Model-based RL

- Have or learn a reward function (“look like the observed behavior”).
- Learn a task model (locally weighted regression).
- Use model-based reinforcement learning to find a successful policy.
- Refine model based on experience, and replan.
- Accommodate imperfect models and improve policy using online policy search, or manipulation of optimization criterion.

Reinforcement Learning

Direct RL

- Adjust parameterized policy.
- An example of a parameterized policy is a Q function, which stores the value of taking each possible action in each state.

Model-Based RL

- Learn model, plan.
- We use locally weighted learning to learn models.
- We use forms of dynamic programming to plan.

Comparing Direct and Model-Based Reinforcement Learning (pendulum swingup)

Planning With Imperfect Models

\[C = \sum (x(k) - \hat{x}(k))^2 + \sum |u(k)|^2 + \sum \lambda \text{confidence}(x(k + 1) - f(x(k), u(k)))^2 \]

- Optimistic Planning: Include a factor, \(\lambda \), that depends on how confident the planner is in the model, and controls how much the plan has to obey the model.
- Plan without integrating dynamics: Parameterize \(x(k) \) and \(u(k) \) and use function optimization to minimize \(C \).

Task Level Direct RL

- Adjust reward function given to planner to compensate for steady state execution error.
- Closely related to model-based policy refinement and previous work on task level learning.
- Need to be able to measure steady state error in the presence of disturbances and transient behavior due to learning.
When Should One Use Direct RL/Policy Refinement?

- When small number of actions relevant to task can be abstracted. $Q(x,u)$ is largely independent of state.
- When policy can be parameterized with small number of task parameters.
- On complex tasks with few choices, such as voting.

What did we learn?

- Learning models tremendously accelerates robot learning, allowing small numbers of trials/demonstrations, with little apriori knowledge required.
- Robots can select relevant task variables, and build models.
- Robots can acquire task paradigms from observation and from reasoning.
- Policy refinement can improve model-based learning.
- Need modeling techniques that produce confidence estimates, fast predictions, and fast training.