
1

Slide 1

Searching: Deterministic
single-agent

Actually, this is optimization
over time with discrete

variables
Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599
Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Slide 2

Overview
• Deterministic, discrete, single-agent, search

problems
• Uninformed search
• Breadth First Search
• Optimality, Completeness, Time and Space

complexity
• Search Trees
• Depth First Search
• Iterative Deepening
• Best First “Greedy” Search

Slide 3

A search problem

How do we get from S to G? And what’s the
smallest possible number of transitions?

START

GOAL

d

b

p
q

c

e

h

a

f

r

Slide 4

Formalizing a search problem
A search problem has five components:
Q , S , G , succs , cost
• Q is a finite set of states.
• S ⊆ Q is a non-empty set of start states.
• G ⊆ Q is a non-empty set of goal states.
• succs : Q P(Q) is a function which takes a state as

input and returns a set of states as output. succs(s)
means “the set of states you can reach from s in one
step”.

• cost : Q , Q Positive Number is a function which takes
two states, s and s’, as input. It returns the one-step
cost of traveling from s to s’. The cost function is only
defined when s’ is a successor state of s.

Slide 5

Our Search Problem

Q = {START, a , b , c , d , e , f , h , p , q , r , GOAL}
S = { START }
G = { GOAL }
succs(b) = { a }
succs(e) = { h , r }
succs(a) = NULL … etc.
cost(s,s’) = 1 for all transitions

START

GOAL

d

b

p q

c

e

h

a

f

r

Slide 6

Our Search Problem

Q = {START, a , b , c , d , e , f , h , p , q , r , GOAL}
S = { START }
G = { GOAL }
succs(b) = { a }
succs(e) = { h , r }
succs(a) = NULL … etc.
cost(s,s’) = 1 for all transitions

START

GOAL

d

b

p q

c

e

h

a

f

r

Why do we care? What

problems are like this?

2

Slide 7

Search Problems

Slide 8

More Search Problems
Scheduling

8-Queens

What next?

Slide 9

More Search Problems
Scheduling

8-Queens

What next?

But there are plenty of things which we’d
normally call search problems that don’t fit our
rigid definition… • A search problem has five components:

• Q , S , G , succs , cost
• Q is a finite set of states.
• S ⊆ Q is a non-empty set of start states.
• G ⊆ Q is a non-empty set of goal states.
• succs : Q P(Q) is a function which takes a

state as input and returns a set of states as
output. succs(s) means “the set of states you
can reach from s in one step”.

• cost : Q , Q Positive Number is a function
which takes two states, s and s’, as input. It
returns the one-step cost of traveling from s to
s’. The cost function is only defined when s’ is
a successor state of s.

Can you think of examples?
Slide 10

Our definition excludes…

Slide 11

Our definition excludes…
Game
against

adversary

Chance
Hidden State

Continuum (infinite
number) of states

All of the above, plus
distributed team control

Slide 12

Breadth First Search

Label all states that are reachable from S in 1 step but aren’t reachable
in less than 1 step.
Then label all states that are reachable from S in 2 steps but aren’t
reachable in less than 2 steps.
Then label all states that are reachable from S in 3 steps but aren’t
reachable in less than 3 steps.
Etc… until Goal state reached.

START

GOAL

d

b

p q

c

e

h

a

f

r

3

Slide 13

START

GOAL

d

b

p
q

c

e

h

a

f

r

Breadth-first Search

0 steps
from start

Slide 14

START

GOAL

d

b

p
q

c

e

h

a

f

r

Breadth-first Search

0 steps
from start

1 step
from start

Slide 15

START

GOAL

d

b

p
q

c

e

h

a

f

r

Breadth-first Search

0 steps
from start

1 step
from start

2 steps
from start

Slide 16

START

GOAL

d

b

p
q

c

e

h

a

f

r

Breadth-first Search

0 steps
from start

1 step
from start

2 steps
from start

3 steps
from start

Slide 17

START

GOAL

d

b

p
q

c

e

h

a

f

r

Breadth-first Search

0 steps
from start

1 step
from start

2 steps
from start

3 steps
from start

4 steps
from start

Slide 18

Remember the path!

