=

=
10

110
1

f
fa aC  

6.1.3. Fusing video and audio events detection 

We linearly combine the video event confidence and audio event confidence together for 

final event detection: 

avd CCC )1( αα −+=  

We consider a  1 second frame to contain an interaction if its confidence Cd is higher 

than 0.5. 

To evaluate the preprocessing algorithm, we labeled 10 hours of video/audio data. Using 

only video detection, we extract 33.3% of the entire video as candidate interaction shots, 

which is listed in Table 9. In order to not miss any interactions, we only filter out the 

one-second-long video segments with zero confidence. 

Table 9 Results of event detection from video 
 Total Event Time (second) Event Time as % of Total Signal 
No activity 13711 38.1% 
Individual 6700 18.6% 
Multi-person 15589 33.3% 

 

Using only audio detection with varying thresholds, we obtained the results listed in 

Table 10.  The table shows the total event time and percentage of data in the recordings 

using three thresholds.  

Table 10 Results of event detection from audio 
Threshold Total Event Time (second) Event Time as % of Total Signal 

1.1 6705 18.6% 
1.6 5582 15.5% 
2.1 4327 12.0% 

 

By fusing the audio (threshold 1.6) and video results, we extracted total 9435 seconds 

from the entire 10 hour data. In this way, 85 our of 91 interactions in the ground truth are 
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covered by the candidate shots, which obtain reasonable recall and precision in terms of 

event time as listed in Table 11. The audio has a lower recall due to the presence of silent 

interactions such as walking assistance of a wheelchair-bound patient. The audio 

precision is actually higher in general than is reported here. The hallway environment is a 

poor representative of audio precision, as many events that are audible in the hallway are 

off-camera and not in the ground-truth labels; thus audio event detection generates many 

false alarms.  Even so, our results show that by fusing audio and video results, we can 

achieve more than 90% recall and 20% precision.  We project even better precision when 

we test our fused system over the entire set of the data.   

Table 11 Coarse detection results 
 Recall Precision Process speed 
Video 98% 13% real time 
Audio 71% 28% 10% real time 
Multimodal 92% 21%  

 

6.2. Fine event detection 

In this step, we not only refine the coarse detection result, but also associate the detected 

events with target sensors. The audio events detected in the coarse detection step are 

simply associated with the “talking” sensor outputs. The fine detection focuses on only 

the video data. Our simulations show that the interaction related sensors are very 

dependent on each other. Detailed study shows that there are three dependencies: 

1. Some interaction events rely on events associated with individual persons. 
2. Different events may share the same features in the detection. 
3. Some features can only be extracted from the interaction between two people and 

therefore also depend on the events that only associated with these two individual 
persons. 
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Figure 4 Context hierarchy of interaction event detection in a nursing home 

To take advantage of these dependencies, we have come up with a four-level context 

hierarchy for representing daily activities of patients, staff, and visitors. From bottom to 

top, the four levels are conceptual element (CE), individual person activity event (IE), 

group activity feature and event (GE), and social interaction (SI), which are illustrated in 

Figure 4.  

The conceptual elements consist of entities that are objects of interest to us, and some 

features of entities. The entities of a nursing home concerning us are doors, people, and 

faces. The attributes are features for measuring motions and visual appearances of an 

entity. We use five visual features: location, moving direction, speed, color, and shape, as 

explained in Table 12. We will discuss the implementation details of entity detection and 

feature extraction in the next section.  

Table 12 Features of individual entity in a nursing home 
Attributes Definition 
Location (E) Describing the physical location of the entity “E”. 
Moving direction (E) Describing the moving direction of the entity “E”. 
Speed (E) Describing the moving speed of the entity “E”. 
Color (E) The entity “E” has skin color. 
Front face (person) Front face has been detected for the person. 
Shape (E) Shape information of the entity “E” 

An individual person activity event (IE) is defined as a combination of a person entity 

and a sequence of attributes. For example, the IE “Walking (A)” indicates person A with 
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a sequence of changing locations. Table 13 has listed some IEs in a hallway of a nursing 

home. Most of the IEs can be associated with the sensors we need to implement. 

