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Searching: Deterministic 
single-agent

Actually, this is optimization 
over time with discrete 

variables
Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599
Note to other teachers and users of these slides. Andrew would be delighted if you found this source 
material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit 
your own needs. PowerPoint originals are available. If you make use of a significant portion of these 
slides in your own lecture, please include this message, or the following link to the source repository of 
Andrew’s tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received. 
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Overview
• Deterministic, discrete, single-agent, search 

problems
• Uninformed search
• Breadth First Search
• Optimality, Completeness, Time and Space 

complexity
• Search Trees
• Depth First Search
• Iterative Deepening
• Best First “Greedy” Search
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A search problem

How do we get from S to G?  And what’s the 
smallest possible number of transitions?
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Formalizing a search problem
A search problem has five components:
Q , S , G , succs , cost
• Q is a finite set of states.
• S ⊆ Q is a non-empty set of start states.
• G ⊆ Q is a non-empty set of goal states.
• succs : Q P(Q) is a function which takes a state as 

input and returns a set of states as output. succs(s) 
means “the set of states you can reach from s in one 
step”.

• cost : Q , Q Positive Number is a function which takes 
two states, s and s’, as input.  It returns the one-step 
cost of traveling from s to s’.  The cost function is only 
defined when s’ is a successor state of s.
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Our Search Problem

Q = {START, a , b , c , d , e , f , h , p , q , r , GOAL}
S = { START }
G = { GOAL }
succs(b) = { a }
succs(e) = { h , r }
succs(a) = NULL … etc.
cost(s,s’) = 1 for all transitions
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Our Search Problem

Q = {START, a , b , c , d , e , f , h , p , q , r , GOAL}
S = { START }
G = { GOAL }
succs(b) = { a }
succs(e) = { h , r }
succs(a) = NULL … etc.
cost(s,s’) = 1 for all transitions
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Why do we care? What 

problems are like this?
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Search Problems
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More Search Problems
Scheduling

8-Queens

What next?
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More Search Problems
Scheduling

8-Queens

What next?

But there are plenty of things which we’d 
normally call search problems that don’t fit our 
rigid definition… • A search problem has five components:

• Q , S , G , succs , cost
• Q is a finite set of states.
• S ⊆ Q is a non-empty set of start states.
• G ⊆ Q is a non-empty set of goal states.
• succs : Q P(Q) is a function which takes a 

state as input and returns a set of states as 
output. succs(s) means “the set of states you 
can reach from s in one step”.

• cost : Q , Q Positive Number is a function 
which takes two states, s and s’, as input.  It 
returns the one-step cost of traveling from s to 
s’.  The cost function is only defined when s’ is 
a successor state of s.

Can you think of examples?
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Our definition excludes…
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Our definition excludes…
Game 
against 

adversary

Chance
Hidden State

Continuum (infinite 
number) of  states

All of the above, plus 
distributed team control
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Breadth First Search

Label all states that are reachable from S in 1 step but aren’t reachable 
in less than 1 step.
Then label all states that are reachable from S in 2 steps but aren’t 
reachable in less than 2 steps.
Then label all states that are reachable from S in 3 steps but aren’t 
reachable in less than 3 steps.
Etc… until Goal state reached.
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Breadth-first Search

0 steps 
from start
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Remember the path!

Also, when you label a state, record the predecessor state.  This record 
is called a backpointer.  The history of predecessors is used to 
generate the solution path, once you’ve found the goal:
“I’ve got to the goal.  I see I was at f before this.  And I was at r before I 
was at f.  And I was…
…. so solution path is S e r f G”
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Starting Breadth First Search
For any state s that we’ve labeled, we’ll remember:
•previous(s) as the previous state on a shortest path from START state 
to s.

On the kth iteration of the algorithm we’ll begin with Vk defined as the 
set of those states for which the shortest path from the start costs 
exactly k steps

Then, during that iteration, we’ll compute Vk+1, defined as the set of 
those states for which the shortest path from the start costs exactly k+1 
steps

We begin with k = 0, V0 = {START} and we’ll define, previous(START)
= NULL

Then we’ll add in things one step from the START into V1.  And we’ll 
keep going.
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Breadth First Search
V0 := S (the set of start states)
previous(START) := NIL
k := 0
while (no goal state is in Vk and Vk is not empty) do

Vk+1 := empty set
For each state s in Vk

For each state s’ in succs(s)
If s’ has not already been labeled

Set previous(s’) := s
Add s’ into Vk+1

k := k+1
If Vk is empty signal FAILURE
Else build the solution path thus:  Let Si be the ith state in the shortest 
path.  Define Sk = GOAL, and forall i <= k, define Si-1 = previous(Si).
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BFS V4

V0

V1
V2

V3Suppose your search space conveniently 

allowed you to obtain predecessors(state).

