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Probability

e The world is a very uncertain place

* 30 years of Artificial Intelligence and
Database research danced around this fact

¢ And then a few AI researchers decided to
use some ideas from the eighteenth century
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What we're going to do
¢ We will review the fundamentals of
probability.
e It's really going to be worth it

e In this lecture, you'll see an example of
probabilistic analytics in action: Bayes
Classifiers
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Discrete Random Variables

¢ A is a Boolean-valued random variable if A
denotes an event, and there is some degree
of uncertainty as to whether A occurs.

e Examples
¢ A = The US president in 2023 will be male

¢ A = You wake up tomorrow with a
headache

¢ A = You have Ebola

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 4

Probabilities

o We write P(A) as “the fraction of possible
worlds in which A is true”

¢ We could at this point spend 2 hours on the
philosophy of this.
¢ But we won't.
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Visualizing A

Event space of

a:loﬁgzﬂble — Worlds in which P(A) = Area of
Als true reddish oval

Itsareais 1-"
Worlds in which A is False
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The Axioms of Probability
e 0<=PA) <=1
e P(True) =1
e P(False) = 0
e P(A or B) = P(A) + P(B) - P(A and B)

Where do these axioms come from? Were they “discovered”?
Answers coming up later.
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Interpreting the axioms

0<=PA)<=1

P(True) = 1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)

The area of A can't get
any smaller than 0

And a zero area would
mean no world could
ever have A true
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Interpreting the axioms

0<=PA) <=1

P(True) =1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)

/ \ The area of A can't get
any bigger than 1

And an area of 1 would
mean all worlds will have

K j A true
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Interpreting the axioms

0<=PA) <=1

P(True) = 1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)
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Interpreting the axioms

0<=PA)<=1

P(True) =1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)

Simple addition and subtraction
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These Axioms are Not to be
Trifled With

* There have been attempts to do different
methodologies for uncertainty
¢ Fuzzy Logic
* Three-valued logic
* Dempster-Shafer
¢ Non-monotonic reasoning

» But the axioms of probability are the only
system with this property:
If you gamble using them you can't be unfairly exploited
by an opponent using some other system [di Finetti 1931]
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Conditional Probability

¢ P(A|B) = Fraction of worlds in which B is
true that also have A true

H = “Have a headache”
F = "Coming down with Flu

”

P(H) = 1/10
P(F) = 1/40
. P(HIF) = 1/2

“Headaches are rare and flu
H is rarer, but if you're

coming down with ‘flu
there’s a 50-50 chance
you'll have a headache.”
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Conditional Probability

P(H|F) = Fraction of flu-inflicted
F worlds in which you have a

headache
H = #worlds with flu and headache

#worlds with flu

H = "Have a headache” = Area of “H and F” region
F =“Coming down with Flv"

Area of “F” region

P(H) = 1/10
P(F) = 1/40 =P(H~F)
PHIF) =12
P(F)
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Definition of Conditional Probability
P(A ~ B)

Corollary: The Chain Rule
P(A ~ B) = P(AIB) P(B)
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Probabilistic Inference

H = “Have a headache”

F F = "Coming down with Flu”
P(F) = 1/40
P(H|F) = 1/2

One day you wake up with a headache. You think: “Drat!
50% of flus are associated with headaches so I must have a
50-50 chance of coming down with flu”

Is this reasoning good?
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Bayes (Bayes'/Bayes’s) Rule

P(A|B)P(B) = P(A~B) = P(B|A)P(A)
So
P(A[B) P(B)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
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The Joint Distribution ..e: s

variables A, B, C

Recipe for making a joint distribution OA : f :;:b
of M variables: -
0 0 1 0.05
P 0 1 0 0.10
1. Make a truth table listing all 5 n n Y
combinations of values of your n 5 5 U'US
variables (if there are M Boolean n 5 n D:w
variables then the table will have n n 5 028
2" rows). 1 1 1 0:10
2. For each combination of values,
say how probable it is.
3. If you subscribe to the axioms of 0 M
probability, those numbers must w
sum to 1.
03 B h
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Female v0:405-

