Searching: Deterministic
single-agent
Actually, this is optimization
over time with discrete
variables

Andrew W. Moore
Professor
School of Computer Science

Carnegie Mellon University
www.cs.cmu.edu/~awm

awm@cs.cmu.edu
412-268-7599

Note to other teachers and users of these slides. Andrew would be delighted if you found this source
material useful in giving your own lectures. Feel free (o use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. ff you make use of a significant portion of these
slides in your own lecture, please include this message, or the following link to the source repository of Slide 1
Andrew’s tutorials: hitp:/ww.cs du/-awm/utorials ' received

Overview
Deterministic, discrete, single-agent, search
problems
Uninformed search
Breadth First Search
Optimality, Completeness, Time and Space
complexity
Search Trees
Depth First Search
Iterative Deepening
Best First “Greedy” Search side 2

A search problem

How do we get from S to G? And what's the
smallest possible number of transitions?

Formalizing a search problem

A search problem has five components:
Q.S,G,succs, cost

* Qs afinite set of states.

* S c Qisanon-empty set of start states.
¢ G c Qis anon-empty set of goal states.

* succs : Q 2 P(Q) is a function which takes a state as
input and returns a set of states as output. succs(s)
means “the set of states you can reach from s in one
step”.

* cost:Q, Q > Positive Number is a function which takes
two states, s and s’, as input. It returns the one-step
cost of traveling from s to s’. The cost function is only
defined when s’ is a successor state of s.

Slide 3
Our Search Problem
Q={START,a,b,c,d,e,f,h,p,q,r, GOAL}
S={START}
G={GOAL}
succs(b)={a}
succs(e)={h,r}
succs(a) = NULL ... etc.
cost(s,s’) = 1 for all transitions
Slide 5

Slide 4
Our Search Problem
N\
Q={START,a,b,c,d,e,f,h,p,q,r, GOAL} _ a\\
S={START} _n \ n \
G={GOAL} _ ,&‘e . ,«Q\S-///
succs(b) = {a} e & e
succs(e)={h,r} e Qo0 ,&(8///
succs(a) = NULL ... etc. («‘(\\; ‘(\6///
cost(s,s’) = 1 for all transitions \\ N

) >
// Slide 6

Search Problems More Search Problems

8-Queens
R N

.......... g™

owre e

More Search Problems

But there are plenty of things which we’d .
normally call search problems that don't fit our [duiing
rigid definition...

Our definition excludes...

« A search problem has five components:
1+ Q,S,G,succs, cost j
I | - Q is a finite set of states.
*« S c Qisanon-empty set of start states.
* G c Qisanon-empty set of goal states.

* succs : Q 2 P(Q) is a function which takes a
= state as input and returns a set of states as
output. succs(s) means “the set of states you

| canreach from s in one step”.
= « cost:Q, Q - Positive Number is a function
= which takes two states, s and s', as input. It
returns the one-step cost of traveling from s to
s’. The cost function is only defined when s’ is
a successor state of s.

XA

Slide 10

Our definition exclude Breadth First Search
Game

against
adversary

. e Label all states that are reachable from S in 1 step but aren’t reachable
Continuum (infinite All of the above, plus in less than 1 step.
number) of states distributed team control Then label all states that are reachable from S in 2 steps but aren’t

reachable in less than 2 steps.

Then label all states that are reachable from S in 3 steps but aren’t
reachable in less than 3 steps.

Etc... until Goal state reached.

Slide 11 Slide 12

Breadth-first Search

Slide 13

Breadth-first Search

o

0 steps
p

(2)

Slide 14

Breadth-first Search

()
2

0 steps
©

()
A
2 steps
from start

Slide 15

Breadth-first Search

steps c

0
from start d

3 steps
from start
2 steps

from start

Slide 16

Breadth-first Search

°6

0 steps - — e
from start d
3 steps
from start
P

A
2 steps
from start

(&)
o

Slide 17

Remember the path!

Also, when you label a state, record the predecessor state. This record
is called a backpointer. The history of predecessors is used to
generate the solution path, once you've found the goal:

“I've got to the goal. | see | was at f before this. And | was at r before |
was atf. And lwas...