Table 13 Some common individual activity events (IEs) in a nursing home. 
Individual people activity events Definition 
Walking (person) Associates to a sensor 
Sitting (person) Associates to a sensor 
Standing (person) Associates to a sensor 
Door used (door) Some entities are passing the door. 
Face turning (person) Associates to a sensor 

Group activity features (GFs) are combinations of IEs that involve two individual person 

entities as listed in Table 14. GFs are features of relative motions of two IEs. These 

features that measure relative distance or walking directions between two people, for 

example, the “distance (A, B)” measures the distance between person A and person B.  

Table 14 A list of group activity features and events (GEs) 
Group activity features and 
events (GEs) 

Definition 

Distance (person A, person B) Distance between A and B, which can be 
deduced to three categories: approaching, 
distance close, and leaving. 

Relative direction (person A, 
person B) 

Relative moving direction between A and B. 

Lower speed (person A, person B) A reduces his/her speed for B. 

A group interaction event (GE) is a segment of a story (a meaningful sequence of 

video/audio) of human activities consisting of a group of individual activity events and 

group activity features. For example, a story of a typical conversation in the hallway can 

be partitioned into three segments: 

1. Person A and person B approach to each other; 

2. A and B are talking. 

3. A and B walk out of the hallway together or separately. 

Theoretically, if the observation time and the number of people involved are not limited, 

the number of possible interactions can be quite large. In this paper, we are only 

interested with five events as listed in Table 14. 
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Figure 5 Social interaction ontology in a nursing home. 
 

A social interaction (SI) is a sequence of IEs, GEs or a combination of other social 

interactions. If the observation time and the number of people involved are not limited, 

the number of possible interactions is too large to handle. In order to limit the taxonomy 

of social interactions to a reasonable size, we define the taxonomy implicitly by the 

ontology shown in Figure 4. Due to space limitations, the detailed connections from 

social interactions (the items in rectanglular boxes) to other levels are not completely 

expanded. Based on this ontology, our analysis system interprets activities of a nursing 

home into sequences of social interactions.  
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6.2.1. Entity Detection 

We manually labeled the position of all the doors and entrances of the hallway. An entity 

that appears close to one of these doors and entrances for the first time is initialized and 

tracked in the hallway. We consider a region extracted in the pre-segmentation step as an 

entity if it contains skin color pixels in the top 30% of the whole region. The skin color is 

modeled as a Gaussian mixture [56]. The location and moving direction features can be 

extracted directly from the tracking results. The appearance features, color and shape, are 

extracted from key-frames. 

 

Figure 6 3D tracking with a camera network. 

6.2.2. Entity tracking and related feature extraction 

Since occlusions happen frequently in the narrow hallway, we use a particle filtering 

base, multiple cameras framework to track human movement. This framework uses one 

or more cameras to cover the target area. The location of a person in 3D space is obtained 

by integrating tracking confidence in the images grabbed from the cameras. Instead of 

using a traditional stereo algorithm, this 3D location recovery task uses a new tracking 

algorithm, which can robustly compensate tracking cues from different numbers of 

cameras.  

A camera network consists of multiple cameras covering the interesting areas in the 

nursing home as illustrated in Figure 6. A simple pinhole model is used for all the 

cameras. We calibrate the cameras off-line and we don’t move them once they are 

calibrated. After calibrating the intrinsic and extrinsic parameters, we can map a spatial 

point L(X,Y,Z) in 3D world coordinates to its corresponding point li(x,y) in the image 
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plane of each camera i. The spatial points can be silhouettes. We use both the head 

(highest point) and feet (lowest point) in this research. Using particle filters, we are able 

to track a silhouette in 3D world coordinates using the tracked features from all the 

cameras. 

The idea of particle filters was first developed in the statistical literature, and recently this 

methodology, namely sequential Monte Carlo filtering [2] or Condensation, has shown to 

be a successful approach in several applications of computer vision [40][43]. A particle 

filter is a particle approximation of a Bayes filter, which addresses the problem of 

estimating the posterior probability )( :1 tt OLp  of a dynamic state given a sequence of 

observations, where Lt denotes the state L (3D position in the world coordination) at time 

t and O1:t denote the observed images sequence from all the cameras from time 1 to time 

t. Assuming independence of observations conditioned on the states and a first order 

Markov model for the sequence of states, we obtain the following recursive equation for 

the posterior: 