Using the
Joint vioss
Distribution |ue s

v140.5+

gender hours_worked wealth

poor 0253122 [N

reh  ooz4s895 [l

poor 00421768 [l

rech  oone2aa

poor 0231312 [
rch  o.os71295 [N

poor 0134106 [N

reh  ooo5333 [

One you have the JD you can
ask for the probability of any
logical expression involving
your attribute
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P(E) =

ZP(row)

rows matching £
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gender hours_worked wealth
Female w0405 poor 0253122 [N
- reh  ooz4s895 [l
USIﬂg the v1405+ poor  0.0421760 [l
H rech  oone2aa
JOI nt Male  v040.5 poor 0331312 DG
rch  o.os71295 [N
v140.5+ poor 0134106 )N
reh 005333 [

P(Poor Male) = 0.4654 P(E)= ) P(row)

rows matching £
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Female v0:405-

Using the e
Joint

gender hours_worked wealth

ooer 0253122

reh  ooz4s895 [l
poor  0.0421768 DI
rech  oone2aa

Male  v0:405 poor 0331313 )
| rch  o.os71295 [N
i v1:40.5+ poor 0134106 NN
| reh  ooo5333 [
P(Poor) = 0.7604 P(E)= Z P(row)
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rows matching £
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gender hours_worked wealth
Female v0:405- poor

Inference o253122 [
reh  ooz4s895 [l

Wlth the vi405+ poor  0.0421768 Il
- rech  oone2aa
JOI nt Male w0405 poor 0331312 [
rch  o.os71295 [N
v1:40.5+ poor 0134106 (NN
reh 005333 [
Z P(row)
P (E1 A Ez) __ rows matching £ and £,

P(E,) > P(row)

rows matching E,

P(El |E2):
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Inference
with the | wen

Female v0:405-

gender hours_worked wealth

ooor 0253122 )

reh  ooz4s895 [l
poor  0.0421768 Ml
rech 00116293 ]

Joint

Male w0405

pear 0331313 )

rich  0.0871295 [N

i w140 5+

poor 0134106 )
reh  ooo5933 [

z P(row)

_ P(El /\EZ) __ rows matching ) and £,

P(E | Ey) = P(E)

P(Male |
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ZP(row)

rows matching £,

) = 0.4654 / 0.7604 = 0.612
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Inference is a big deal

o I've got this evidence. What's the chance
that this conclusion is true?
¢ IT've got a sore neck: how likely am I to have meningitis?

« I see my lights are out and it's 9pm. What's the chance
my spouse is already asleep?

e There’s a thriving set of industries growing based
around Bayesian Inference. Highlights are:
Medicine, Pharma, Help Desk Support, Engine
Fault Diagnosis
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Where do Joint Distributions
come from?

¢ Idea One: Expert Humans

« Idea Two: Simpler probabilistic facts and
some algebra

Example: Suppose you knew

P(A) = 0.7 P(C|A”B) = 0.1

P(C|AA~B) = 0.8 Then you can automatically
P(B|A) = 0.2 P(C|~A”B) = 0.3 compute the JD using the
P(B|~A) = 0.1 P(C|~AN~B)=0.1  chainrule

In another lecture:

P(A=x N B=y A C=z) = Bayes Nets, a
P(C=z|A=x” B=y) P(B=y|A=x) P(A=x) systematic way to
do this.
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Where do Joint Distributions
come from?
e Idea Three: Learn them from data!

