Handling uncertainty over time: predicting, estimating, recognizing, learning
© Chris Atkeson 2004

Why do we care?
- Speech recognition makes use of dependence of words and phonemes across time.
- Knowing where your robot is makes use of reasoning about processes that unfold over time.
- So does most reasoning, actually.
- Medical diagnosis, politics, stock market, and the choices you make every day, for example.

What is a “state”
- Everything you need to know to make the best prediction about what happens next.
- Depends how you define the “system” you care about.
- States are called x or s. Dependence on time can be indicated by x(t).
- States can be discrete or continuous.
- AI researchers tend to say “state” when they mean “some features derived from the state”. This should be discouraged.
- A “belief state” is your knowledge about the state, which is typically a probability p(x).
- Processes with state are called Markov processes.

Dealing with time
- The concept of state gives us a handy way of thinking about how things evolve over time.
- We will use discrete time, for example 0.001, 0.002, 0.003, ...
- State at time t_k, x(t_k), will be written x_k or x[k].
- Deterministic state transition function x_{k+1} = f(x_k)
- Stochastic state transition function p(x_{k+1}|x_k)
- Mildly stochastic state transition function x_{k+1} = f(x_k) + \epsilon, with \epsilon being Gaussian.

Hidden state
- Sometimes the state is directly measurable/observable.
- Sometimes it isn’t. Then you have “hidden state” and a “hidden Markov model” or HMM.
- Examples: Do you have a disease? What am I thinking about? What is wrong with the Mars rover? Where is the Mars rover?

measurements y_{k-1} \quad y_k \quad y_{k+1}

measurements y_{k-1} \quad y_k \quad y_{k+1}

Measurements
- Measurements (y) are also called evidence (e) and observables (o).
- Measurements can be discrete or continuous.
- Deterministic measurement function y_k = g(x_k)
- Stochastic measurement function p(y_k|x_k)
- Mildly stochastic measurement function y_k = g(x_k) + \nu, with \nu being Gaussian.
Standard problems

- Predict the future.
- Estimate the current state (filtering).
- Estimate what happened in the past (smoothing).
- Find the most likely state trajectory (sequence/trajectory (speech) recognition).
- Learn about the process (learn state transition and measurement models).

Prediction, Case 0

- Deterministic state transition function $x_{k+1} = f(x_k)$ and known state x_k: Just apply $f()$ n times to get x_{k+n}.
- When we worry about learning the state transition function and the fact that it will always have errors, the question will arise: To predict x_{k+n}, is it better to learn $x_{k+1} = f_1(x_k)$ and iterate, or learn $x_{k+n} = f_n(x_k)$ directly?

Prediction, Case 1

- Stochastic state transition function $p(x_{k+1}|x_k)$, discrete states, belief state $p(x_k)$
- Use tables to represent $p(x_k)$
- Propagate belief state: $p(x_{k+1}) = \Sigma p(x_{k+1}|x_k)p(x_k)$
 Matrix notation:
 Vector p_k, Transition matrix M, $M_{ij} = p(x_i|x_j)$; i, j, components, not time.
 Propagate belief state: $p_{k+1} = M p_k$
 time.
 Stationary distribution $M^\infty = \lim_{n-> \infty} M^n$
 Mixing time: n for which $M^n \approx M^\infty$

Prediction, Case 2

- Stochastic state transition function $p(x_{k+1}|x_k)$, continuous states, belief state $p(x_k)$
- Propagate belief state analytically if possible $p(x_{k+1}) = \int p(x_{k+1}|x_k)p(x_k)dx_k$
- Particle filtering (actually many ways to implement).
- Sample $p(x_k)$.
- For each sample, sample $p(x_{k+1}|x_k)$.
- Normalize/resample resulting samples to get $p(x_k+1)$
- Iterate to get $p(x_{k+n})$

Prediction, Case 3

- Mildly stochastic state transition function with $p(x_k)$ being $N(\mu, \Sigma)$, $x_{k+1} = f(x_k) + \epsilon$, with ϵ being $N(0, \Sigma)$, ϵ independent of process.
- $E(x_{k+1}) = f(\mu)$
- $A = \frac{\partial f}{\partial x}$
- $\text{Var}(x_{k+1}) = A\Sigma A^T + \Sigma$
- $p(x_{k+1})$ is $N(E(x_{k+1}), \text{Var}(x_{k+1}))$.
- Exact if $f()$ linear.
- Iterate to get $p(x_{k+n})$.
- Much simpler than particle filtering.