Also, when you label a state, record the predecessor state. This record
is called a backpointer. The history of predecessors is used to
generate the solution path, once you’ve found the goal:
“I’ve got to the goal. I see I was at f before this. And I was at r before I
was at f. And I was…
…. so solution path is S e r f G”

START

GOAL

d

b

p q

c

e

h

a

f

r

4

Slide 19

START

GOAL

d

b

p
q

c

e

h

a

f

r

Backpointers

0 steps
from start

1 step
from start

2 steps
from start

3 steps
from start

4 steps
from start

Slide 20

START

GOAL

d

b

p
q

c

e

h

a

f

r

Backpointers

0 steps
from start

1 step
from start

2 steps
from start

3 steps
from start

4 steps
from start

Slide 21

Starting Breadth First Search
For any state s that we’ve labeled, we’ll remember:
•previous(s) as the previous state on a shortest path from START state
to s.

On the kth iteration of the algorithm we’ll begin with Vk defined as the
set of those states for which the shortest path from the start costs
exactly k steps

Then, during that iteration, we’ll compute Vk+1, defined as the set of
those states for which the shortest path from the start costs exactly k+1
steps

We begin with k = 0, V0 = {START} and we’ll define, previous(START)
= NULL

Then we’ll add in things one step from the START into V1. And we’ll
keep going.

Slide 22

START

GOAL

d

b

p
q

c

e

h

a

f

r

BFS

V0

Slide 23

START

GOAL

d

b

p
q

c

e

h

a

f

r

BFS

V0

V1

Slide 24

START

GOAL

d

b

p
q

c

e

h

a

f

r

BFS

V0

V1
V2

5

Slide 25

START

GOAL

d

b

p
q

c

e

h

a

f

r

BFS

V0

V1
V2

V3

Slide 26

START

GOAL

d

b

p
q

c

e

h

a

f

r

BFS V4

V0

V1
V2

V3

Slide 27

Breadth First Search
V0 := S (the set of start states)
previous(START) := NIL
k := 0
while (no goal state is in Vk and Vk is not empty) do

Vk+1 := empty set
For each state s in Vk

For each state s’ in succs(s)
If s’ has not already been labeled

Set previous(s’) := s
Add s’ into Vk+1

k := k+1
If Vk is empty signal FAILURE
Else build the solution path thus: Let Si be the ith state in the shortest
path. Define Sk = GOAL, and forall i <= k, define Si-1 = previous(Si).

Slide 28

START

GOAL

d

b

p
q

c

e

h

a

f

r

BFS V4

V0

V1
V2

V3Suppose your search space conveniently

allowed you to obtain predecessors(state).

• Can you think of a different way to do BFS?

• And would you be able to avoid storing

something that we’d previously had to

store?

Slide 29

Another way: Work back

Label all states that can reach G in 1 step but can’t reach it in less than
1 step.
Label all states that can reach G in 2 steps but can’t reach it in less
than 2 steps.
Etc. … until start is reached.
“number of steps to goal” labels determine the shortest path. Don’t
need extra bookkeeping info.

START

GOAL

d

b

p q

c

e

h

a

f

r

Slide 30

Breadth First Details
• It is fine for there to be more than one goal state.
• It is fine for there to be more than one start state.
• This algorithm works forwards from the start. Any

algorithm which works forwards from the start is said
to be forward chaining.

• You can also work backwards from the goal. This
algorithm is very similar to Dijkstra’s algorithm.

• Any algorithm which works backwards from the goal is
said to be backward chaining.