Prepare to see one of the most impressive learning
algorithms you'll come across in the entire course....
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Learning a joint distribution

Build a JD table for your
attributes in which the
probabilities are unspecified

The fill in each row with

P(row) = records matching row
A B c Prob total number of records
0 0 0 ?
0 0 1 2 A B C Prob
0 1 0 7 0 0 0 0.30
0 1 1 7 0 0 1 0.05
1 0 0 7 0 1 0 0.10
1 ) 1 B 0 1 1 005
1 1 0 ) 1 0 0 005
1 1 1 ? 1 0 1 0.10
1 1 0 0.25

Fraction of all records in which ! ! L 010

A and B are True but C is False
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Example of Learning a Joint
e This Joint was

obtained by
Iea rn i ng from gender hours_worked wealth
Female vOA4DS- poor 0253122 [

th re_e . rich 00245895 ]
attributes in V14054 poor  0.0421760 [l
the UCI Mal v0:40 5 - :?L:bill
n ” ale 40, poor 331212 [

AdUIt rch  o.0871295 [
Census w1405+ poor 0134106 [N
Database rch  oo0ssss (I
[Kohavi 1995]
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Where are we?
¢ We have recalled the fundamentals of
probability

¢ We have become content with what JDs are
and how to use them

¢ And we even know how to learn JDs from
data.
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Density Estimation

o Our Joint Distribution learner is our first
example of something called Density
Estimation

* A Density Estimator learns a mapping from
a set of attributes to a Probability

Input —————3 Density | -
Attributes ———— Estimator | Probability
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Density Estimation

e Compare it against the two other major

kinds of models:

Input
Attributes

4>Prediction of
categorical output

Input Density .
Attributes Probability

Input ———
Attributes ———— JRegressor}———Prediction of
—

real-valued output
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Using a density estimator

* Given a record x, a density estimator M can

tell you how likely the record is:
P(x|M)

* Given a dataset with R records, a density
estimator can tell you how likely the dataset
is:

(Under the assumption that all records were independently
generated from the Density Estimator’s JRD)
P(dataset|M) = P(x, AX,...AX /M) =[] P(x,/M)
k=1
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A small dataset: Miles Per Gallon

mpg  modelyear maker

good 751078 asia
bad 700074 america
192 bad 75078 europe

o bad 700074 america
Training bad 70074 america

bed 70074 asia
Set bad  70to74  asia
Records bad 751078 america

bad 70074 america
good 79083 america
bad 75078 america
good 79083 america
bad 75078 america
good 79083 america
good 79083 america
bad_ 70to74 _america
good 75t078 _europe
bad 75078 europe

From the UCI repository (thanks to Ross Quinlan)
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A small dataset: Miles Per Gallon

PR modslyes Mkt

Bad TATA amarics

mpg  modelyear maker

good 750078 asia
bad 700074 amerca
192 bad 75078 europe

|
Training e e emee =
oot Toors i
SEt bad  70to74 asia
Records bed 75078 america . -

bad 701074 america
good 791083 america
bad 75078  america
good 791083 america
bad _ 75t078  america
good 79083 america
good 79083 america ToReTT
bad  70to74  america
good 75t078 _ europe
bad  75t078 _europe

pood TNT4
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A small dataset: Miles Per Gallon

PR modslyes Mkt
b

mpg  modelyear maker TaTa
good 751078 asia
bed 700074 america

192 bad 751078 europe
bed 700074 america

Training e rtars—famatcn
Set e roters e

bad 70074 asia

R
P(dataset|M) = P(X; AX,...AX M) = HP(X,JM)
k=1
= (in this case) = 3.4 x 107"
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Log Probabilities

Since probabilities of datasets get so
small we usually use log probabilities

R R n
log P(dataset|M ) =log [ [ P(x,|M) = log P(x,|M)

k=1 k=1
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A small dataset: Miles Per Gallon

PR modslyes Mkt

bt e anaces 020t
e oz [l
2 er |
Training - =
Set v =1

. R R .
log P(dataset|M ) = logHP(x,JM) = ZIOg P(x,|M)
k=1 k=1
= (in this case) = —466.19

= —
|
smps omsrias [l
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Summary: The Good News

* We have a way to learn a Density Estimator
from data. (Just count)
¢ Density estimators can do many good
things...
* Can sort the records by probability, and thus
spot weird records (anomaly detection)
e Can do inference: P(E1|E2)

Automatic Doctor / Help Desk etc
« Ingredient for Bayes Classifiers (see later)
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Summary: The Bad News

» Density estimation by directly learning the
joint is trivial, mindless and dangerous

* How much data do you need to accurately
predict the probability of rare events? To fill
in all possible situations?

