Review of Probability

Andrew W. Moore
Associate Professor
School of Computer Science Carnegie Mellon University
www.cs.cmu.edu/~awm
awm@cs.cmu.edu
412-268-7599

What we're going to do

- We will review the fundamentals of probability.
- It's really going to be worth it
- In this lecture, you'll see an example of probabilistic analytics in action: Bayes Classifiers

Probabilities

- We write $P(A)$ as "the fraction of possible worlds in which A is true"
- We could at this point spend 2 hours on the philosophy of this.
- But we won't.

Visualizing A

Event space of
all possible worlds

Its area is $1 \sim$

Discrete Random Variables

- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
- $A=$ The US president in 2023 will be male
- $A=$ You wake up tomorrow with a headache
- $\mathrm{A}=$ You have Ebola

The Axioms of Probability

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Where do these axioms come from? Were they "discovered"? Answers coming up later.

Copyright © 2001, Andrew W. Moore

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Copyright © 2001, Andrew W. Moore
Probabilistic Analytics: Slide 9

Interpreting the axioms

- $0<=P(A)<=1$
- $\mathrm{P}($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $\mathrm{P}($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Interpreting the axioms

- $0<=P(A)<=1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Simple addition and subtraction

These Axioms are Not to be Trifled With

- There have been attempts to do different methodologies for uncertainty
- Fuzzy Logic
- Three-valued logic
- Dempster-Shafer
- Non-monotonic reasoning
- But the axioms of probability are the only system with this property:
If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

Conditional Probability

- $P(A \mid B)=$ Fraction of worlds in which B is true that also have A true
$\mathrm{H}=$ "Have a headache"
$\mathrm{F}=$ "Coming down with Flu"

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 50-50 chance you'll have a headache."

Copyright © 2001, Andrew W. Moore

Definition of Conditional Probability

$$
P(A / B)=\frac{P(A \wedge B)}{P(B)}
$$

Corollary: The Chain Rule
$P(A \wedge B)=P(A / B) P(B)$

Bayes (Bayes'/Bayes's) Rule

$P(A \mid B) P(B)=P\left(A^{\wedge} B\right)=P(B \mid A) P(A)$
So
$P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}$

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of London, 53:370-418

Copyright © 2001, Andrew W. Moore

Probabilistic Inference

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

The Joint Distribution

Example: Boolean
variables A, B, C
Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^{M} rows).
2. For each combination of values, say how probable it is.
3. If you subscribe to the axioms of probability, those numbers must sum to 1 .

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

One you have the JD you can ask for the probability of any logical expression involving

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$ your attribute

$$
P(\text { Poor })=0.7604
$$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

Inference is a big deal

- I've got this evidence. What's the chance that this conclusion is true?
- I've got a sore neck: how likely am I to have meningitis?
- I see my lights are out and it's 9pm. What's the chance my spouse is already asleep?
- There's a thriving set of industries growing based around Bayesian Inference. Highlights are: Medicine, Pharma, Help Desk Support, Engine Fault Diagnosis

Where do Joint Distributions come from?

- Idea One: Expert Humans
- Idea Two: Simpler probabilistic facts and some algebra
Example: Suppose you knew

$$
\begin{array}{lll}
P(A)=0.7 & P\left(C \mid A^{\wedge} B\right)=0.1 & \\
& P\left(C \mid A^{\wedge} \sim B\right)=0.8 & \text { Then you can automatically } \\
P(B \mid A)=0.2 & P\left(C \mid \sim A^{\wedge} B\right)=0.3 & \text { compute the JD using the } \\
P(B \mid \sim A)=0.1 & P\left(C \mid \sim A^{\wedge} \sim B\right)=0.1 & \text { chain rule }
\end{array}
$$

In another lecture: Bayes Nets, a systematic way to do this.

Copyright © 2001, Andrew W. Moore

Learning a joint distribution

Build a JD table for your attributes in which the probabilities are unspecified

A	B	C	Prob
0	0	0	$?$
0	0	1	$?$
0	1	0	$?$
0	1	1	$?$
1	0	0	$?$
1	0	1	$?$
1	1	0	$?$
1	1	1	$?$

Fraction of all records in which A and B are True but C is False

Copyright © 2001, Andrew W. Moore

Where do Joint Distributions come from?

- Idea Three: Learn them from data!

Prepare to see one of the most impressive learning algorithms you'll come across in the entire course....