Filtering, in general

- Start with $p(x_{k-1})$
- Predict $p(x_k^*)$
- Apply measurement using Bayes’ Rule to get $p(x_k^*) = p(x_k|y_k)$
- $p(x_k|y_k) = p(y_k|x_k)p(x_k)/p(y_k)$
- Sometimes we ignore $p(y_k)$ and just renormalize as necessary, so all we have to do is $p(x_k|y_k) = \alpha p(y_k|x_k)p(x_k)$
Filtering, Case 1
- Stochastic state transition function $p(x_{k+1}|x_k)$, discrete states, belief state $p(x_k)$, $p(y_k|x_k)$
- Use tables to represent $p(x_k)$
- Propagate belief state:
 \[p(x_{k+1}) = \sum p(x_{k+1}|x_k)p(x_k) \]
- Weight each entry by $p(y_k|x_k)$:
 \[p(x_{k+1}^*) \propto p(y_k|x_k)p(x_{k+1}^*) \]
- Normalize so sum of $p() = 1$
- This is called a Discrete Bayes Filter

Filtering, Case 2
- Stochastic state transition function $p(x_{k+1}|x_k)$, continuous states, belief state $p(x_k)$
- Particle filtering (actually many ways to implement).
- Sample $p(x_k)$.
- For each sample, sample $p(x_{k+1}|x_k)$.
- Weight each sample by $p(y_k|x_k)$.
- Normalize/resample resulting samples to get $p(x_{k+1})$.
- Iterate to get $p(x_{k+n})$

Particle Filter Algorithm
- Create particles as samples from the initial state distribution $p(x_0)$.
- For k going from 1 to K
 - Update each particle using the state update equation.
 - Compute weights for each particle using the observation value.
 - (Optionally) resample particles.

Initial State Distribution: Samples Only

Samples and Weights
- Each particle has a value and a weight
Importance Sampling

• Ideally, the particles would represent samples drawn from the distribution \(p(x) \).
 – In practice, we usually cannot get \(p(x) \) in closed form; in any case, it would usually be difficult to draw samples from \(p(x) \).
• We use importance sampling:
 – Particles are drawn from an importance distribution.
 – Particles are weighted by importance weights.

State Update

\[
x_{k+1} = f(x_k) + \text{noise}
\]

Things are more complicated if have multimodal \(p(x_{k+1}|x_k) \).

Compute Weights

Use \(p(y|x) \) to alter weights

Can also draw samples with replacement using \(p(y|x)*\text{weight} \) as \(p(\text{selection}) \).

Resampling

• In inference problems, most weights tend to zero except a few (from particles that closely match observations), which become large.
• We resample to concentrate particles in regions where \(p(x|y) \) is larger.

Advantages of Particle Filters

• Under general conditions, the particle filter estimate becomes asymptotically optimal as the number of particles goes to infinity.
• Non-linear, non-Gaussian state update and observation equations can be used.
• Multi-modal distributions are not a problem.
• Particle filter solutions to inference problems are often easy to formulate.

Disadvantages of Particle Filters

• Naive formulations of problems usually result in significant computation times.
• It is hard to tell if you have enough particles.
• The best importance distribution and/or resampling methods may be very problem specific.
Conclusions

Particle filters (and other Monte Carlo methods) are a powerful tool to solve difficult inference problems.

– Formulating a filter is now a tractable exercise for many previously difficult or impossible problems.
– Implementing a filter effectively may require significant creativity and expertise to keep the computational requirements tractable.

Particle Filtering Comments

• Reinvented many times in many fields: sequential Monte Carlo, condensation, bootstrap filtering, interacting particle approximations, survival of the fittest, …
• Do you need R^d samples to cover space? R is crude measure of linear resolution, d is dimensionality.
• You maintain a belief state $p(x)$. How do you answer the question “Where is the robot now?” mean, best sample, robust mean, max likelihood, … What happens if $p(x)$ really is multimodal?

