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Unsupervised Learning
• You walk into a bar.

A stranger approaches and tells you:
“I’ve got data from k classes.  Each class produces 
observations with a normal distribution and variance 
σ2I . Standard simple multivariate gaussian 
assumptions. I can tell you all the P(wi)’s .”

• So far, looks straightforward.
“I need a maximum likelihood estimate of the µi’s .“

• No problem:
“There’s just one thing. None of the data are labeled. I 
have datapoints, but I don’t know what class they’re 
from (any of them!)

• Uh oh!!
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Some data from a GMM
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The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector µi

µ1

µ2

µ3
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The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I

Assume that each datapoint is 
generated according to the 
following recipe: 

µ1

µ2

µ3
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The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(ωi).

µ2
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The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(ωi).

2. Datapoint ~ N(µi, σ2I )

µ2

x
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The General GMM assumption

µ1

µ2

µ3

• There are k components. The 
i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix Σi 

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(ωi).

2. Datapoint ~ N(µi, Σi )
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Unsupervised Learning:
not as hard as it looks

and sometimes                  
in between

Sometimes impossible

Sometimes easy
IN CASE YOU’RE 
WONDERING WHAT 
THESE DIAGRAMS ARE, 
THEY SHOW 2-d 
UNLABELED DATA (X
VECTORS) 
DISTRIBUTED IN 2-d 
SPACE. THE TOP ONE 
HAS THREE VERY 
CLEAR GAUSSIAN 
CENTERS
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Computing likelihoods in 
unsupervised case

We have x1 , x2 , … xN

We know P(w1) P(w2) .. P(wk)
We know σ

P(x|wi, µi, … µk) = Prob that an observation from class 
wi would have value x given class 
means µ1… µx

Can we write an expression for that?
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likelihoods in unsupervised case

We have x1  x2 … xn
We have P(w1) .. P(wk).  We have σ.
We can define, for any x , P(x|wi , µ1, µ2 .. µk)

Can we define P(x | µ1, µ2 .. µk) ?

Can we define P(x1, x2, .. xn | µ1, µ2 .. µk) ?

[YES, IF WE ASSUME THE X1’S WERE DRAWN INDEPENDENTLY]
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Unsupervised Learning:
Mediumly Good News

We now have a procedure s.t. if you give me a guess at µ1, µ2 .. µk,

I can tell you the prob of the unlabeled data given those µ‘s.

Suppose x‘s are 1-dimensional.

There are two classes; w1 and w2

P(w1) = 1/3     P(w2) = 2/3     σ = 1 .

There are 25 unlabeled datapoints

x1 =  0.608
x2 = -1.590
x3 = 0.235
x4 = 3.949

:
x25 = -0.712

(From Duda and Hart)
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Graph of 
log P(x1, x2 .. x25 | µ1, µ2 )

against µ1 (→) and µ2 (↑)

Max likelihood = (µ1 =-2.13, µ2 =1.668)

Local minimum, but very close to global at (µ1 =2.085, µ2 =-1.257)*

* corresponds to switching w1 + w2.

Duda & Hart’s 
Example
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Duda & Hart’s Example
We can graph the 

prob. dist. function 
of data given our 
µ1 and µ2
estimates.

We can also graph the 
true function from 
which the data was 
randomly generated.

• They are close.  Good.

• The 2nd solution tries to put the “2/3” hump where the “1/3” hump should 
go, and vice versa.

• In this example unsupervised is almost as good as supervised.  If the x1 .. 
x25 are given the class which was used to learn them, then the results are 
(µ1=-2.176, µ2=1.684).  Unsupervised got (µ1=-2.13, µ2=1.668). 
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Finding the max likelihood µ1,µ2..µk
We can compute  P( data | µ1,µ2..µk)
How do we find the µi‘s which give max. likelihood?

• The normal max likelihood trick:
Set  ∂ log Prob (….) = 0

∂ µi

and solve for µi‘s.
# Here you get non-linear non-analytically-
solvable equations

• Use gradient descent
Slow but doable

• Use a much faster, cuter, and recently very popular 
method…
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Expectation 
Maximalization
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The E.M. Algorithm

• We’ll get back to unsupervised learning soon.
• But now we’ll look at an even simpler case with 

hidden information.
• The EM algorithm

Can do trivial things, such as the contents of the next 
few slides.
An excellent way of doing our unsupervised learning 
problem, as we’ll see.
Many, many other uses, including inference of Hidden 
Markov Models (future lecture).

DETOUR
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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class 

there were
a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Computing
P(A) = ½ P(B) = µ P(C) = 2µ P(D) = ½-3µ

P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)
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Same Problem with Hidden Information
Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                                 = c
Number of D’s                                 = d

What is the max. like estimate of µ now?

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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Same Problem with Hidden Information
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Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                                 = c
Number of D’s                                 = d

What is the max. like estimate of µ now?