• Can you think of a different way to do BFS?

• And would you be able to avoid storing 

something that we’d previously had to 

store?
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Another way: Work back

Label all states that can reach G in 1 step but can’t reach it in less than 
1 step.
Label all states that can reach G in 2 steps but can’t reach it in less 
than 2 steps.
Etc. … until start is reached.
“number of steps to goal” labels determine the shortest path.  Don’t 
need extra bookkeeping info.
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Breadth First Details
• It is fine for there to be more than one goal state.
• It is fine for there to be more than one start state.
• This algorithm works forwards from the start.  Any 

algorithm which works forwards from the start is said 
to be forward chaining.

• You can also work backwards from the goal. This 
algorithm is very similar to Dijkstra’s algorithm.

• Any algorithm which works backwards from the goal is 
said to be backward chaining.

• Backward versus forward.  Which is better? 
Checkmate example
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Costs on transitions

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path.
We will quickly review an algorithm which does find the least-cost path.  
On the kth iteration, for any state S, write g(s) as the least-cost path to 
S in k or fewer steps.
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Least Cost Breadth First
Vk = the set of states which can be reached in exactly k steps, and for which the least-
cost k-step path is less cost than any path of length less than k.  In other words, Vk = the 
set of states whose values changed on the previous iteration.
V0 := S (the set of start states)
previous(START) := NIL
g(START) = 0
k := 0
while (Vk is not empty) do

Vk+1 := empty set
For each state s in Vk

For each state s’ in succs(s)
If s’ has not already been labeled
OR if g(s) + Cost(s,s’) < g(s’)

Set previous(s’) := s
Set g(s’) := g(s) + Cost(s,s’)
Add s’ into Vk+1

k := k+1
If GOAL not labeled, exit signaling FAILURE
Else build the solution path thus:  Let Sk be the kth state in the shortest path.  
Define Sk = GOAL, and forall i <= k, define Si-1 = previous(Si).
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Uniform-Cost Search

• A conceptually simple BFS approach 
when there are costs on transitions

• It uses priority queues
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Priority Queue Refresher
A priority queue is a data structure 
in which you can insert and 
retrieve (thing, value) pairs with 
the following operations:

returns the (thing, value) pair with the lowest 
value, and removes it from the queue.

Pop-least(PQ)

inserts (thing, value) into the queue.Insert-PriQueue(PQ, thing, value)

initializes the PQ to be empty.Init-PriQueue(PQ)
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Priority Queue Refresher
A priority queue is a data structure 
in which you can insert and 
retrieve (thing, value) pairs with 
the following operations:

Priority Queues can be 
implemented in such a way that 
the cost of the insert and pop 
operations are

For more details, see Knuth 
or Sedgwick or basically any book with the word “algorithms” prominently appearing in the title.

returns the (thing, value) pair with the lowest 
value, and removes it from the queue.

Pop-least(PQ)

inserts (thing, value) into the queue.Insert-PriQueue(PQ, thing, value)

initializes the PQ to be empty.Init-PriQueue(PQ)

Very cheap (though 
not absolutely, 
incredibly cheap!)

O(log(number of things in priority queue))
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Uniform-Cost Search
• A conceptually simple BFS approach when 

there are costs on transitions
• It uses a priority queue

PQ = Set of states that have been 
expanded or are awaiting expansion

Priority of state s = g(s) = cost of 
getting to s using path implied by 
backpointers.
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Starting UCS

PQ = { (S,0) }
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PQ = { (S,0) }
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Iteration:
1. Pop least-cost state from PQ
2. Add successors

UCS Iterations
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PQ = { (p,1), (d,3) , (e,9) }
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UCS Iterations
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PQ = { (d,3) , (e,9) , (q,16) }
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Iteration:
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state from PQ
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UCS Iterations
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PQ = { (b,4) , (e,5) , (c,11) , (q,16) }
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UCS Iterations
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PQ = { (b,4) , (e,5) , (c,11) , (q,16) }
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Iteration:
1. Pop least-cost 

state from PQ
2. Add successors

UCS Iterations

Note what happened here:

• d realized that getting to e via d was 

better than the previously best-known 

way to get to e

• and so e’s priority was changed
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PQ = { (e,5) , (a,6) , (c,11) , (q,16) }
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Iteration:
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UCS Iterations
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PQ = { (a,6),(h,6),(c,11),(r,14),(q,16) }
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Iteration:
1. Pop least-cost 
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UCS Iterations
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PQ = { (h,6),(c,11),(r,14),(q,16) }
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UCS Iterations
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PQ = { (q,10), (c,11),(r,14) }
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UCS Iterations
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PQ = { (q,10), (c,11),(r,14) }
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Iteration:
1. Pop least-cost 

state from PQ
2. Add successors

UCS IterationsNote what happened here:

• h found a new way to get to p

• but it was more costly than the best known way

• and so p’s priority was unchanged
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PQ = { (c,11),(r,13) }
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PQ = { (r,13) }
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PQ = { (f,18) }
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Iteration:
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UCS Iterations
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PQ = { (G,23) }
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UCS Iterations
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PQ = { (G,23) }
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Iteration:
1. Pop least-cost 

state from PQ
2. Add successors

UCS IterationsQuestion: Is “terminate as soon as you discover 

the goal” the right stopping criterion?

Slide 53
PQ = { }
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UCS terminates

Terminate only once the goal is popped from the 

priority queue. Else we may miss a shorter path.
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Judging a search algorithm
• Completeness: is the algorithm guaranteed to find a solution 

if a solution exists?
• Guaranteed to find optimal? (will it find the least cost path?)
• Algorithmic time complexity
• Space complexity (memory use)

Variables:

the length of the path from start to goal with the 
shortest number of steps

L

the average branching factor (the average 
number of successors) (B>1)

B
number of states in the problemN

How would we judge our algorithms?
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Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search

BFS
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Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN
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Search Tree Representation
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What order do we go through 

the search tree with BFS?
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Depth First Search

An alternative to BFS.  Always expand from the most-
recently-expanded node, if it has any untried successors.  
Else backup to the previous node on the current path.
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DFS in action

START
START d
START d b
START d b a
START d c
START d c a
START d e
START d e r
START d e r f
START d e r f c
START d e r f c a
START d e r f GOAL
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DFS Search tree traversal
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Can you draw in 
the order in which 
the search-tree 
nodes are visited?
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DFS Algorithm
We use a data structure we’ll call a Path to represent the , er, path from the 
START to the current state.

E.G. Path P = <START, d, e, r >

Along with each node on the path, we must remember which successors we 
still have available to expand.  E.G. at the following point, we’ll have

P = <START (expand=e , p) ,

d (expand = NULL) ,

e (expand = h) ,

r (expand = f) >
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DFS Algorithm
Let P = <START (expand = succs(START))>
While (P not empty and top(P) not a goal)

if expand of top(P) is empty
then

remove top(P) (“pop the stack”)
else

let s be a member of expand of top(P)
remove s from expand of top(P)
make a new item on the top of path P: 

s (expand = succs(s))
If P is empty

return FAILURE
Else

return the path consisting of states in P

This algorithm can be 
written neatly with 
recursion, i.e. using the 
program stack to 
implement P.
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Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

N/AN/ANNDepth First 
Search

DFS

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search

BFS
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Judging a search algorithm

the length of the path from start to goal with the shortest number of stepsL
the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm
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BFS
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Slide 65

Judging a search algorithm

Length of longest path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(LMAX)O(BLMAX)NYDepth First 
Search

DFS**

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search
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Judging a search algorithm

Length of longest path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search
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lete
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O(min(N,BL))O(min(N,BL))if all 
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same cost
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Search

BFS

Assuming Acyclic 
Search Space
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Questions to 
ponder

• How would you 
prevent DFS from 
looping?

• How could you 
force it to give an 
optimal solution?
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Questions to 
ponder

• How would you 
prevent DFS from 
looping?

• How could you 
force it to give an 
optimal solution?

Answer 1:

PC-DFS (Path Checking DFS):

Don’t recurse on a state 
if that state is already in 
the current path

Answer 2:

MEMDFS (Memoizing DFS):

Remember all states 
expanded so far. Never 
expand anything twice.
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Questions to 
ponder

• How would you 
prevent DFS from 
looping?

• How could you 
force it to give an 
optimal solution?

Answer 1:

PC-DFS (Path Checking DFS):

Don’t recurse on a state 
if that state is already in 
the current path

Answer 2:

MEMDFS (Memoizing DFS):

Remember all states 
expanded so far. Never 
expand anything twice.

Are there occasions when PCDFS is 

better th
an MEMDFS?

Are there occasions when MEMDFS 

is better th
an PCDFS?
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Judging a search algorithm

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(LMAX)O(BLMAX)NYPath Check 
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search

BFS
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Judging a search algorithm
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Judging a search algorithm

Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(LMAX)O(BLMAX)NYPath Check 
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search

BFS
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Maze example
Imagine states are cells in a maze, you can move N, E, S, W.  What 
would plain DFS do, assuming it always expanded the E successor 
first, then N, then W, then S?