 This is why probabilistic approaches were
rejected earlier in AL Interesting question:

Why are probabilistic approaches popular
now?
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Using a test set

Set Size Log likelihood
Training Set 196 -466.1905
Test Set 196 -614.6157

An independent test set with 196 cars has a worse log likelihood

(actually it's a billion quintillion quintillion quintillion quintillion
times less likely)

....Density estimators can overfit (too many parameters, too little

data). And the full joint density estimator is the overfittiest of
them all!
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The zero problem

PR modslyes Mkt

If this ever happens, it means
there are certain combinations
that we learn are impossible

pood Tl armerica 00102041 ]

R R n
log P(testset|M ) = logHP(xk\M) = ZIOgP(xk\M)
k=1 k=1

=—ooif forany k P(x,|M)=0

T P -—
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Using a test set

Set Size Log likelihood
Training Set 196 -466.1905
Test Set 196 -614.6157

The only reason that our test set didn't score -infinity is that my
code is hard-wired to always predict a probability of at least one
in 1020

We need Density Estimators that are less prone
to overfitting
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Naive Density Estimation

The problem with the Joint Estimator is that it just

mirrors the training data.

We need something which generalizes more usefully.

The naive model generalizes strongly (and is usually

wrong/approximate):

Assume that each attribute is distributed
independently of any of the other attributes.

Copyright © 2001, Andrew W. Moore
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Independently Distributed Data

o Let x/i]/ denote the /th field of record x.
¢ The independently distributed assumption
says that for any [ v, u; U... U ; U,y Uy
P(xli]=v|x[1]=u, x[2]=u,,...x[i-1]=u_,,x[i +1]=u,,,..x[M]=u,,)
=P(x[i]=v)
¢ Or in other words, x///is independent of
X1 x[2].x[i-1], x[i+1],.. x[M]}
e This is often written as
il L A1, X2, .. x[i =11, x{i +1],...x[M ]}
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A note about independence
e Assume A and B are Boolean Random

Variables. Then

“A and B are independent”

if and only if

P(A|B) = P(A)

« “A and B are independent” is often notated

as

ALB

Copyright © 2001, Andrew W. Moore
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Independence Theorems

e Assume P(A|B) = P(A) |e Assume P(A|B) = P(A)
* Then P(A"B) = o Then P(B|A) =

= P(A) P(B) = P(B)
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Independence Theorems

e Assume P(A|B) = P(A)
e Then P(~A|B) =

= P(~A)

Copyright © 2001, Andrew W. Moore

e Assume P(A|B) = P(A)
e Then P(A|~B) =

= P(A)
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Multivalued Independence

For multivalued Random Variables A and B,

ALlB

if and only if
Vu,v:P(A=u|B=v)=P(4A=u)
from which you can then prove things like...
Yu,v:P(A=urB=v)=P(A=u)P(B=v)
Yu,v:P(B=v|A=v)=P(B=v)
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Using the Naive Distribution

¢ Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

e Suppose A, B, Cand D are independently
distributed. What is PAAN~BACN~D)?
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Using the Naive Distribution

¢ Once you have a Naive Distribution you can easily
compute any row of the joint distribution.

e Suppose A, B, C and D are independently
distributed. What is P(AN~BACA~D)?

= P(A|~B~CA~D) P(~BACA~D)

= P(A) P(~BACA~D)

= P(A) P(~B|CA~D) P(CA~D)

= P(A) P(~B) P(C~~D)

= P(A) P(~B) P(C|~D) P(~D)

= P(A) P(~B) P(C) P(~D)
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Naive Distribution General Case

e Suppose x/1], x/2], ... x/M] are independently
distributed.