∫
−

−−−−=
1

11:111:1 )()()()(
tL

ttttttttt dLOLpLLpLOpOLp α , (2) 

where α is a normalization constant and the transition probability )|( 1−tt LLp is assumed 

to be a Gaussian distribution. The data likelihood is obtained by first mapping the 3D 

position L(X, Y, Z) of a silhouette to the current images from cameras and then computing 

the average tracking confidences C(li) at these 2D positions li: 
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Here, iL  is the distance from the optical center of the camera i to the point L. The 

threshold C is a constant for removing tracking errors. If a mapped 2D point is out of the 

image, the corresponding tracking confidence is set to 0. N is the number of cameras that 

contain tracking results with high enough confidences. 

In practice, a head silhouette has less chance to be occluded than a feet silhouette. 

However, the 3D location of a head silhouette can only be recovered if it is tracked in the 

frames from at least two cameras. Therefore, for tracking a head silhouette, N must be 

greater than 1. One the other hand, although feet silhouettes are often occluded, it can 
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recover its 3D location of a person from one camera. This is very important in the case 

that a person is only visible in only one camera. 

Following the idea of a particle filter, the posterior )( :1 tt OLp  is approximated by a set of 

weighted samples of locations L. The weight of a location is defined as its data 

likelihood. The initial weighted sample set contains only one state L0, which is obtained 

by performing a full search around the 3D position near the entrance where the person is 

initialized. Then, for each frame 100 new samples are generated and their confidences 

are computed. To keep the size of the weighted sample set, among these 100 new 

samples, the first 50 samples with the highest confidence are then treated as the new 

weighted sample set for the next frame. The final current tracked position is set to be the 

value of the sample (3D location) with the highest confidence. 

 
Figure 7 Interface of a demo of the proposed tracking framework. 

Figure 7 displays the interface of our demo of the proposed tracking framework. In this 

demo, we use three cameras for tracking two persons and recover their 3D trajectories on 

a map. To illustrate the location features, we specified four interesting spots and record 

the time spent in each spot by each person. The speed features are also at the bottom of 

the window. One advantage of this tracking framework is that it can reduce tracking 

errors with multiple cameras. 

Figure 8 illustrates the compensation of tracking results of two persons using this 

multiple cameras framework in the simulation sequence. The results of tracking using 
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individual cameras and the proposed multiple cameras framework is shown on a time 

axis. A vertical bar at time t indicates that the person is tracked at time t, otherwise the 

person is not tracked. We can see that the proposed method obtained no blank (loss of 

tracking) here.  

 

Figure 8 An illustration of people (2) tracking results using the proposed 
method. A color mark at time t indicates that the person is tracked by the 
corresponding camera or combination of cameras. 
 

Tracking results from the 10 minute long sequences are shown in Figure 9. The proposed 

tracking framework reduces tracking errors by 58% on average, which can significantly 

prevent tracking errors due to occlusions.  

All the attributes (features) are extracted every second. The “location” is represented by 

the (X, Y) coordinates of the tracked 3D spatial point L(X, Y, Z) at the beginning of each 

second. Speed and moving direction are computed every second. Therefore, the input of 

the event detection level is uniform attribute (feature) vectors per second.  
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Figure 9 Tracking errors in 10 minute simulation video 

6.2.3. Color and shape features 

Color features are mostly used to distinguish different entities in the tracking process. We 

use 8-bin histograms in RGB color space as features for each entity. 

Shape information is represented by partitions with Manhattan distances. In this method, 

each extracted region that contains people or facilities is divided into 9 sub-regions, as 

shown in Figure 10. The density of each sub-region is calculated and threshold is set to 

equal  ‘1’ if it is greater than 50% and ‘0’ otherwise. Finally, a shape feature vector of a 

region is a 10 dimensional vector: 9 city block features and the width/height ratio of the 

region. 

 

Figure 10 Shape feature can be used to distinguish individual person from 
multiple people and also is an important to classify some activities: sitting, 
standing (or walking), and pushing a wheelchair. 
 

All the attributes (features) are extracted every second. The “location” is represented by 

(X, Y) of the tracked 3D spatial point L(X, Y, Z) at the beginning of each second. Speed 

and moving direction are computed every second. Color and shape features are also 
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extracted from the first frame of each second. Therefore, the input of the event detection 

level is uniform attribute (feature) vectors per second.  