G

S

Expansion order E, N, W, S

Other questions:
What would BFS do?
What would PCDFS do?
What would MEMDFS do?
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Two other DFS examples

G

S

Order: N, E, S, W?

G

S

Order: N, E, S, W

with loops prevented
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Forward DFSearch or Backward 
DFSearch

If you have a predecessors() function as well 
as a successors() function you can begin at 
the goal and depth-first-search backwards 
until you hit a start.

Why/When might this be a good idea?
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Invent An Algorithm Time!

Here’s a way to dramatically decrease costs 
sometimes.  Bidirectional Search.  Can you 
guess what this algorithm is, and why it can 
be a huge cost-saver?
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Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))YYBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check 
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search

BFS
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Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))All trans 
same cost

YBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check 
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search

BFS
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Iterative Deepening
Iterative deepening is a simple algorithm which 

uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length 1 or less.  (DFS gives up any path of 
length 2)

2. If “1” failed, do a DFS which only searches 
paths of length 2 or less.

3. If “2” failed, do a DFS which only searches 
paths of length 3 or less.

….and so on until success

Cost is 
O(b1 + b2 + b3 + b4 … + bL) = O(bL)

Can
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Maze example
Imagine states are cells in a maze, you can move N, E, S, W.  What 
would Iterative Deepening do, assuming it always expanded the E 
successor first, then N, then W, then S?

G

S
Expansion order E, N, W, S
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Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))All trans 
same cost

YBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check 
DFS

PCDFS

O(min(N,BL))O(log(Q) * min(N,BL))YYUniform 
Cost Search

UCS

SpaceTimeOptimalComp
lete

Algorithm

O(L)O(BL)if all 
transitions 
same cost

YIterative 
DeepeningID

O(min(N,BL))O(min(N,BL))YYLeast Cost 
BFS

LCBFS

O(min(N,BL))O(min(N,BL))if all 
transitions 
same cost

YBreadth First 
Search

BFS
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Length of longest cycle-free path from start to anywhereLMAX
the length of the path from start to goal with the shortest number of stepsL

the average size of the priority queueQ

the average branching factor (the average number of successors) (B>1)B
number of states in the problemN

O(min(N,BLMAX))O(min(N,BLMAX))NYMemoizing
DFS

MEMDFS

O(min(N,2BL/2))O(min(N,2BL/2))All trans 
same cost

YBidirection
BF Search

BIBFS

O(LMAX)O(BLMAX)NYPath Check 
DFS

PCDFS
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YBreadth First 
Search

BFS

Slide 84

Best First “Greedy” Search
Needs a heuristic.  A heuristic function maps a state onto 
an estimate of the cost to the goal from that state.

Can you think of examples of heuristics?

E.G. for the 8-puzzle?

E.G. for planning a path through a maze?

Denote the heuristic by a function h(s) from states to a cost 
value.
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Heuristic Search
Suppose in addition to the standard search 

specification we also have a heuristic.  
A heuristic function maps a state 

onto an estimate of the cost to the 
goal from that state.

Can you think of examples of heuristics?

• E.G. for the 8-puzzle?
• E.G. for planning a path through a maze?

Denote the heuristic by a function h(s) from states 
to a cost value.
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Euclidian Heuristic

START
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h=11

h=8
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Euclidian Heuristic

START

GOAL

d

b
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q
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h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

• Another priority queue algorithm.

• But this time, priority is the heuristic 

value.
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Best First “Greedy” Search
Init-PriQueue(PQ)
Insert-PriQueue(PQ,START,h(START))
while (PQ is not empty and PQ does not contain a goal state)

(s , h ) := Pop-least(PQ)
foreach s’ in succs(s)
if s’ is not already in PQ and s’ never previously been visited

Insert-PriQueue(PQ,s’,h(s’))

A few improvements to this algorithm can make things 
much better.  It’s a little thing we like to call: A*….       

…to be continued!

SpaceTimeOptimalComp
lete

Algorithm

O(min(N,BLMAX))O(min(N,BLMAX))NYBest First 
Search

BestFS
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What you should know
• Thorough understanding of BFS, LCBFS, 

UCS. PCDFS, MEMDFS
• Understand the concepts of whether a 

search is complete, optimal, its time and 
space complexity

• Understand the ideas behind iterative 
deepening and bidirectional search

• Be able to discuss at cocktail parties the 
pros and cons of the above searches