M
P(x1]=u,,x[2]=u,,..x[M]=u,,) =HP(x[k] =u,)
k=1
¢ So if we have a Naive Distribution we can

construct any row of the implied Joint Distribution
on demand.

¢ So we can do any inference
e But how do we learn a Naive Density Estimator?

Learning a Naive Density
Estimator

#records in which x[i]=u

P(x[i]=u)=
(xli] =) total number of records

Another trivial learning algorithm!

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 52

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 51
Contrast
Joint DE Naive DE
Can model anything Can accurately model

only very boring
distributions, but often
good approximation

No problem to model “C |Outside Naive's scope
is a noisy copy of A”

Given 100 records and more than 6 | Given 100 records and 10,000

Boolean attributes will screw up multivalued attributes will be fine
badly
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Reminder: The Good News

¢ We have two ways to learn a Density
Estimator from data.

o *In other lectures we'll see vastly more
impressive Density Estimators (vixture Models,

Bayesian Networks, Density Trees, Kernel Densities and many more)

e Density estimators can do many good
things...
e Anomaly detection
e Can do inference: P(E1|E2) automatic boctor / Help Desk etc
 Ingredient for Bayes Classifiers
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Bayes Classifiers

Input - T
Attributes Classifier rediction of
—

categorical output
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How to build a Probabilistic Classifier

* Assume you want to predict output ¥'which has arity 7,and values
Vi Vo oo Ve
¢ Assume there are minput attributes called X, X, ... X,

e Sort dataset into 7,smaller datasets called DS;, DS, ... DS, with
DS, = Records in which Y=y,

* For each DS, , learn Density Estimator A, to model the input
distribution among the Y=V, records.
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How to build a Probabilistic Classifier

e Assume you want to predict output ¥'which has arity n,and values
Vi Var oo Ve

e Assume there are minput attributes called X, X, ... X,

¢ Sort dataset into /7,smaller datasets called DS, DS, .. DS,W, with
DS,;= Records in which Y=y,

e For each DS, , learn Density Estimator /4, to model the input
distribution among the Y=, records.

o M, estimates P(X;, X ... X,/ Y=v,)

Copyright © 2001, Andrew W. Moore Probabilistic Analytics: Slide 57

How to build a Probabilistic Classifier

e Assume you want to predict output ¥'which has arity n,and values
Vir Var oo Vi

e Assume there are minput attributes called X, X, ... X,

* Break dataset into /7,smaller datasets called DS,, DS, ... DS,

e Define DS;= Records in which Y=v,

e For each DS, , learn Density Estimator A, to model the input
distribution among the Y=v;records.

e M, estimates P(X;, X5, ... X, [ Y=V;)

¢ Idea: When a new set of input values (X, = v, X, = Uy ... X,
= u,,) come along to be evaluated predict the value of Y that
makes P(X, X ... X,, / Y=v;) most likely

dict
Yt = argmax P(X, =u, - u,|Y=
v
Is this a good idea?
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How to build a Probabilistic Classifier

e Assume you want to predict output ¥'which has arity 77,and values
Vi Vor v Ve

e Assume there are minput attribi

¢ Break dataset into 7, smaller daf]

o Define DS;= Records in which

e For each DS, , learn Density Estil
distribution among the Y=v; rec

e M, estimates P(X;, X, ... X, / Y=v;)

This is a Maximum Likelihood
classifier.