.... so solution pathisS>e>r>f>G"

Slide 18

. 4 steps
Backpointers

Backpointers

4 steps
from start

2 steps
from start

Slide 19

2 steps
from start

Slide 20

Starting Breadth First Search

For any state s that we've labeled, we’ll remember:
eprevious(s) as the previous state on a shortest path from START state
tos.
On the kth iteration of the algorithm we’ll begin with V, defined as the
set of those states for which the shortest path from the start costs
exactly k steps
Then, during that iteration, we’ll compute V,,,, defined as the set of
those states for which the shortest path from the start costs exactly k+1
steps
We begin with k = 0, V, = {START} and we’'ll define, previous(START)
= NULL
Then we'll add in things one step from the START into V,. And we’'ll
keep going.
Slide 21

Slide 22

Slide 23

Slide 24

Slide 25

Slide 26

Breadth First Search

V, := S (the set of start states)
previous(START) := NIL
k:=0
while (no goal state is in V, and V, is not empty) do
Vi1 = empty set
For each state s in V,
For each state s’ in succs(s)
If s” has not already been labeled
Set previous(s’) :=s
Add s’ into V,,,
k:=k+1
If V, is empty signal FAILURE

Else build the solution path thus: Let S, be the ith state in the shortest
path. Define S, = GOAL, and forall i <= k, define S, = previous(S)).

Slide 27

veniently
ch space con ‘
St?)a(r)btair? predecessors(state)
FS?
nk of & different way to do B

d storing
ad to

our
SuppOSe Yy
allowed you

. canyouthi

u be able 10 avol

. And would Yo we'd pre\l'lO‘JS\y h

something that
store?

Slide 28

Another way: Work back
€

Label all states that can reach G in 1 step but can’t reach it in less than
1 step.

Label all states that can reach G in 2 steps but can’t reach it in less
than 2 steps.

Etc. ... until start is reached.
“number of steps to goal” labels determine the shortest path. Don’t
need extra bookkeeping info.

Slide 29

Breadth First Details
It is fine for there to be more than one goal state.
It is fine for there to be more than one start state.

This algorithm works forwards from the start. Any
algorithm which works forwards from the start is said
to be forward chaining.

You can also work backwards from the goal. This
algorithm is very similar to Dijkstra’s algorithm.

Any algorithm which works backwards from the goal is
said to be backward chaining.

Backward versus forward. Which is better?
Checkmate example

Slide 30

Costs on transitions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly review an algorithm which does find the least-cost path.
On the kth iteration, for any state S, write g(s) as the least-cost path to
S in k or fewer steps.

Least Cost Breadth First

V, = the set of states which can be reached in exactly k steps, and for which the least-
cost k-step path is less cost than any path of length less than k. In other words, V, = the
set of states whose values changed on the previous iteration.

V, := S (the set of start states)
previous(START) := NIL
g(START) =0
k:=0
while (V, is not empty) do
V,,; = empty set
For each state s in V.
For each state s’ in succs(s)
If s has not already been labeled
OR if g(s) + Cost(s,s’) < g(s’)
Set previous(s') :=s
Set g(s') := g(s) + Cost(s,s’)
Add s’ into V.,
k:=k+1
If GOAL not labeled, exit signaling FAILURE
Else build the solution path thus: Let S, be the kth state in the shortest path.
Define S, = GOAL, and forall i <= k, define S, = previous(S).
Slide 32

Uniform-Cost Search
» A conceptually simple BFS approach
when there are costs on transitions
* It uses priority queues

Priority Queue Refresher

A priority queue is a data structure
in which you can insert and
retrieve (thing, value) pairs with
the following operations:

Init-PriQueue(PQ) initializes the PQ to be empty.

Insert-PriQueue(PQ, thing, value) | inserts (thing, value) into the queue.

Pop-least(PQ) returns the (thing, value) pair with the lowest
value, and removes it from the queue.

Slide 34

Priority Queue Refresher

For more etaif

A priority queue is a data structure DrSedQW'gkor,§ R
in which you can insert and Aok ith the
retrieve (thing, value) pairs with 2Bpearing y romenty
the following operations: <
Init-PriQueue(PQ)

Insert-PriQueue(PQ, thing, value) | inserts (thing, value) into the queue.

Pop-least(PQ) returns the (thing, value) pair with the lowest
value, and removes it from the queue.

initializes the PQ to be empty.

