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Predlctlng Delayed Rewards wa

DISCOUNTED MARKQOV SYSTEM

Prob(next state = Sthis state = S,) = 0.8 etc...
What is expected sum of future rewards (discounted) ?

(S rmet)] | sbl-s)

Just Solve It! We use standard Markov System Theory
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Learning Delayed Rewards...

s, ) s, ) s, )

O O O
s, ? S5 ? Ss ?
(ol ek ol

All you can see is a series of states and rewards:
$,(R=0)—>8,(R=0) —8,(R=4)—>S5,(R=0)—>8,,(R=0)> S;(R=0)
Task: Based on this sequence, estimate J*(S;),J*(S;)--J*(Sg)
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Idea 1: Supervised Learning
$4(R=0)—>S,(R=0) =8;(R=4)—>S,(R=0)—>S,(R=0)—> S5(R=0)

At t=1 we were in state S, and eventually got a long term discounted
reward of 0+y0+y24+y30+y40...= 1

Att=2in state S, Itdr=2

Att=3 in state S; Itdr =4

Att=4 in state S, Itdr=0

Att=5in state S, Itdr=0
At t=6 in state Sy Itdr=0

State Observations ~ Mean LTDR

of LTDR
S, 1 1 =Jes(S,)
S, 2,0 1 =Jes(S,)
S, 4 =Jes(S;)
S, 0 0 =Jes(S,)
S 0 0 =JesY(S;)
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Supervised Learning ALG

* Watch a trajectory
S[0] r[0] S[1] r[1] -+ S[TIr[T]
* Fort=0,1, T, compute J[t]= fyir[t +i]
i=0
+ Compute mean value of J[t]

J*(S;)=| among all transitions beginning
in state S; on the trajectory

Let MATCHES(S,)={t/S[t] = S.}, then define
J[t]
Jesl( )_ teMATCHES(S;)

* You're done! [MATCHES(S, )
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Supervised Learning ALG
for the timid

If you have an anxious
@ @ personality you may be worried
= about edge effects for some of

M the final transitions. With large
trajectories these are negligible.

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 6




Online Supervised Learning
Initialize:  Count[S]=0 VS,
SumJ[S]=0 VS
Eligibility[S] =0 VS,
Observe:
When we experience S; with reward r
do this:
vj Elig[S]<—VElig[S]
Elig[S;]<—Elig[S] + 1
vj SumJ[Sj}— SumJ[S]+rxElig[S}]
Count[S;] < Count[S] + 1

Then at any time,
Jesi(S;)= SumJ[S;)/Count[S}]
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Online Supervised Learning
Economics

Given N states S, -+ Sy, OSL needs O(N) memory.

Each update needs O(N) work since we must update all
Elig[ ] array elements

Idea: Be sparse and only update/process Elig|[ ]
elements with values >¢ for tiny &

There are only |09( %) / '09( %)

such elements

Easy to prove:

AsT —o0,J%(S,) > J(S,) VS,
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Online Supervised Legining

S,(r=0)—>8,(r=0) —> S;(r=4) =S,(r=0) =>S,(r=0)—>S;(r=0)

State | Observations of J/ES\)
LTDR
S, 1 1
S, 2,0 1
S, 4
S, 0 0
S; 0 0

There’s something a little suspicious about this (efficiency-wise)
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Certainty-Equivalent (CE) Learning

Idea: Use your data to estimate the underlying
Markov system, instead of trying to estimate J
directly
S,(r=0)—>S,(r=0) —> S;(r=4) =>S,(r=0) —>S,(r=0)—>S;(r=0)
. You draw in the
Estimated Markov System: transitions +

probs

What're the estimated J values?
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C.E. Method for Markov Systems

Initialize:
Count[S]=0 Vs, #Times visited S;
SumR[S] =0 ' Sum of rewards from S;

Trans[S;,S] =0 v, #Times transitioned from §,—§;

When we are in state S;, and we receive reward r, and we
moveto S, ...

Count[S;] <-Count[S]] + 1

SumR[S]] «<~SumR[S] + r
Trans[S;,S] <= Trans[S;S] + 1

Then at any time
res(S;) = SumR[S] / Count[S]]
Pest, = Estimated Prob(next = S; | this = S, )
= Trans[S;,S] / Count[S]
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C.E. for Markov Systems
(continued) ...