• Backward versus forward. Which is better?
Checkmate example

6

Slide 31

Costs on transitions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.
We will quickly review an algorithm which does find the least-cost path.
On the kth iteration, for any state S, write g(s) as the least-cost path to
S in k or fewer steps.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5
34

4

1
5

1

5 5
2

Slide 32

Least Cost Breadth First
Vk = the set of states which can be reached in exactly k steps, and for which the least-
cost k-step path is less cost than any path of length less than k. In other words, Vk = the
set of states whose values changed on the previous iteration.
V0 := S (the set of start states)
previous(START) := NIL
g(START) = 0
k := 0
while (Vk is not empty) do

Vk+1 := empty set
For each state s in Vk

For each state s’ in succs(s)
If s’ has not already been labeled
OR if g(s) + Cost(s,s’) < g(s’)

Set previous(s’) := s
Set g(s’) := g(s) + Cost(s,s’)
Add s’ into Vk+1

k := k+1
If GOAL not labeled, exit signaling FAILURE
Else build the solution path thus: Let Sk be the kth state in the shortest path.
Define Sk = GOAL, and forall i <= k, define Si-1 = previous(Si).

Slide 33

Uniform-Cost Search

• A conceptually simple BFS approach
when there are costs on transitions

• It uses priority queues

Slide 34

Priority Queue Refresher
A priority queue is a data structure
in which you can insert and
retrieve (thing, value) pairs with
the following operations:

returns the (thing, value) pair with the lowest
value, and removes it from the queue.

Pop-least(PQ)

inserts (thing, value) into the queue.Insert-PriQueue(PQ, thing, value)

initializes the PQ to be empty.Init-PriQueue(PQ)

Slide 35

Priority Queue Refresher
A priority queue is a data structure
in which you can insert and
retrieve (thing, value) pairs with
the following operations:

Priority Queues can be
implemented in such a way that
the cost of the insert and pop
operations are

For more details, see Knuth
or Sedgwick or basically any book with the word “algorithms” prominently appearing in the title.

returns the (thing, value) pair with the lowest
value, and removes it from the queue.

Pop-least(PQ)

inserts (thing, value) into the queue.Insert-PriQueue(PQ, thing, value)

initializes the PQ to be empty.Init-PriQueue(PQ)

Very cheap (though
not absolutely,
incredibly cheap!)

O(log(number of things in priority queue))
Slide 36

Uniform-Cost Search
• A conceptually simple BFS approach when

there are costs on transitions
• It uses a priority queue

PQ = Set of states that have been
expanded or are awaiting expansion

Priority of state s = g(s) = cost of
getting to s using path implied by
backpointers.

7

Slide 37

Starting UCS

PQ = { (S,0) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Slide 38
PQ = { (S,0) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost state from PQ
2. Add successors

UCS Iterations

Slide 39
PQ = { (p,1), (d,3) , (e,9) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost state from PQ
2. Add successors

UCS Iterations

Slide 40
PQ = { (d,3) , (e,9) , (q,16) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 41
PQ = { (b,4) , (e,5) , (c,11) , (q,16) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 42
PQ = { (b,4) , (e,5) , (c,11) , (q,16) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Note what happened here:

• d realized that getting to e via d was

better than the previously best-known

way to get to e

• and so e’s priority was changed

8

Slide 43
PQ = { (e,5) , (a,6) , (c,11) , (q,16) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 44
PQ = { (a,6),(h,6),(c,11),(r,14),(q,16) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 45
PQ = { (h,6),(c,11),(r,14),(q,16) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 46
PQ = { (q,10), (c,11),(r,14) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 47
PQ = { (q,10), (c,11),(r,14) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS IterationsNote what happened here:

• h found a new way to get to p

• but it was more costly than the best known way

• and so p’s priority was unchanged

Slide 48
PQ = { (c,11),(r,13) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

9

Slide 49
PQ = { (r,13) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 50
PQ = { (f,18) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 51
PQ = { (G,23) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS Iterations

Slide 52
PQ = { (G,23) }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS IterationsQuestion: Is “terminate as soon as you discover

the goal” the right stopping criterion?

Slide 53
PQ = { }

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

Iteration:
1. Pop least-cost

state from PQ
2. Add successors

UCS terminates

Terminate only once the goal is popped from the

priority queue. Else we may miss a shorter path.