Very cheap (though
not absolutely,
incredibly cheap!)

Priority Queues can be
implemented in such a way that
the cost of the insert and pop
operations are

O(log(number of things in priority queue))

Slide 35

Uniform-Cost Search

» A conceptually simple BFS approach when
there are costs on transitions

* It uses a priority queue

PQ = Set of states that have been
expanded or are awaiting expansion

Priority of state s = g(s) = cost of
getting to s using path implied by
backpointers.

Slide 36

Starting UCS

PQ={(S,0)}

lllllll

UCS lterations

1. Pop least-cost state from PQ
PQ={(S,0)} 2. Add successors

lllllll

UCS lterations

Iteration:

1. Pop least-cost state from PQ

PQ={(p,1), (d,3), (e,9) } 2. Add successors

UCS lterations

UCS lterations

UCS lterations

UCS lterations

Note what happened here:
. h found a new way to getto p
« but it was more costly than the best known

. and so p’s priority was unchanged
halptfias

RN
D

‘.
‘.
B

Slide 47

UCS lterations

1. Pop least-cost
state from PQ

PQ = { (rv13) } 2. Add successors

Slide 49

UCS lterations

Iteration:
1. Pop least-cost
state from PQ

PQ = { (f118) } 2. Add successors

Slide 50

UCS lterations

Iteration:

1. Pop least-cost
state from PQ
PQ = { (6123) } 2. Add successors

Slide 51

soon as you discover
on?

s “terminate as

stion: | ' as
% the right stopping criteri

the goal”

Iteration:
1. Pop least-cost
state from PQ

PQ = { (6123) } 2. Add successors

Slide 52

UCS terminates

. 1 o
nce the goal is

inate only 0 :
Term Else we may miss & S|
)

priority queue.

Iteration:
1. Pop least-cost
state from PQ

PQ - { } 2. Add successors
Slide 53

Judging a search algorithm

« Completeness: is the algorithm guaranteed to find a solution
if a solution exists?

» Guaranteed to find optimal? (will it find the least cost path?)

« Algorithmic time complexity

* Space complexity (memory use)

Variables:
N number of states in the problem
B the average branching factor (the average
number of successors) (B>1)
L the length of the path from start to goal with the
shortest number of steps

How would we judge our algorithms?
Slide 54

Judging a search algorithm

number of states in the problem

the average branching factor (the average number of successors) (B>1)
the length of the path from start to goal with the shortest number of steps
Q | the average size of the priority queue

oz

Algorithm Comp Optimal Time Space
lete

Judging a search algorithm

number of states in the problem

the average branching factor (the average number of successors) (B>1)
the length of the path from start to goal with the shortest number of steps
Q | the average size of the priority queue

lwm|z

BFS Breadth Firs{
Search

LCBFS |Least Cost
BFS

UCs Uniform

Cost Search

Slide 55

Algorithm Comp Optimal Time Space
lete
BFS gz'iarglhh Rty it:'aar‘Jsitions O(mln(N'BL)) O(mm(NrBL))
same cost
LCBFS|reastCost 1y Y O(min(N,BY)) O(min(N,BY))
ucs |dniorm Y |Y O(log(Q) * min(N,BL)) |O(min(N,BY))

Slide 56

Search Tree Representation

Slide 57

Depth First Search

An alternative to BFS. Always expand from the most-
recently-expanded node, if it has any untried successors.
Else backup to the previous node on the current path.

DFS in action

START

STARTd

START d b
STARTdba
STARTdc
STARTdca
STARTde
STARTder
STARTderf
STARTderfc
STARTderfca
START derf GOAL

Slide 59

Slide 58
DFS Search tree traversal
Can you draw in
the order in which
the search-tree
nodes are visited? d
° P
b © e r h a
a a F h f P q
f p ogp ©
e G L
q
Slide 60

10

DFS Algorithm

We use a data structure we’'ll call a Path to represent the , er, path from the
START to the current state.