So at any time we have
res(S;) and Pest (next=S; | this=S; )
VS = pesi;
So at any time we can solve the set of linear equations

Jest (S| ): resl(Si )+}/Sz: Pest (SJ ‘SI )]esl(sj )

[In vector notation,
Jest = rest 4 yPest]
=> Jesl = (|_vPest)71res|
where Jest rest are vectors of length N
Pest is an NxN matrix
N = # states ]
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C.E. Online Economics
Memory: O(N2)
Time to update counters: O(1)
Time to re-evaluate Jest
* O(N3) if use matrix inversion
* O(N2kcg7) if use value iteration and we need
kcrit iterations to converge
* O(Nkcgyr) if use value iteration, and kgg 7 to
converge, and M.S. is Sparse (i.e. mean #
successors is constant)
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Certainty Equivalent Lgghing

Memory use could be O(N2) !

And time per update could be O(Nkcg;r) up to
O(N3) !

Too expensive for some people.

Prioritized sweeping will help, (see later), but first
let’s review a very inexpensive approach
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Why this obsession with
onlineiness?

| really care about supplying up-to-date Jest
estimates all the time.

Can you guess why?
If not, all will be revealed in good time...
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Less Time: More Data
Limited Backups

= Do previous C.E. algorithm.
= At each time timestep we observe S;(r)>S; and update

Count[S], SumR[S], Trans[S;,S]
= And thus also update estimates
r™ and P v, eoutcomes(S;)

But instead of re-solving for Jest, do much less work.
Just do one “backup” of J*[5, ]

Jest [S|]<_ riest +7/Z Pi;,\st\]est [SJ]
j
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“One Backup C.E.” Economics
Space : O(N?) NOT;.’,V,’_:';RE?VEMENT
Time to update statistics : O(1)
Time to update Jest : O(1) @
«» Good News: Much cheaper per transition

«» Good News: Contraction Mapping proof (modified)
promises convergence to optimal

< Bad News: Wastes data
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Prioritized Sweeping

[Moore + Atkeson, '93]

Tries to be almost as data-efficient as full CE but not
much more expensive than “One Backup” CE.

On every transition, some number (B) of states may
have a backup applied. Which ones?
* The most “deserving”
» We keep a priority queue of which states have
the biggest potential for changing their Jest(Sj)
value
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Where Are We?

Trying to do online Jest prediction from streams

of transitions
Space Jest Update Cost
Supervised O(N,) 0( i ) .o
Learning -
Full C.E. 0(N,,) O(NgoN,) .e
Learing O(Nyokorrr) N
One Backup C.E. | O(Ny,) 0(1) .o
Learning N
Prioritized 0(N,) 0(1) .o
Sweeping ~

N,,= # state-outcomes (number of arrows on the M.S. diagram)
N,= # states What Next ?
Sample Backups !!!
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Temporal
Difference [Sutton 1988]

Learning
Only maintain a Jest array...
nothing else
So you've got
Jest (81) Jest (82) e Jest (SN)

and you observe
Si 2 Sj

A transition from i that receives
an immediate reward of r and

what should you do? s ]
Can You Guess ?
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TD Learning

Si r/\ASj .
esl
We update = J (Si)
We nudge it to be closer to expected future rewards

SuUM

J* (Si ) <« (l_ a)‘]w (Si )+
Expected future
a[ rewards ]

=(1-al™(S,)+ afr+%(s, )]

o is called a “learning rate” parameter. (See

n” in the neural lecture)

WEIGHTED
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Simplified TD Analysis

TERMINATE

— TERMINATE

TERMINATE

+ Suppose you always begin in S,

* You then transition at random to one of M places. You don’t know the
transition probs. You then get a place-dependent reward (unknown in
advance).

* Then the trial terminates.

Define J*(S,)= Expected reward

Let's estimate it with TD
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rk) = reward of k'th terminal
state

p® = prob of k'th terminal
state

We'll do a series of trials. Reward on t'th
trail is r,

=E[r]=£p“r®  [Note E[r, is independent of ]
k=1
Define J*(Sy) =J* = E[r]
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Let's run TD-Learning, where
J; = Estimate Jes{(S,) before the t'th trial.

From definition of TD-Learning:

Jiq = (1-0)J; + arny

Useful quantity: Define
. <2
o? = Variance of reward:E[(rt -J) ]

_ v pl)(pl) _ g+ B
_kz:lpk(rk T
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Remember J* = E[r], 02 = E[(r-J*)3]
Jug = ar + (1-a)J;

Ep,,-]=
= E[ocrt +(1-a), —J*]

%
2
=(1-a)Ep, -]
Thus...
. . Is this
!Lrg E[3,]=1 impressive??
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Remember J* = E[r], 02=E[(r-J*)?]
Jp = arg+ (1-0)dy

Write S, = Expected squared error between
J;and J* before the t'th iteration

St = El(Jpsd*)
= E[(arg-(1-a)d;- )2
= E[(alreJ*1+(1-0)[d; - )4
= Blo?(r-J*2+a(1-a)(r-J*)(J; - J)+(1-0)2(Ji - I
= 02E[(re-J* 2+ a(1-0)E[(red*)(Jg - J)+(1-0)2E[(J, - J*)3]

= a202+(1-a)2S, “—
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And it is thus easy to show that ....

