

Points I want to make

- Personal robot needs "natural" end user programming.
- Memory-based approach makes learning to choose policy primitives from observation easy.
- Memory-based approach can learn from practice (reinforcement learning) by scaling distance function by value of using a memory.
- Alternative of using policy parameters has slow learning from observation.

Policy Primitives Behavior indexed by state Learn from observation and from practice Learn to select policy Learn to generate subgoals Fixed action generation Existing library of policy primitives

Learning From Observation

- Memory-based learner: learn by storing and recalling specific observations
- Policy selection: k-nearest neighbor
- Sub-goal generation: kernel regression (distance weighted averaging) based on remembered primitives of appropriate type
- Fixed action generation

Learning from experience

- Need task specification as reward function
- Learn by adjusting distance to query: scale distance function by value of using a memory
- d'(x,q) = d(x,q)*f(x,q)
- f(experience location, query location) related to Q value: 1/Q or exp(-Q)
- Implementation 1: lookup tables at each experience
- Implementation 2: locally weighted projection regression (LWPR)

Video

Conclusions

- Memory-based approach makes learning to choose policy primitives from observation easy.
- Memory-based approach can learn from practice (reinforcement learning) by scaling distance function by value of using a memory.

Distance Metric Matters

- Not Euclidean (other side of wall)
- Need to take into account time (goal achievement)
- · When and what to forget
- What matters (symmetry? Range of generalization)

What properties should a (set of) primitive(s) have?

- Recognizable, with recognizable subgoals. Segmentable?
- Support (fast) learning
- Separate data into smooth subsets
- Maximize data efficiency (right level of generalization)

Biology: Primitives?

- Eye movements: Saccades, smooth pursuit, OKN, VOR, vergence
- Gaits: walk, run, trot, canter, gallop, pace, pronk, rack, jump, limp, hop, skip
- Arm movements: bell shaped velocity profiles; minimum jerk, minimum torque change, minimum error
- Hand movements: ?

Robotics/AI: Primitives?

- Macro actions, operators (STRIPS)
- Schemas (psychology)
- Behavior-based X
- Options (reinforcement learning)

Creating Primitives

- Manually generate (this talk)
- Observe (cluster, PCA, bottlenecks, failures)
- Make many plans, then observe
- Have standard library/generate, and test

Using Primitives While Performing the Task Roll Off Wall > Free Roll > Roll To Corner