E.G. Path P = <START, d, e, r>

Along with each node on the path, we must remember which successors we
still have available to expand. E.G. at the following point, we’ll have

START P = <START (expand=e , p) ,
d . B d (expand = NULL) ,
= 4 2 h q e (expand = h) ,
a a {_r:) b 4 P q rexpand =0 >
t poa¢ G
-] G q =
a
Slide 61

DFS Algorithm

Let P = <START (expand = succs(START))>
While (P not empty and top(P) not a goal)
if expand of top(P) is empty

then
remove top(P) (“pop the stack”)
else
let s be a member of expand of top(P)
remove s from expand of top(P)
make a new item on the top of path P:
s (expand = succs(s)) \ .
If P is empty This algorithm can be

written neatly with
recursion, i.e. using the
program stack to

return FAILURE

Judging a search algorithm

Else implement P.
return the path consisting of states in P
Slide 62
Judging a search algorithm
N | number of states in the problem
B | the average branching factor (the average number of successors) (B>1)
L | the length of the path from start to goal with the shortest number of steps
Q | the average size of the priority queue
Algorithm Comp Optimal| Time Space
lete
Breadth Fi if all H H
S S:iarch =Y Itraansmons O(mln(N’BL)) O(mm(NvBL))
same cost
L C i H
LCBFS|teastCost |y Y O(min(N,BY)) O(min(N,BbY))
" N N
UCS |oersearen|Y Y |O(log(Q) * min(N,B)) O(min(N,B"))
Depth First
DFS | 2eptiy ™ NN N/A N/A

N | number of states in the problem
B | the average branching factor (the average number of successors) (B>1)
L | the length of the path from start to goal with the shortest number of steps
Q | the average size of the priority queue
Algorithm Comp Optimal| Time Space
lete
Breadth Firs{ if all : L ; L
S Sreeaarch =Y :raansmons O(mln(N'B)) O(mln(N!B))
same cost
Least Cost H i
LCBFS|Leasicost |y Iy |Oo(min(N,BL)) O(min(N,BY))
Unife H i
ucs |uiom v |y [O(log(Q) * min(N,BY) [O(min(N,BY)
DFS Depth First
Search
Slide 63
Judging a search algorithm
N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps
Q the average size of the priority queue
Algorithm Comp Optimal Time Space
lete
Breadth First if all H L H L
BFES scaen Y fuansitons| O(MIN(N,BY) O(min(N,BY)
same cost
Least Cost H i
LCBFS|LeastCost |y |y O(min(N,BL)) O(min(N,BY))
Unif . .
UCS | cotsearen” |Y O(log(Q) * min(N,B")) | O(min(N,B"))
DFS** | Depth First
~[eoarch S N
Assuming Acyclic
Search Space Siide 65

Slide 64
Judging a search algorithm
N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps
LMAX | Length of longest path from start to anywhere
Q the average size of the priority queue
Algorithm Comp Optimal Time Space
lete
Breadth Fil if all i H
BFS [t Y [l e O(MIN(N,BY) O(min(N.8)
same cost
L C i H
LCBFS|Lestcost [y |y |O(min(N,B)) O(min(N,B))
Unife i H
ues i, [Y |0(og(Q) * min(N,BY) O(min(N,B")
DFES**_|Depth First |y N LMAX
e O(BLMAX) O(LMAX)

Assuming Acyclic |
Search Space Slide 66

11

Questions to
ponder

» How would you
prevent DFS from
looping?

* How could you
force it to give an
optimal solution?

Slide 67

Questions to

Answer 1:
ponder PC-DFS (Path Checking DFS):
* How would you
prevent DFS fro
looping?
Answer 2:

* How could you
force it to give an
optimal solution?

MEMDEFS (Memoizing DFS):

Slide 68

Questions to
ponder
* How would you Don'’t recurse on a state

prevent DFS from if that state is already in
looping? the current path

Answer 1:

PC-DFS (Path Checking DFS):

Answer 2:
MEMDFS (Memoizing DFS):

How could you
force it to give an

optimal solution? Remember all states

expanded so far. Never
expand anything twice.

Questions to
ponder

Answer 1:
PC-DFS (Path Checking DFS):
Don’t recurse on a state

if that state is already in
the current path

Answer 2:
MEMDFS (Memoizing DFS):
Remember all states

expanded so far. Never
expand anything twice.