6.2.4. IE and GE Detection 

Each IE is modeled individually using Gaussian mixture models (GMMs). The training 

can be done using the standard EM algorithm [20]. A special case is that the event “being 

pushed” is considered to be an IE due to the difficulty of segmenting the wheelchair and 

the person who is pushing the wheelchair. A similar concept is also reused at the higher 

level but conditioned by other events or interactions. In order to train good models using 

limited training data, we perform feature selection using 2χ  for each event for reducing 

the feature space.  

Some GEs require temporal information and are modeled by hidden Markov models 

(HMMs) based on individual event detection and raw features, such as “approaching”, 

“leaving”, and “lower speed”. Others are modeled using GMMs directly based on 

features. When raw features are used, the input of a social event detector is two feature 

vector sequences from different persons.  

7. EXPERIMENTAL RESULTS WITH THE IMPLEMENTED SENSORS 

To evaluate the proposed framework, we first show some examples of the features we 

extracted from video. Figure 11 shows the speed features extracted from four video 

shots. Different scales are used for the Y axis in the figures in order to show the results in 

as much detail as possible. Each video shot contains interactions between two people. 

Video (1) shows that a person A meets a person B in the hallway. They hug each other 

and then stand and talk to each other for a while. Finally, the person B accompanies the 

person A walking towards the entrance. Using the concepts defined in our ontology, 

video (1) can be simply represented as: “approaching(A, B) - hugging(A, B) - stand 

conversation(A, B) - walking assistance(B, A)”. Concisely, we can omit the subjects 

(persons) and interpret the video (2-4) as: (2) standing conversation - wheelchair 

pushing; (3) approaching - standing conversation - leaving; (4) passing includes 

approaching - distance close - leaving.  
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Figure 11 Speed features of some video samples: (1) approaching, greeting,
stand conversation, walking assistance; (see original key frames in the 1st row of
Fig. 1) (2) stand conversation, wheelchair pushing; (see Fig. 1, 2nd row, left) (3)
approaching, stand conversation and leaving; (4) Passing. 
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Figure 12 The “distance” features extracted from the four video sequences
described in Figure 11. 
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Figure 12 and Figure 13 illustrate the “distance”, and “relative direction” features of the 

four video shots. We can observe there are some errors in the figures, for example the 

relative moving direction of the first video has an obvious noise point in Figure 13. The 

errors are caused by precision of the tracking algorithm and the calibration of the camera 

network. Fortunately, the errors can be controlled within a small range. 
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Figure 13 The “relative moving direction” features extracted from the four
video sequences described in Figure 11 

 

Table 15 Results of sensor implementation using the proposed video and audio 
event detections 

Sensor Precision Recall F-measure 
Talking 60% 72% 66% 
Walk together 89% 91% 90% 
Walking 99% 99% 99% 
Pushing 52% 75% 64% 
Leaving 99% 68% 84% 
Approaching 99% 63% 81% 
Passing 38% 84% 61% 

 

The events are detected based on the features in our database and then associated with 

the sensors. Table 15 lists the performance of some sensors implemented by our video 

and audio event detections in terms of 1-second intervals. Three sensors obtain high 

precision: “walking”, “leaving” and “approaching”, which benefit from our tracking 

algorithm. The recall of  “leaving” and  “approaching” are relatively low because there is 

no sensor associated with the “distance close” event and all the detected “distance close” 

events are randomly classified into the “leaving” and the “approaching” sensor outputs. 

This also leads a low precision of the “passing” sensor since the HMM for the “passing” 

event only models the temporal information between two consecutive intervals. Most of 
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the detection errors are due to occlusions between people involved in the interactions; for 

example, the person being pushed in a wheelchair can be completely occluded by the 

person who is pushing the wheelchair. Using the same detection models as we used in the 

simulations, we can detect whether there is an interaction or not in each 1-second 

interval. Since we did not implement all the sensors selected by the simulations, we have 

to remove the unavailable sensors and retrain the detection models. Table 16 only lists 

the performance of the decision tree, Bayes network, SVM and logitboost. Comparing 

with the Table 6, the F-measure of most models decreased a little. The Bayes network 

gains the smallest changes between the detection results using simulated sensors and the 

real sensors.  