Slide 54

Judging a search algorithm
• Completeness: is the algorithm guaranteed to find a solution

if a solution exists?
• Guaranteed to find optimal? (will it find the least cost path?)
• Algorithmic time complexity
• Space complexity (memory use)

Variables:

the length of the path from start to goal with the
shortest number of steps

L

the average branching factor (the average
number of successors) (B>1)

B
number of states in the problemN

How would we judge our algorithms?

10

Slide 55

Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 56

Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 57

Search Tree Representation

START

GOAL

d

b

p q

c

e

h

a

f

r

What order do we go through

the search tree with BFS?

Slide 58

Depth First Search

An alternative to BFS. Always expand from the most-
recently-expanded node, if it has any untried successors.
Else backup to the previous node on the current path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

5 5

2

Slide 59

DFS in action

START
START d
START d b
START d b a
START d c
START d c a
START d e
START d e r
START d e r f
START d e r f c
START d e r f c a
START d e r f GOAL

START

GOAL

d

b

p q

c

e

h

a

f

r

Slide 60

DFS Search tree traversal

START

GOAL

d

b

p q

c

e

h

a

f

r
Can you draw in
the order in which
the search-tree
nodes are visited?

11

Slide 61

DFS Algorithm
We use a data structure we’ll call a Path to represent the , er, path from the
START to the current state.

E.G. Path P = <START, d, e, r >

Along with each node on the path, we must remember which successors we
still have available to expand. E.G. at the following point, we’ll have

P = <START (expand=e , p) ,

d (expand = NULL) ,

e (expand = h) ,

r (expand = f) >

Slide 62

DFS Algorithm
Let P = <START (expand = succs(START))>
While (P not empty and top(P) not a goal)

if expand of top(P) is empty
then

remove top(P) (“pop the stack”)
else

let s be a member of expand of top(P)
remove s from expand of top(P)
make a new item on the top of path P:

s (expand = succs(s))
If P is empty

return FAILURE
Else

return the path consisting of states in P

This algorithm can be
written neatly with
recursion, i.e. using the
program stack to
implement P.

Slide 63

Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

N/AN/ANNDepth First
Search

DFS

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 64

Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

N/AN/ANNDepth First
Search

DFS

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 65

Judging a search algorithm

Length of longest path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(LMAX)O(BLMAX)NYDepth First
Search

DFS**

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Assuming Acyclic
Search Space Slide 66

Judging a search algorithm

Length of longest path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(LMAX)O(BLMAX)NYDepth First
Search

DFS**

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Assuming Acyclic
Search Space

12

Slide 67

Questions to
ponder

• How would you
prevent DFS from
looping?

• How could you
force it to give an
optimal solution?

Slide 68

Questions to
ponder

• How would you
prevent DFS from
looping?

• How could you
force it to give an
optimal solution?

Answer 1:

PC-DFS (Path Checking DFS):

Don’t recurse on a state
if that state is already in
the current path

Answer 2:

MEMDFS (Memoizing DFS):

Remember all states
expanded so far. Never
expand anything twice.

Slide 69

Questions to
ponder

• How would you
prevent DFS from
looping?

• How could you
force it to give an
optimal solution?

Answer 1:

PC-DFS (Path Checking DFS):

Don’t recurse on a state
if that state is already in
the current path

Answer 2:

MEMDFS (Memoizing DFS):

Remember all states
expanded so far. Never
expand anything twice.

Slide 70

Questions to
ponder

• How would you
prevent DFS from
looping?

• How could you
force it to give an
optimal solution?

Answer 1:

PC-DFS (Path Checking DFS):

Don’t recurse on a state
if that state is already in
the current path

Answer 2:

MEMDFS (Memoizing DFS):

Remember all states
expanded so far. Never
expand anything twice.

Are there occasions when PCDFS is

better th
an MEMDFS?

Are there occasions when MEMDFS

is better th
an PCDFS?