Example of Learning a Joint

- This Joint was
obtained by learning from three attributes in the UCI "Adult" Census Database
 [Kohavi 1995]

Where are we?

- We have recalled the fundamentals of probability
- We have become content with what JDs are and how to use them
- And we even know how to learn JDs from data.

Density Estimation

- Our Joint Distribution learner is our first example of something called Density Estimation
- A Density Estimator learns a mapping from a set of attributes to a Probability

Density Estimation

- Compare it against the two other major kinds of models:

Copyright © 2001, Andrew W. Moore

A small dataset: Miles Per Gallon

	mpg	modely	maker
	good	75078	asi
192	${ }_{\text {bad }}^{\text {bad }}$	${ }^{70074}$	amenca
Training	bad	${ }^{700774}$	amenca
Set	${ }_{\text {bad }}^{\text {bad }}$	${ }^{7} 70074$	amena
	bad	70074	asia
Records	${ }^{\text {bad }}$	751078	amenca
	bad	70077	amenca
	good	790033	${ }_{\text {america }}$
		${ }_{\text {7 }}^{751078}$	ameica
	${ }_{\text {gad }}^{\text {good }}$	${ }^{790083}$	${ }_{\text {a }}^{\substack{\text { amencas } \\ \text { amenca }}}$
	good	${ }^{7510788}$	amenca
	good	796083	amenica
	bad	70074	amenica
	${ }_{\text {god }}^{\text {god }}$	${ }^{751578} 7$	eurpee

From the UCI repository (thanks to Ross Quinlan)

Copyright © 2001, Andrew W. Moore

Using a density estimator

- Given a record \mathbf{x}, a density estimator M can tell you how likely the record is:

$$
\hat{P}(\mathbf{x} \mid M)
$$

- Given a dataset with R records, a density estimator can tell you how likely the dataset is:
(Under the assumption that all records were independently generated from the Density Estimator's JD)
$\hat{P}(\operatorname{dataset} \mid M)=\hat{P}\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2} \ldots \wedge \mathbf{x}_{R} \mid M\right)=\prod_{k=1}^{R} \hat{P}\left(\mathbf{x}_{k} \mid M\right)$

Log Probabilities

Since probabilities of datasets get so small we usually use log probabilities
$\log \hat{P}(\operatorname{dataset} \mid M)=\log \prod_{k=1}^{R} \hat{P}\left(\mathbf{x}_{k} \mid M\right)=\sum_{k=1}^{R} \log \hat{P}\left(\mathbf{x}_{k} \mid M\right)$
 Probabilistic Analytics: Slide 37

Summary: The Bad News

- Density estimation by directly learning the joint is trivial, mindless and dangerous
- How much data do you need to accurately predict the probability of rare events? To fill in all possible situations?
- This is why probabilistic approaches were rejected earlier in AI. Interesting question: Why are probabilistic approaches popular now?

The zero problem

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.
We need something which generalizes more usefully.

The naïve model generalizes strongly (and is usually wrong/approximate):

Assume that each attribute is distributed independently of any of the other attributes.
Copyright © 2001, Andrew W. Moore

A note about independence

- Assume A and B are Boolean Random Variables. Then
"A and B are independent"
if and only if

$$
P(A \mid B)=P(A)
$$

- " A and B are independent" is often notated as $A \perp B$

Independence Theorems

- Assume $P(A \mid B)=P(A)$
- Assume $P(A \mid B)=P(A)$
- Then $P(\sim A \mid B)=$
- Then $P(A \mid \sim B)=$

Independence Theorems

Multivalued Independence

For multivalued Random Variables A and B,

$$
A \perp B
$$

if and only if

$$
\forall u, v: P(A=u \mid B=v)=P(A=u)
$$

from which you can then prove things like...

$$
\begin{gathered}
\forall u, v: P(A=u \wedge B=v)=P(A=u) P(B=v) \\
\forall u, v: P(B=v \mid A=v)=P(B=v)
\end{gathered}
$$

Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is $P\left(A^{\wedge} \sim B^{\wedge} C^{\wedge} \sim D\right)$?