Slide 69
Judging a search algorithm
N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps

LMAX | Length of longest cycle-free path from start to anywhere

Slide 70
Judging a search algorithm
N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps

LMAX | Length of longest cycle-free path from start to anywhere

Q the average size of the priority queue
Algorithm Comp Optimal Time Space
lete

Breadth Fi if all B ;

BES I 1Y fuansiions| O(MIN(N,BY) O(min(N,B")
same cost

LCBFS|LeastCost |y |y O(min(N,BY)) O(min(N,Bb))
UCS |coarsemen ¥ |Y O(log(Q) * min(N,B4))|O(min(N,B"))
PCDFS|Path Check

DFS
MEMDEFS | Memoizing

DFS

Slide 71

Q the average size of the priority queue
Algorithm Comp Optimal Time Space
lete
BFS [2 fY [0 e [Omin(N,BY) O(min(N,BY)
same cost

LCBFS| Least Cost |y Y O(min(N,BY)) O(min(N,BY))

UCS | carsemen|” |Y O(log(Q) * min(N,B4))|O(min(N,B4)

PCDFS| E?:“; Check |y N o(BLMAX) O(LMAX)

MEMDFS g:gwoizing Y N O(min(N,BLMAX)) O(min(N,BLMAX))
STide 72

12

Judging a search algorithm

Maze example

Imagine states are cells in a maze, you can move N, E, S, W. What
would plain DFS do, assuming it always expanded the E successor
first, then N, then W, then S?

G

J

Expansion order E, N, W, S

s

N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps
LMAX | Length of longest cycle-free path from start to anywhere
Q the average size of the priority queue
Algorithm Comp Optimal Time Space
lete
Breadth First if all H L H L
BFS |oerch 1Y |uansiions | O(MIN(N,BY)) O(min(N,BY))
same cost
Least Cost H i
LCBFS|LeastCost |y ly O(min(N,BY) O(min(N,BY))
Unif i ;
UCS | cotsearen” |Y O(log(Q) * min(N,B))|O(min(N,B"))
Path Check
PCDFS| D?:S eck Y N O(BLMAX) O(LMAX)
M H :
MEMDFs|Vemaizing |y N [O(min(N,BMAX)) |O(min(N,BLMAX))
Slide 73

What would BFS do?
Other questions: What would PCDFS do?
What would MEMDFS do? | side74

Two other DFS examples

j Order: N, E, S, W?

j Order: N, E, S,W

with loops prevented

Slide 75

Forward DFSearch or Backward
DFSearch
If you have a predecessors() function as well
as a successors() function you can begin at

the goal and depth-first-search backwards
until you hit a start.

Why/When might this be a good idea?

Invent An Algorithm Time!

Here's a way to dramatically decrease costs
sometimes. Bidirectional Search. Can you

guess what this algorithm is, and why it can

be a huge cost-saver?

Slide 77

Slide 76
N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps
LMAX | Length of longest cycle-free path from start to anywhere
Q the average size of the priority queue
Algorithm Comp Optimal| Time Space
lete
Breadth First if all : L H L
oS Search Y transitions O(mln(N'B)) O(mm(NvB))
same cost
Least Cost i H
LCBFS|teacast |y |y |O(min(N,BY)) O(min(N,BL))
Unife H H
Ucs | oteearcn| Y Y O(log(Q) * min(N,BL))|O(min(N,BL))
Path Check
PCDFS D?:S e Y N O(BLMAX) O(LMAX)
o . K
MEMDFS|Memoizing [y N |O(min(N,BMAX)) |O(min(N,BMAX))
BIBFS |Bidirection
BF Search
Slide 78

13

N number of states in the problem

B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps
LMAX | Length of longest cycle-free path from start to anywhere
Q the average size of the priority queue
Algorithm Comp Optimal Time Space
lete
Breadth Fi if all H H
BFES scaen Y fuansitons| O(MIN(N,BY) O(min(N,BY)
same cost
L C H i
LCBFS|LeasiCost |y |y O(min(N,BL)) O(min(N,BLY))
Unife H i
UCS | Sostsearen| . |Y O(log(Q) * min(N,B")) | O(min(N,B"))
h Check
PCDFS gils eck 1Y N O(BLMAX) O(LMAX)
MEMDFs ’Bﬂsgﬂlllﬂg Y N O(min(N,BLMAX)) O(min(N,BLMAX))
Bidirecti All t H :
BIBFS ¢ |V e, O(MIn(N,28Y%) |O(min(N.2B")

Slide 79

Iterative Deepening

Iterative deepening is a simple algorithm which
uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less. (DFS gives up any path of
length 2)

2. If “1” failed, do a DFS which only searches
paths of length 2 or less.

3. If “2” failed, do a DFS which only searches
paths of length 3 or less.

....and so on until success

Maze example

Imagine states are cells in a maze, you can move N, E, S, W. What
would Iterative Deepening do, assuming it always expanded the E
successor first, then N, then W, then S?