Slide 71

Judging a search algorithm

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(LMAX)O(BLMAX)NYPath Check
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 72

Judging a search algorithm

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(LMAX)O(BLMAX)NYPath Check
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

13

Slide 73

Judging a search algorithm

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(LMAX)O(BLMAX)NYPath Check
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 74

Maze example
Imagine states are cells in a maze, you can move N, E, S, W. What
would plain DFS do, assuming it always expanded the E successor
first, then N, then W, then S?

G

S

Expansion order E, N, W, S

Other questions:
What would BFS do?
What would PCDFS do?
What would MEMDFS do?

Slide 75

Two other DFS examples

G

S

Order: N, E, S, W?

G

S

Order: N, E, S, W

with loops prevented

Slide 76

Forward DFSearch or Backward
DFSearch

If you have a predecessors() function as well
as a successors() function you can begin at
the goal and depth-first-search backwards
until you hit a start.

Why/When might this be a good idea?

Slide 77

Invent An Algorithm Time!

Here’s a way to dramatically decrease costs
sometimes. Bidirectional Search. Can you
guess what this algorithm is, and why it can
be a huge cost-saver?

Slide 78

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))YYBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

14

Slide 79

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))All trans
same cost

YBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 80

Iterative Deepening
Iterative deepening is a simple algorithm which

uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up any path of
length 2)

2. If “1” failed, do a DFS which only searches
paths of length 2 or less.

3. If “2” failed, do a DFS which only searches
paths of length 3 or less.

….and so on until success

Cost is
O(b1 + b2 + b3 + b4 … + bL) = O(bL)

Can
 be

 m
uc

h b
ett

er
 th

an
 re

gu
lar

DFS
. B

ut
co

st
ca

n b
e m

uc
h

gr
ea

ter
 th

an
 th

e n
um

be
r o

f s
tat

es
.

Slide 81

Maze example
Imagine states are cells in a maze, you can move N, E, S, W. What
would Iterative Deepening do, assuming it always expanded the E
successor first, then N, then W, then S?

G

S
Expansion order E, N, W, S

Slide 82

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))All trans
same cost

YBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(L)O(BL)if all
transitions
same cost

YIterative
DeepeningID

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 83

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))All trans
same cost

YBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(L)O(BL)if all
transitions
same cost

YIterative
DeepeningID

O(min(N,BL))O(min(N,BL))YYLeast Cost
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all
transitions
same cost

YBreadth First
Search

BFS

Slide 84

Best First “Greedy” Search
Needs a heuristic. A heuristic function maps a state onto
an estimate of the cost to the goal from that state.

Can you think of examples of heuristics?

E.G. for the 8-puzzle?

E.G. for planning a path through a maze?

Denote the heuristic by a function h(s) from states to a cost
value.

15

Slide 85

Heuristic Search
Suppose in addition to the standard search

specification we also have a heuristic.
A heuristic function maps a state

onto an estimate of the cost to the
goal from that state.

Can you think of examples of heuristics?

• E.G. for the 8-puzzle?
• E.G. for planning a path through a maze?

Denote the heuristic by a function h(s) from states
to a cost value.

Slide 86

Euclidian Heuristic

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

Slide 87

Euclidian Heuristic

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

• Another priority queue algorithm.

• But this time, priority is the heuristic

value.

Slide 88

Best First “Greedy” Search
Init-PriQueue(PQ)
Insert-PriQueue(PQ,START,h(START))
while (PQ is not empty and PQ does not contain a goal state)

(s , h) := Pop-least(PQ)
foreach s’ in succs(s)
if s’ is not already in PQ and s’ never previously been visited

Insert-PriQueue(PQ,s’,h(s’))

A few improvements to this algorithm can make things
much better. It’s a little thing we like to call: A*….

…to be continued!

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BLMAX))O(min(N,BLMAX))NYBest First
Search

BestFS

Slide 89

What you should know
• Thorough understanding of BFS, LCBFS,

UCS. PCDFS, MEMDFS
• Understand the concepts of whether a

search is complete, optimal, its time and
space complexity

• Understand the ideas behind iterative
deepening and bidirectional search

• Be able to discuss at cocktail parties the
pros and cons of the above searches