Using the Naïve Distribution

- Once you have a Naïve Distribution you can easily compute any row of the joint distribution.
- Suppose A, B, C and D are independently distributed. What is $P^{\prime}\left(A^{\wedge} \sim B^{\wedge} C^{\wedge} \sim D\right)$?
$=P\left(A \mid \sim B^{\wedge} C^{\wedge} \sim D\right) P\left(\sim B^{\wedge} C^{\wedge} \sim D\right)$
$=P(A) P\left(\sim B^{\wedge} C^{\wedge} \sim D\right)$
$=P(A) P(\sim B \mid C \wedge \sim D) P\left(C^{\wedge} \sim D\right)$
$=P(A) P(\sim B) P\left(C^{\wedge} \sim D\right)$
$=P(A) P(\sim B) P(C \mid \sim D) P(\sim D)$
$=P(A) P(\sim B) P(C) P(\sim D)$
Copyright © 2001, Andrew W. Moore
Probabilistic Analytics: Slide 50

Contrast

Joint DE	Naïve DE
Can model anything	Can accurately model only very boring distributions, but often good approximation
No problem to model "C is a noisy copy of $\mathrm{A}^{\prime \prime}$	Outside Naïve's scope
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine
Wrighte 2001 , Andeew w. Moore	Probelisisicanayicis: Site 53

Reminder: The Good News

- We have two ways to learn a Density Estimator from data.
- *In other lectures we'll see vastly more impressive Density Estimators (Mixture Models,
Bayesian Networks, Density Trees, Kernel Densities and many more)
- Density estimators can do many good things...
- Anomaly detection
- Can do inference: P(E1|E2) Automatic Doctor / Help Dess etc
- Ingredient for Bayes Classifiers

[^0]
Bayes Classifiers

Input Attributes \qquad Prediction of categorical output

How to build a Probabilistic Classifier

- Assume you want to predict output Y which has arity n_{y} and values $v_{1}, v_{21} \ldots v_{n y}$
- Assume there are m input attributes called $X_{1,}, X_{2}, \ldots X_{m}$
- Sort dataset into n_{y} smaller datasets called $D S_{1,} D S_{21} \ldots D S_{n y}$ with $D S_{i}=$ Records in which $Y=v_{i}$
- For each $D S_{i}$, learn Density Estimator M_{i} to model the input distribution among the $Y=\nu_{i}$ records.
- M_{i} estimates $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=v_{i}\right)$

How to build a Probabilistic Classifier

- Assume you want to predict output γ which has arity n_{γ} and values $V_{1}, V_{2}, \ldots V_{n y}$
- Assume there are m input attributes called $X_{1,} X_{21} \ldots X_{m}$
- Break dataset into n_{y} smaller datasets called $D S_{1,}, D S_{2}, \ldots D S_{n y}$
- Define $D S_{i}=$ Records in which $Y=V_{i}$
- For each $D S_{i}$, learn Density Estimator M_{i} to model the input distribution among the $Y=v_{i}$ records.
- M_{j} estimates $\mathrm{P}\left(X_{1}, X_{2 r} \ldots X_{m} / Y=v_{j}\right)$
- Idea: When a new set of input values $\left(X_{1}=u_{1}, X_{2}=u_{2}, \ldots . X_{m}\right.$ $=u_{m}$) come along to be evaluated predict the value of Y that makes $\mathrm{P}\left(X_{1}, X_{2}, \ldots X_{m} / Y=v_{i}\right)$ most likely

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right)
$$

Is this a good idea?
Copyright © 2001, Andrew W. Moore
Probabilistic Analytics: Slide 58

How to build a Probabilistic Classifier

- Assume you want to predict output Y which has arity n_{y} and values $v_{1}, v_{2}, \ldots v_{n y}$
- Assume there are m input attrib, This is a Maximum Likelihood
- Assume there are minput attrib
- Break dataset into n_{y} smaller dat
- Define $D S_{i}=$ Records in which Y
- For each $D S_{i}$, learn Density Esti distribution among the $Y=v_{i}$ rec

It can get silly if some Y s are very unlikely

- M_{i} estimates $\mathrm{P}\left(X_{1 r} X_{2}, \ldots X_{m} / Y=v_{i}\right)$
- Idea: When a new set of input values $\left(X_{1}=u_{1}, X_{2}=u_{2 r}, \ldots . X_{m}\right.$ $\left.=u_{m}\right)$ come along to be evaluated predict the value of Y that makes $\mathrm{P}\left(X_{1,}, X_{2 r}, \ldots X_{m} / Y=v_{i}\right)$ most ikely

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right)
$$

Is this a good idea?