2
lims, = limE|(3, ~ 3 f]= 27
tow t—o (2—(){)

* What do you think of TD learning?

* How would you improve it?
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Decaying Learning Rate

[Dayan 1991ish] showed that for General TD
learning of a Markow System (not just our simple
model) that if you use update rule

JES'(Si)“ (2 [ri +0% (Sj )]* (]fat )JQS‘ (Si)
then, as number of‘observa}ions )
goes to infinity I%(S,)—J°(S, Vi
PROVIDED

. his means —
* All states visited «~ly often & .
< - vkIT.Y o >k
e o= ¢ =1
t=1

( This means™—
4 o, )
[ 3KYT. Yo <k/
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< 2

. —
Yo <o
t=1
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Decaying Learning Rate

This Works: a, = 1/t
This Doesn'’t: a; = o,
This Works: o, = B/(B+t) [e.g. B=1000]
This Doesn’t: a; = Bay4 (B<1)
IN OUR EXAMPLE....USE o, = 1/t |
Remember J* = E[rl], o?= El_(rl —J')ZJ

J=af +L-a ), :%rl 4—(1—}{)]t

Write C, =(t-1)J, and you'll see that

Coa=r+C; 50 Jpy :%‘:Z[:rt +Jo:i
=1

And...
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Decaying Learning Rate con't...

R

t
. . L2
so, ultimately !lmE[(JI-J )]:o
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A Fancier TD...

S[t] = state at time t
a=1/4 y=1/2
Assume  Jes(S,3)=0 Jest (S;7)=0 Jest(S,,)=16
Assume t=405 and S[t] =S,
Observe 823(/%)\817 with reward 0

Now t=406, S[t|=S,, S[t-1]=S,
Jost (Sy5)= , JoH(847)= S JSt(8yy)=
Observe S,7° S,

Now t=407, S[f]=S44
Jot (Spa)= s I (Syp)= s 9o (Sgq)=
INSIGHT: J&L(S,;) might think

| gotta get me some of that !!!
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TD(A) Comments

TD(A=0) is the original TD

TD(A=1) is almost the same as supervised learning (except it
uses a learning rate instead of explicit counts)

TD(A=0.7) is often empirically the best performer

» Dayan’s proof holds for all 0sA<1

» Updates can be made more computationally efficient with
“eligibility” traces (similar to O.S.L.)

* Question:

«+Can you invent a problem that would make TD(0) look
bad and TD(1) look good?

“»How about TD(0) look good & TD(1) bad??

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 32

Learning M.S. Summary

Space |J Update
Cost
S ised L i O(N
upervised Learning (Ns) 0 @] Py
o
4 | Full C.E. Learning O(Ny,) [ O(NgNy) oo
<
ﬂ O(Ngokerir) \/
& | One Backup C.E. O(Ng,) 0(1) e
% Learning Za
Prioritized Sweeping | O(N,.) 0(1) P
S>>
i TD(0) O(Ns)  |0(1) oo
[ AN
o -
8 < O(N 1
g TD(\), 0<As1 [ON) || 7\ ..
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Learning Policies
for MDPs

See previous lecture
slides for definition of and
computation with MDPs.

The Heart
of

rReNFORCEMent

Learning
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The task:

World: You are in state 34.
Your immediate reward is 3. You have 3 actions.
Robot: Tl take action 2.
World: You are in state 77.
Your immediate reward is -7. You have 2 actions.
Robot: I'll take action 1.
World: You're in state 34 (again).
Your immediate reward is 3. You have 3 actions.
The Markov property means once you've selected an
action the P.D.F. of your next state is the same as the
last time you tried the action in this state.
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The “Credit Assignment” Problem

I'min state 43, reward =0, action =2

39, =0, “ =4
2 v o—o v =1
“21, % =0, “ =1
T T N
13, v =0, “ =2
“ 54, % =0, “ =2
Y26, =100,

Yippee! | got to a state with a big reward! But which of my
actions along the way actually helped me get there??

This is the Credit Assignment problem.