We can answer this question circularly:

EXPECTATION

MAXIMIZATION

If we know the value of µ we could compute the 
expected value of a and b

If we know the expected values of a and b
we could compute the maximum likelihood 
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem
We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to 
improve our estimates of  µ and a and b.

Define    µ(t)  the estimate of µ on the t’th iteration
b(t)  the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
• Convergence proof based on fact that Prob(data | µ) must increase or 

remain same between each iteration [NOT OBVIOUS]

• But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

3.1870.09486

3.1870.09485

3.1870.09484

3.1850.09473

3.1580.09372

2.8570.08331

000

b(t)µ(t)tIn our example, 
suppose we had

h = 20
c = 10
d = 10

µ(0) = 0

Convergence is generally linear: error 
decreases by a constant factor each time 
step.
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Back to Unsupervised Learning of 
GMMs

Remember:
We have unlabeled data x1 x2 … xR

We know there are k classes
We know P(w1) P(w2) P(w3) … P(wk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk) 
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E.M. for GMMs
( )

( )

( )∑

∑

=

==

=
∂
∂

R

i
kij

i

R

i
kij

j

k
i

xwP

xxwP

1
1

1
1

1

µ...µ,

µ...µ,
  µ

j,each for  ,likelihoodMax For " :into  this turnsalgebracrazy n' wild'Some

0µ...µdataobPrlog
µ

   know  welikelihoodMax For 

This is  n  nonlinear equations in µj’s.”

…I feel an EM experience coming on!!

If, for each xi we knew that for each wj the prob that µj was in class wj is
P(wj|xi,µ1…µk)   Then… we would easily compute µj.

If we knew each µj then we could easily compute P(wj|xi,µ1…µj) for each wj
and xi.
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E.M. for GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1(t), µ2(t) … µc(t) }

E-step
Compute “expected” classes of all datapoints for each class
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M-step.  
Compute Max. like µ given our data’s class membership distributions
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Just evaluate 
a Gaussian at 
xk
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E.M. 
Convergence

• This algorithm is REALLY USED.  And 
in high dimensional state spaces, too.  
E.G. Vector Quantization for Speech 
Data

• As with all EM 
procedures, 
convergence to a 
local optimum 
guaranteed.
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1(t), µ2(t) … µc(t), Σ1(t), Σ2(t) … Σc(t), p1(t), p2(t) … pc(t) }

E-step
Compute “expected” classes of all datapoints for each class
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M-step.  
Compute Max. like µ given our data’s class membership distributions

pi(t) is shorthand 
for estimate of 
P(ωi) on t’th 
iteration
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Just evaluate 
a Gaussian at 
xk
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Gaussian 
Mixture 

Example: 
Start

Advance apologies: in Black 
and White this example will be 

incomprehensible

Copyright © 2001, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 30

After first 
iteration
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After 2nd 
iteration
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After 3rd 
iteration
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After 4th 
iteration
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After 5th 
iteration
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After 6th 
iteration
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After 20th 
iteration
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Some Bio 
Assay 
data

Copyright © 2001, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 38

GMM 
clustering 

of the 
assay data
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Resulting 
Density 

Estimator
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Three 
classes of 
assay
(each learned with 
it’s own mixture 
model)
(Sorry, this will again be 
semi-useless in black and 
white)
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Resulting 
Bayes 
Classifier
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Resulting Bayes 
Classifier, using 
posterior 
probabilities to 
alert about 
ambiguity and 
anomalousness

Yellow means 
anomalous

Cyan means 
ambiguous
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Unsupervised learning with symbolic 
attributes

It’s just a “learning Bayes net with known structure but 
hidden values” problem.
Can use Gradient Descent.

EASY, fun exercise to do an EM formulation for this case too.

# KIDS

MARRIED

NATION

missing
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Final Comments
• Remember, E.M. can get stuck in local minima, and 

empirically it DOES.
• Our unsupervised learning example assumed P(wi)’s 

known, and variances fixed and known.  Easy to 
relax this.

• It’s possible to do Bayesian unsupervised learning 
instead of max. likelihood.

• There are other algorithms for unsupervised 
learning. We’ll visit K-means soon. Hierarchical 
clustering is also interesting.

• Neural-net algorithms called “competitive learning”
turn out to have interesting parallels with the EM 
method we saw.
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What you should know
• How to “learn” maximum likelihood parameters 

(locally max. like.) in the case of unlabeled data.

• Be happy with this kind of probabilistic analysis.

• Understand the two examples of E.M. given in these 
notes.

For more info, see Duda + Hart.  It’s a great book.  
There’s much more in the book than in your 
handout.
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Other unsupervised learning 
methods

• K-means (see next lecture)
• Hierarchical clustering (e.g. Minimum spanning 

trees) (see next lecture)
• Principal Component Analysis

simple, useful tool

• Non-linear PCA
Neural Auto-Associators
Locally weighted PCA
Others…