How to build a Bayes Classifier

- Assume you want to predict output γ which has arity n_{y} and values $v_{1}, v_{2,} \ldots v_{n y}$
- Assume there are m input attributes calle
- Break dataset into n_{y} smaller datasets call
- Define $D S_{i}=$ Records in which $Y=v_{i}$

Much Better Idea

- For each $D S_{i}$, learn Density Estimator M_{i} distribution among the $Y=v_{i}$ records.
- M_{i} estimates $\mathrm{P}\left(X_{1 r} X_{2 r} \ldots X_{m} / Y=V_{i}\right)$
- Idea: When a new set of input valuo $\kappa_{1}=u_{1 \prime}, X_{2}=u_{2 r}, \ldots . X_{m}$ $=U_{m}$) come along to be evaluate predict the value of Y that makes $\mathrm{P}\left(Y=v_{i} / X_{1 r}, X_{21} \ldots X_{m}\right)$ most likely

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right)
$$

Is this a good idea?
Copyright © 2001, Andrew W. Moore
Probabilistic Analytics: Slide 60

Terminology

- MLE (Maximum Likelihood Estimator):
$Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right)$
- MAP (Maximum A-Posteriori Estimator):
$Y^{\text {predict }}=\operatorname{argmax} P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right)$

Getting a posterior probability

$$
\begin{gathered}
P\left(Y=v \mid X_{1}=u_{1} \cdots X_{m}=u_{m}\right) \\
=\quad \frac{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)}{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m}\right)} \\
=\frac{P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)}{\sum_{j=1}^{n_{v}} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v_{j}\right) P\left(Y=v_{j}\right)}
\end{gathered}
$$

Bayes Classifiers in a nutshell

1. Learn the distribution over inputs for each value Y.
2. This gives $\mathrm{P}\left(X_{1}, X_{2}, \ldots \mathrm{X}_{m} / Y=v_{i}\right)$.
3. Estimate $\mathrm{P}\left(Y=v_{i}\right)$. as fraction of records $\quad-v_{i}$.
4. For a new prediction:

$$
Y^{\text {predict }}=\operatorname{argmax} P\left(Y=v \mid X_{1}\right.
$$

$$
=\underset{v}{\operatorname{argmax}} P\left(\stackrel{v}{X}_{1}=u_{1} \cdots X_{m}=u_{n}\right.
$$

$u_{n} |$| We can use our favorite
 Density Estimator here.
 Right now we have two
 options: |
| :--- |
| -Joint Density Estimator |
| -Naïve Density Estimator |

-Naive Density Estimator

Joint Density Bayes Classifier

$Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)$
In the case of the joint Bayes Classifier this degenerates to a very simple rule:
ypredict $=$ the most common value of Y among records in which $X_{1}=u_{1}, X_{2}=u_{2}, \ldots . X_{m}=u_{m}$.

Note that if no records have the exact set of inputs X_{1}
$=u_{1}, X_{2}=u_{21}, \ldots . X_{m}=u_{m}$, then $\mathrm{P}\left(X_{1}, X_{2}, \ldots \mathrm{X}_{m} / Y=v_{i}\right)$ $=0$ for all values of Y .

In that case we just have to guess Y 's value

Naïve Bayes Classifier
 $Y^{\text {predict }}=\operatorname{argmax} P\left(X_{1}=u_{1} \cdots X_{m}=u_{m} \mid Y=v\right) P(Y=v)$

In the case of the naive Bayes Classifier this can be simplified:

$$
Y^{\text {predict }}=\underset{v}{\operatorname{argmax}} P(Y=v) \prod_{j=1}^{n_{v}} P\left(X_{j}=u_{j} \mid Y=v\right)
$$

More Facts About Bayes Classifiers

- Many other density estimators can be slotted in*.
- Density estimation can be performed with real-valued inputs*
- Bayes Classifiers can be built with real-valued inputs*
- Rather Technical Complaint: Bayes Classifiers don't try to be maximally discriminative---they merely try to honestly model what's going on*
- Zero probabilities are painful for Joint and Naïve. A hack (justifiable with the magic words "Dirichlet Prior") can help*.
- Naïve Bayes is wonderfully cheap. And survives 10,000 attributes cheerfully!

What you should know

- Probability
- Fundamentals of Probability and Bayes Rule
- What's a Joint Distribution
- How to do inference (i.e. P(E1|E2)) once you have a JD
- Density Estimation
- What is DE and what is it good for
- How to learn a Joint DE
- How to learn a naïve DE

What you should know

- Bayes Classifiers
- How to build one
- How to predict with a BC
- Contrast between naïve and joint BCs

[^0]: Copyright © 2001, Andrew W. Moore
 Probabilistic Analytics: Slide 54