Table 16 Detection of interaction on real sensor outputs. 
Model Precision Recall F-measure 
Decision tree 76.2% 88.1% 81.7% 
Bayes network 87.8% 75.7% 81.3% 
SVM 78.7% 93.0% 85.3% 
logitboost 81.3% 94.1% 87.3% 

 

To assess the performance at the video shot level, we use 80 videos in the database as the 

training set to train a dynamic Bayes network (DBN), and use the remaining 80 videos as 

the test set to validate the performance. A DBN B=(S, M) is a directed acyclic graph that 

consists of a state set },...,{ 1 nssIESESIS =∪∪= , which represents sensors and 

interactions, a set of directed arches that specifies parents of each state s: Parent(s), and a 

parameter set M, which is defined by the sensor outputs ),...,( 1 kooO = . The DBN 

defines the data likelihoods )|( i
t

M soP  and the ontology relationships 

))(|( iiM sParentsP . The joint distribution of the DBN is defined as: 

∏=
i

iin sParentsPssP )(|(),...,( 1   

The graph is built by defining the parents of each state (SI) according to the relationships 

defined in the ontology. For example, “interaction” is the parent of “passing” and 

“encounter”. Using directed arches, we also defined two SIs to be parents of each other. 

The temporal arches are also added into the graph using daily knowledge. Table 17 lists 

the number of interactions in the training set and test set. Only 4 interactions are listed 

here. 
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Table 17. Social interaction recognition results 
Interactions Training 

set 
Test set Recognition 

rate 
False 

alarms 
Passing 21 15 93% 4 
Interaction  59 65 94% 1 
Stand conversation 32 34 88% 9 
Walking assistance 40 44 86% 6 

A video shot may consist more than one interaction events, for example, one video shot 

can contain both a “standing conversation” event and a “walking assistance” event. The 

results show that the DBN can smooth the detection results obtained at the interval level 

and produce better results at the video shot level. 

8. CONCLUSIONS, DISCUSSIONS AND FUTURE WORK 

This paper addresses the problem of detecting social interaction patterns of elderly 

patients in a skilled nursing facility. Given the fact that many sensors for detecting 

interesting geriatric interactions cannot be provided by the current technology, we have 

employed a simulation framework to study sensor combinations and potential detection 

models. The location related sensors, hand related sensors, talking sensors, and temporal 

consistency information are ranked as high priorities in the task of detecting interactions. 

We have also compared various statistical models to explore overlapped spaces of 

multiple sensors under the simulation framework. The experimental results have 

indicated that the decision tree model could achieve more than 99% accuracy with only 

three kinds of sensors: “talking”, “walking”, and “leaving”, plus temporal information 

under noise free conditions. This indicates the possibility of achieving good interaction 

detection performance by developing perfect “talking”, “walking” and “leaving” sensors 

instead of developing complex sensors, such as face and hand gesture sensors. We also 

demonstrated the robustness of various models when noise is present in the simulated 

sensors. The SVM and the logitboost models proved to be more robust against noise than 

other sensors for detecting the general “interaction” event and the two specific interaction 

patterns. 

Based on the simulation results, we implemented some of the important sensors based on 

video and audio analysis techniques. Most sensors we implemented have less than 20% 

noise as we assumed in the simulations. Compared to the simulated case (with all 

sensors), using only the implemented sensors decreased the performance of various 
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detection models but still achieved more than 80% accuracy. We have also shown that by 

using high level temporal smoothing, the detection performance can be improved at the 

video shot level. 

Many sensors could not be implemented in the work described in this paper, due to low 

resolution of the video and occlusions; for example, the hand gesture sensors. A camera 

network that consists of a combination of far view and close view cameras may offer a 

solution to low resolution in the future. Occlusion is still a big challenge. The “talking” 

detection results are noisy when people speak in the rooms connected to the hallway. A 

microphone array may filter out the voices from other locations and provide better audio 

channels. However, how much information can be provided by speech recognition is still 

in question. Besides the sensors from video and audio channels, an accurate motion 

sensor could also be able to detect small hand motions. Head gesture analysis for moving 

people in a distance is also a research effort in the future. 
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