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Shorthand: We say X ~ N(u,52) to mean “X is distributed as a Gaussian
with parameters p and ¢2”.

In the above figure, X ~ N(100,152)
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The Central Limit Theorem
o If (X, X,, ... X)) are i.i.d. continuous random
variables »
. 1
e Then define z=/(x,,x,,...x, :;fo
i=1

¢ As n-->infinity, p(z)--->Gaussian with mean
E[X;] and variance Var[X]

Somewhat of a justification for assuming
Gaussian noise is common
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Bivariate Gaussians

) X
Write r.v. X = [Y] Then define X ~ N(u,X) to mean

p(x)= ;yexr)(*%(xfu)r = (x-w)
27| 2|1

Where the Gaussian’s parameters are...

M, o’ o,
n= = >
M, o, Oy

Where we insist that  is symmetric non-negative definite

It turns out that E[X] = u and Cov[X] = X. (Note that this is a
resulting property of Gaussians, not a definition)*

*This note rates 7.4 on the pedanticness scale
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Contour Map | _
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2|2V
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expl- 3 (x-p) = (x-p)

Contours defined by
sqrt(8'=18) = constant
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Example

Observe: Mean, Principal axes,
implication of off-diagonal
covariance term, max gradient
zone of p(x)

Common convention: show contour
corresponding to 2 standard
deviations from mean
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Example

-0.0308411 0

S 2

In this example, x and y are almost independent

Copyright © 2001, Andrew W. Moore Gaussians: Slide 10

In this example, x and “x+y” are clearly not independent
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In this example, x and “20x+y” are clearly not independent
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Multivariate Gaussians

Xl
. X,
Write rv. X =| . Then define X ~ N(u,Z) to mean
Xm
- 1 ( 1 Tyl )
P(X)—WCXP—%X—P«) (x—-m)
@m2 |z
Where the Gaussian’s 4 o ‘7122 vt O
parameters have... p= il g |on o2 oy,
Hon Oim Tom ™" a’n

Where we insist that = is symmetric non-negative definite

Again, E[X] = p and Cov[X] = 2. (Note that this is a resulting property of Gaussians, not a definition)
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General Gaussians
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Axis-Aligned Gaussians
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Spherical Gaussians
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Degenerate Gaussians

=" IZ]=0

What's so wrong
with clipping
one’s toenails in
public?

1
Xy
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Where are we now?
o We've seen the formulae for Gaussians
¢ We have an intuition of how they behave

¢ We have some experience of “reading” a
Gaussian’s covariance matrix

¢ Coming next:
Some useful tricks with Gaussians
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Gaussian Marginals (U] _>U
alize

Subsets of variables _
R are Gaussian v
Xl U= : X] XI Xm(u)+1
. X, U Write X = ZlasX = v where U = : V= :
Write X =| > |as X =[ ]where m(u) : A% ’ :
N V m(u)+1 X Xm(u) Xm
X, v=| "
- " (A 2)
\'% p)\x, X,

This will be our standard notation for breaking an m- THEN U is also distributed as a Gaussian

dimensional distribution into subsets of variables
U~Ng,.Z,)
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Gaussian Marginals (UJ _’U

Gaussian Marginals [UJ _’U
ae are Gaussian ~ \V

are Gaussian v

X X
. X, U X Ko . X, U e
Write X = . as X = v where U = cLV= : Write X = . as X = v where U=
i Xm(u) Xm i
X, X, How would you prove
this?
Y B (. Za Y R (Ea Zo
IF ~N L <1 IF ~N L <1
v n)(E, I, e v ) (E, I,
This fact is not p(u)
immediately obvious
THEN U is also distributed as a Gaussian THEN U is also distributed as a Gaussian = Ip(u, v)dv
Obvious, once we know v
U-N@,.x,) = (snore.)

U~N(,.Z,,) it's a Gaussian (why?)
Gaussians: Slide 22

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 21

Copyright © 2001, Andrew W. Moore

i T ‘ Matyix 4 Adding samples of 2
Inear lransrorms Witiply|—AX independent Gaussians y _, .

remain Gaussian is Gaussian Yy —

Assume X is an m-dimensional Gaussian r.v. if X~ N(HX, Zx )and Y~ N(}ly, Zy )and X1lY
X~N(g,X)

then X+Y ~N(u, +p,,E, +Z )

Define Y to be a p-dimensional r. v. thusly (note p <m):

Why doesn't this hold if X and Y are dependent?

Which of the below statements is true?
If X and Y are dependent, then X+Y is Gaussian but possibly
with some other covariance
If X and Y are dependent, then X+Y might be non-Gaussian

Y = AX
...where A is a p x m matrix. Then...

