

Clustering with Gaussian Mixtures: Slide 11

We now have a procedure s.t. if you give me a guess at $\mu_{p} \mu_{2} ... \mu_{k}$ I can tell you the prob of the unlabeled data given those μ 's. Suppose x's are 1-dimensional. (From Duda and Hart) There are two classes; w, and w₂ $P(w_1) = 1/3$ $P(w_2) = 2/3$ $\sigma = 1$. There are 25 unlabeled datapoints DATA SCATTERGRAM $x_1 = 0.608$ $x_2 = -1.590$ $x_3 = 0.235$ $x_4 = 3.949$ 4 -2 ٥ 2 $x_{25} = -0.712$ Copyright © 2001, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 12

Unsupervised Learning:

Mediumly Good News

Can we define $P(x_1, x_2, .., x_n | \mu_p, \mu_2, .., \mu_k)$?

[YES, IF WE ASSUME THE X1'S WERE DRAWN INDEPENDENTLY]

Copyright © 2001, Andrew W. Moore

Copyright © 2001, Andrew W. Moore

Clustering with Gaussian Mixtures: Slide 17

Computing					
$P(A) = \frac{1}{2} P(B) = \mu P(C) = 2\mu P(D) = \frac{1}{2} P(2)^{-3}\mu$ $P(a,b,c,d \mid \mu) = K(\frac{1}{2})^{-3}(\mu)^{0}(2\mu)^{-1}(\frac{1}{2}-3\mu)^{-d}$					
$ \begin{array}{l} \log P(a,b,c,d \mid \mu) = \log K + a \log \frac{1}{2} + b \log \mu + d \log 2\mu + d \log \left(\frac{1}{2} - 3\mu\right) \\ \text{FOR MAX LIKE } \mu, \text{SET } \frac{\partial \text{LogP}}{\partial \mu} = 0 \end{array} $					
$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$					
Gives max like $\mu = \frac{b+c}{6(b+c+d)}$					
So if class got	A 14	B 6	C 9	D 10	
Max like $\mu = \frac{1}{10}$					
Copyright © 2001, Andrew W. Moore				Clustering with Gaussian Mixtures: Slide	19

What you should know

• How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data.

- Be happy with this kind of probabilistic analysis.
- Understand the two examples of E.M. given in these notes.

For more info, see Duda + Hart. It's a great book. There's much more in the book than in your handout.

Copyright © 2001, Andrew W. Moore

Clustering with Gaussian Mixtures: Slide 45

Other unsupervised learning methods

- K-means (see next lecture)
- Hierarchical clustering (e.g. Minimum spanning trees) (see next lecture)
- Principal Component Analysis
 simple, useful tool
- Non-linear PCA
 Neural Auto-Associators
 Locally weighted PCA
 Others...

yright © 2001, Andrew W. Moore

Clustering with Gaussian Mixtures: Slide 46