It makes Supervised Learning approaches (e.g. Boxes
[Michie & Chambers]) very, very slow.

Using the MDP assumption helps avoid this problem.
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MDP Policy Learning

Space Update Cost
Full CE. 0(Nyao) O(Nsaokcrr) oo
Learning
One Backup | O(Nga,) O(N,o) oo
C.E. Learning N\
Prioritized O(Ngpo) O0(BNao) oo
Sweeping —

«  We'll think about Model-Free in a moment...
The C.E. methods are very similar to the MS case, except now do
value-iteration-for-MDP backups

Jest (Si): mgx riest +y Z Pest (S] ‘SI i a)]es! (SJ)

$;eSUCCS(S;)
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Choosing Actions

We're in state S

We can estimate st

“or “ Pest(next = §; | this = §; , action a)
Jest (next = S, )

So what action should we choose ?

IDEA 1: a=argmax| r,+7> P*(s,[s,,a’u*(s,)
o i

« « «

IDEA 2: a=random
* Any problems with these ideas?
* Any other suggestions?
» Could we be optimal?
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Model-Free R.L.

Why notuse T.D.?
Observe
(I (o)
update
1#(8,) « alr, +70%(s, )+ - )I™(s,)

What's wrong with this?
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Q-Learning: Model-Free R.L.

[Watkins, 1988]

Define

Q*(S;,a)= Expected sum of discounted future
rewards if | start in state S,, if | then take action a,
and if I'm subsequently optimal

Questions:
Define Q*(S;,a) in terms of J*

Define J*(S;) in terms of Q*
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Q-Learning Update
Note that
Q*(S,a):ri+7 Z ( )P(Sj\si,a)mng*(Sj,a’)

In Q-learning we maintain a table of Q®st values instead
of Jestvalues...

When you see §;— "> §; do...
Q*'(S,,a)« oz[ri +ymaxQ*(s,, al)} +(1-a)Q™(S;,a)

This is even cleverer than it looks: the Q¢st values are
not biased by any particular exploration policy. It
avoids the Credit Assignment problem.
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V*(s) = max Q(s,a’)

a
Qn(s.a) — (1= 0a,)Qn_1(s.a) +
(rp r + 7y max (2,,_ (s, uj]]

1

Qp = |+ visits,(s.a)
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Q-Learning: Choosing Actions

Same issues as for CE choosing actions
Exploration vs. Exploitation
Don't always be greedy, so don’t always choose: argmax Q(s;,a)
Don’t always be random (otherwise it will take a Iongatime to
reach somewhere exciting)

Boltzmann exploration [Watkins]

Prob(choose action a) Q! (S,a)
ocexpl —
t
Optimism in the face of uncertainty [Sutton '90, Kaelbling '90]
Initialize Q-values optimistically high to encourage exploration
Or take into account how often each s,a pair has been tried
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Q-Learning Comments

» [Watkins] proved that Q-learning will eventually
converge to an optimal policy.

* Empirically it is cute
« Empirically it is very slow
* Why not do Q(A) ?
» Would not make much sense [reintroduce the credit
assignment problem]

» Some people (e.g. Peng & Williams) have tried to work
their way around this.
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If we had time...

» Value function approximation
» Use a Neural Net to represent Jest [e.g. Tesauro]
» Use a Neural Net to represent Q°st [e.g. Crites]
» Use a decision tree
...with Q-learning [Chapman + Kaelbling '91]
...with C.E. learning [Moore '91]
...How to split up space?

Significance test on Q values [Chapman +
Kaelbling]

Execution accuracy monitoring [Moore '91]
Game Theory [Moore + Atkeson '95]
New influence/variance criteria [Munos '99]

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 45

If we had time...
* R.L. Theory
» Counterexamples [Boyan + Moore], [Baird]

» Value Function Approximators with Averaging will
converge to something [Gordon]

» Neural Nets can fail [Baird]

» Neural Nets with Residual Gradient updates will
converge to something

» Linear approximators for TD learning will converge
to something useful [Tsitsiklis + Van Roy]
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TD-Gammon
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Current Issues

¢ Making function approximation work
¢ Abstraction (options, macros, ...), learning
structure

e Partially Observable Markov Processes,
POMDPs
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What You Should Know

» Supervised learning for predicting delayed rewards

« Certainty equivalent learning for predicting delayed
rewards

» Model free learning (TD) for predicting delayed
rewards

» Reinforcement Learning with MDPs: What's the
task?

* Why is it hard to choose actions?

* Q-learning (including being able to work through
small simulated examples of RL)
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