Return to our regularly scheduled programming …

• Filtering …

Filtering, Case 3

Prediction Step

• $E(x_{k+1}^-) \approx f(\mu)$
• $A = \partial f/\partial x$
• $\text{Var}(x_{k+1}^-) = A\Sigma_x A^T + \Sigma_e$
• $p(x_{k+1}^-)$ is $N(E(x_{k+1}^-),\text{Var}(x_{k+1}^-))$

Measurement Update Step

• $E(x_k^+) = E(x_k^-) + K_k(y_k - g(E(x_k^-)))$
• $C = \partial g/\partial x$
• $\Sigma_k^- = \text{Var}(x_k^-)$
• $\text{Var}(x_k^+) = \Sigma_k^- - K_k C \Sigma_k^- C^T$
• $S_k = C\Sigma_k^- C^T + \Sigma_u$
• $K_k = \Sigma_k^- C^T S_k^{-1}$
• $p(x_k^+)$ is $N(E(x_k^+),\text{Var}(x_k^+))$
• This all comes from Gaussian lecture …
Unscented Filter

- Numerically find best fit Gaussian instead of analytical computation.
- Good if \(f() \) or \(g() \) strongly nonlinear.

What I would like to see

- Combine particle system and Kalman filter, so each particle maintains a simple distribution, instead of just a point estimate.

Smoothing, in general

- Have \(y_{1:N} \), want \(p(x_k|y_{1:N}) \)
- Know how to compute \(p(x_k|y_{1:k}) \) from filtering slides
 - \(p(x_k|y_{1:N}) = p(x_k|y_{1:k}, y_{k+1:N}) \)
 - \(p(x_k|y_{1:N}) = p(x_k|y_{1:k}) p(y_{k+1:N}|y_{1:k}, x_k) \)
 - \(p(x_k|y_{1:N}) = p(x_k|y_{1:N}) \)
 - \(p(y_{k+1:N}|x_k) = \sum_x p(y_{k+1:N}|x_k, x_{k+1}) p(x_{k+1}|x_k) dx_{k+1} \)
 - \(= \sum_x p(y_{k+1:N}|x_{k+1}) p(x_{k+1}|x_k) dx_{k+1} \)
 - \(= \sum_x p(y_{k+1}|x_{k+1}) p(y_{k+2:N}|x_{k+1}) p(x_{k+1}|x_k) dx_{k+1} \)
 - Note recursion implied by \(p(y_{k+i+1:N}|x_{k+i}) \)

Smoothing, general comments

- Need to maintain distributional information at all time steps from forward filter.
- Case 1: discrete states: forward/backward algorithm.
- Case 2: continuous states, nasty dynamics or noise: particle smoothing (expensive).
- Case 3: continuous states, Gaussian noise: Kalman smoother.

Finding most likely state trajectory

- Goal in speech recognition
 - \(p(x_1, x_2, \ldots, x_N|y_{1:N}) \neq p(x_1|y_{1:N}) p(x_2|y_{1:N}) \ldots p(x_N|y_{1:N}) \)
 - Are we screwed? Computing joint probability is hard!

Viterbi Algorithm

- \(\text{max } p(x_{1:k}|y_{1:k}) \)
 - \(= \text{max } p(y_{1:k}|x_{1:k}) p(x_{1:k}) \)
 - \(= \text{max } p(y_{1:k-1}|x_{1:k-1}) p(y_k|x_k) p(x_{1:k}) \)
 - \(= \text{max } [p(y_{1:k-1}|x_{1:k-1}) p(y_k|x_k) p(x_{1:k-1})] p(x_{1:k-1}) \)
 - Note recursion
 - Do we evaluate this over all possible sequences?
Viterbi Algorithm (2)

- Use dynamic programming

$\max \ p(x_{1:k-1}|y_{1:k-1})$ over predecessors

States at time k-2

States at time k

States at time k-1

Viterbi Algorithm (3)

- Well, this still only really works for discrete states.
- Continuous states have too many possible states at each step.
- D dimensions, R resolution in each dimension implies R^D states at each time step.
- Ask me about local sequence maximization.

Learning

- Given data, want to learn dynamic/transition and sensor models.
- Smooth, choose most likely state at each time, learn models, iterate.
- This is known as the EM algorithm.
- Discrete case: Baum-Welch Algorithm