J

Costis
O(bl + b2+ b3+ b*... +bt)=0(bb)
Slide 80
N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps
LMAX | Length of longest cycle-free path from start to anywhere
Q the average size of the priority queue
Algorithm Comp Optimal Time Space
lete
Breadth First if all i H
BFES Iogaren 1Y fuansitons| O(MIN(N,BY)) O(min(N,B"Y)
same cost
Least Cost i H
LCBFS| Least Cos Y |o(min(N,BY) O(min(N,B))
Unif H H
UCS | dostSearen Y O(log(Q) * min(N,B))|O(min(N,BL))

O(BMAX) O(LMAX)

FS

MEMDFS | Memoizing
DFS

O(min(N,BLMAX))

Y
Y
PCDFS|Path Check |y N (
DI
Y N O(min(N,BLMAX))
BIBFS |Bidirection |y All trans O(min(N,ZBL/Z))

BF Search same cost

O(min(N,2BL2))

ID Iterative
Deepening Slide 82

)
Expansion order E, N, W, S
Slide 81
N number of states in the problem
B the average branching factor (the average number of successors) (B>1)
L the length of the path from start to goal with the shortest number of steps
LMAX | Length of longest cycle-free path from start to anywhere
Q the average size of the priority queue
Algorithm Comp Optimal| Time Space
lete
Breadth Firs{ if all : L ; L
S Sreeaarch =Y :raansmons O(mm(N’B)) O(mln(NvB))
same cost
L Co H i
LCBFs|estoost [y |y [O(min(N,BY) O(min(N,BY))
Unife H H
ucs [ulm v |o(log(Q) * min(N,BY)|O(min(N,BY))
Path Check
PCDFS D:‘s el Y N O(BLMAX) O(LMAX)
M H .
MEMDFS Dggolzmg Y N O(mln(N,BLMAX)) O(mln(N,BLMAX))
Bidirecti Al tr H .
BIBFS [gdcer [v [Auere [O(min(N,282) |O(min(N,2B2))
Iterat i all L
D [l [V i, 0BY o _
same cost de

Best First “Greedy” Search

Needs a heuristic. A heuristic function maps a state onto
an estimate of the cost to the goal from that state.

Can you think of examples of heuristics?

E.G. for the 8-puzzle?
E.G. for planning a path through a maze?

Denote the heuristic by a function h(s) from states to a cost

value.
Slide 84

14

Heuristic Search

Suppose in addition to the standard search
specification we also have a heuristic.

A heuristic function maps a state
onto an estimate of the cost to the
goal from that state.

Can you think of examples of heuristics?

* E.G. for the 8-puzzle?
« E.G. for planning a path through a maze?

Denote the heuristic by a function h(s) from states
to a cost value.

Slide 85

Euclidian Heuristic

Slide 86

Euclidian Heuristic

Slide 87

Best First “Greedy” Search

Init-PriQueue(PQ)
Insert-PriQueue(PQ,START,h(START))
while (PQ is not empty and PQ does not contain a goal state)
(s, h):= Pop-least(PQ)
foreach s’ in succs(s)
if s’ is not already in PQ and s’ never previously been visited
Insert-PriQueue(PQ,s’,h(s"))

Algorithm Comp Optimal Time Space
lete

BestFS[mf v N O(min(N.BUA%) |O(min(N,BHY)

A few improvements to this algorithm can make things
much better. It's a little thing we like to call: A*....

...to be continued!
Slide 88

What you should know
¢ Thorough understanding of BFS, LCBFS,
UCS. PCDFS, MEMDFS

« Understand the concepts of whether a
search is complete, optimal, its time and
space complexity

« Understand the ideas behind iterative
deepening and bidirectional search

« Be able to discuss at cocktail parties the
pros and cons of the above searches

Slide 89

15