It can get silly if some Ys are
very unlikely

m m

Ypredicl = argmax P(Xl =u, - X =u | Y= V)

Is this a good idea?
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How to build a Bayes Classifier

e Assume you want to predict output ¥'which has arity 77,and values
Vir Var oo Ve

* Assume there are minput attributes calle

e Break dataset into n7,smaller datasets call

o Define DS,= Records in which Y=v,

e For each DS, , learn Density Estimator M,
distribution among the Y=v;, records.

e M, estimates P(X, X ... X,/ Y=v;)

Much Better Idea

e Idea: When a new set of input val
= u,,) come along to be evalua red|ct the value of Y that
makes P(Y=v; / Xy, X ... X,,) fost likely

ypredict =argmax P(Y =v| X, =u,--- X, =u,,)

Is this a good idea?
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Terminology

e MLE (Maximum Likelihood Estimator):
Yred = argmax P(X, =u, -+ X, =u, | Y =v)

e MAP (Maximum A-Posteriori Estimator):
Yred = argmax P(Y =v| X, =u, - X, =u,)
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Getting what we need

yPedet — aromax P(Y = v | X =u-X,=u,)
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Getting a posterior probability

PY=v|X =u--X,=u,)

PX,=u X, =u,|Y=v)PY =v)
PX, =u-X, =u,)
PX,=u--X, =u,|Y=v)PY =v)

ny

> P(X,=u- X, =u,|Y=v)PY=v)
Jj=1
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Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives P(Xy, X, ... X, / Y=v;).

3. Estimate P(Y=v,). as fraction of records with Y=v;.
4. For a new prediction:

P = argmax P(Y =v| X, =u, - X,, =u,)
=argmax P(X, =u,--- X, =u, | Y =v)P(Y =v)
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Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives P(X,, X,, ... X, / Y=v;).
3. Estimate P(Y=v,). as fraction of records %

We can use our favorite
Density Estimator here.

4. For a new prediction:

predict __ —
Y =argmax P(Y =v| X, Right now we have two

4 options:
=argmax P(X, =u,---X, =u, P
v Joint Density Estimator
*Naive Density Estimator
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Joint Density Bayes Classifier

Yo = argmax P(X, =u,--- X, =u, | Y =v)P(Y =)

In the case of the joint Bayes Classifier this
degenerates to a very simple rule:

ypredict = the most common value of Y among records
inwhich X; =uy, X, =u, ... X,, = u,

Note that if no records have the exact set of inputs X,
SUy Xo = Uy .. Xy = Uy, then P(X, X5, .. X, [ Y=V;)
= 0 for all values of Y.

In that case we just have to guess Y’s value
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Naive Bayes Classifier

y predict _ argmax P(X, =u,-- X, =u, | Y =v)P(Y =v)

In the case Bf the naive Bayes Classifier this can be
simplified:

yorediet argmax P(Y = V)H P(X/ =u; |Y =v)

J=1
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Naive Bayes Classifier

YPe = argmax P(X, =u,-+- X, =u, | Y =v)P(Y =v)
In the case E)f the naive Bayes Classifier this can be
simplified:
Y = argmax P(Y =W)[ [ P(X, =u, | Y =v)
v =

Technical Hint:
If you have 10,000 input attributes that product will
underflow in floating point math. You should use logs:

yrrediet — argmax[log P(Y =v)+ Zlog P(X,=u,;|Y= v)]

J=1
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More Facts About Bayes
Classifiers

* Many other density estimators can be slotted in*.

» Density estimation can be performed with real-valued
inputs*

* Bayes Classifiers can be built with real-valued inputs*

¢ Rather Technical Complaint: Bayes Classifiers don't try to
be maximally discriminative---they merely try to honestly
model what’s going on*

¢ Zero probabilities are painful for Joint and Naive. A hack
(justifiable with the magic words “Dirichlet Prior”) can
help*.

« Naive Bayes is wonderfully cheap. And survives 10,000

attributes cheerfully!

*See future Andrew Lectures
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What you should know

¢ Probability
« Fundamentals of Probability and Bayes Rule
* What's a Joint Distribution

* How to do inference (i.e. P(E1|E2)) once you
have a JD

¢ Density Estimation
e What is DE and what is it good for
* How to learn a Joint DE
¢ How to learn a naive DE
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What you should know

» Bayes Classifiers
¢ How to build one
* How to predict with a BC
» Contrast between naive and joint BCs
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