Y~ N(Ap,AZ A7)
Note: the “subset” result is
a special case of this result
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Co_ndit_ional of _ [U] —>U|V
Gaussian is Gaussian \V

U w(Z. Z.
IF ~N | [owety e p————
A pJ)\Z, I, (e e

THEN U|V~N(,,,Z,, )where

R, =B, +EZLEN(V -p,)

L, =L, L,L.Z,

uly w
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U X, X 2977 : oo
IF (M) (B B E ()N (8400 -967
v nS\ZL oz, y 76 S\ -967 3.68°

THEN U|V~N(g,,,Z,, Jwhere THEN wly~N,,, I, ) where

. 976(y —76
B=w, FELE(V-p) S
b= FELE IV o, : i
2
z, =%, - )%, x,, =849° - 27 _gog?
! 3.68°
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U £, T 2977 :
IF [P (B B F (M)en (8490 -967
v nJ\Z, I, y 76 J{-967 3.68
THEN U|V~N(,,.Z, )where THEN w|y~Nlu,, L, )where

~ 976(y —76)
Ry =0, + EZ‘\‘Z\‘\“(V -n,) Ry = 2977 - 3 682
%, -L,-ELE'E, x,, =8497 - 20T _gog2
! 3.68°

P(w|m=82)

| P(w|m=76)

| P(w)
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w)  ((2977)\ (849> -9 7]]

Note: when given value of !
v is u,, the conditional
mean of u is u,

n,, =2977=

B, =0, FELEN(V -p,) —
,=X, -X'x'% i . .
ulv 7\ S Note: marginal mean is

P (GIE )

THEN U|V~N(n,,,Z,, where

a linear function of v

mee] b ! >~ I
: F"i__—/ Note: conditional wlm=82)

= variance can only be
B _-| equal to or smaller than | P(w|m=76)
=7 marginal variance

Note: conditional
variance is independent
of the given value of v

| P(w)
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Gaussians and the - [om
chain rule Ve *([VJJ

Let A be a constant matrix

IF U|V~N(AV,Z, Jand V~N(u,,X,)

THEN (Sj ~N(p, ), with

An, AZ, AT+E, AL,
p= Y= .
", (AL,) z,
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Copyright © 2001, Andrew W. Moore

Available Gaussian tools

v | v |~ (-
Matrix 4

X —>AX IFX~N(i,E) AND Y=AX THEN Y~ N(Ap,AZA”)

if X~N(n,,E,)and Y~ N(p X Jand X L Y
X 4+ Y| then X+Y~N, +p,.2 +X))

o G e

where p =p, +ZLEI(V-p)

i D THEN U~N(p,.X,,)

Z,=Z,-Z . %

u|v > U) F UIV-NAV,E, Jand V~N(g,.E,)
>
v — [Rule (V] THEN [U]~N(p,2)‘wilh z:(AZ“AT*Em AEH)
v (AZ,)’ Z,
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Assume...

¢ You are an intellectual snob
¢ You have a child
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Intellectual snobs with children

e ...are obsessed with IQ

¢ In the world as a whole, IQs are drawn from
a Gaussian N(100,152)

p(x) 0.025]
0.015]]
0.005]
40 60 80 100 120 140 160
X

IQ tests

o If you take an IQ test you'll get a score that,
on average (over many tests) will be your
IQ

» But because of noise on any one test the
score will often be a few points lower or
higher than your true IQ.

SCORE | IQ ~ N(IQ,102)
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Assume...
e You drag your kid off to get tested
e She gets a score of 130

* “Yippee" you screech and start deciding how
to casually refer to her membership of the
top 2% of IQs in your Christmas newsletter.

pix) 0,025

/

0,015

o . P(X<130|u=100,02=15?) =

0.005 i U
40 B0 &0 100 120 140 180
P(X<2| p=0,02=1) =

/ 4 erf(2) = 0.977
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You are thinking:

Well sure the test isn't accurate, so
she might have an IQ of 120 or she
might have an 1Q of 140, but the
most likely IQ given the evidence
“score=130" is, of course, 130.

pix) 0,025

0,015

,0?=1) =

erf(2) = 0.9%7
Can we trust

this reasoning?
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Maximum Likelihood IQ
IQ~N(100,152)
S|IQ ~ N(IQ, 10?)
e S=130

10™ = arg max p(s =130]iq)
iq

The MLE is the value of the hidden parameter that
makes the observed data most likely

¢ In this case

0™ =130
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BUT....

IQ~N(100,152)
S|1Q ~ N(IQ, 102)
. 5=130

IQ™ = arg max p(s =130 |iq)
iq

The MLE is the value of the hidden parameter that
makes the observed data most likely
e In this case This is not the same as

“The most likely value of the

10" =130 parameter given the observed
data”
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What we really want:
IQ~N(100,152)
S|IQ ~ N(IQ, 102)
e S=130

e Question: What is
IQ | (5=130)?

Called the Posterior
Distribution of IQ
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Which tool or tools?

o IQ~N(100,152) (U] Margin-|_, {;
* S|IQ ~ N(IQ, 10?) v

Matrix A
e S=130
X —>{Multiply | —»AX

* Question: What is X — X+Y
IQ | (5=130)? Y —
(o
\% alize
U|V = |chain| U
v —> | Rule v
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Plan

IQ~N(100,152)
SIIQ ~ N(IQ, 10%)
* S=130

Question: What is
IQ | (5=130)?

10 —> |Rule 10 S alize
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D T

Worki v
orking... .z

IQ~N(100,152)

SIIQ ~ N(IQ, 10%) IF U|V~N(AV.Z, Jand V~N(g,.E,)

S=130 R
AL AT+E

U
THEN (VJ~N(M.E).with 2:[ Eu Azn]
Question: What is IQ | (S=130)? (AX,) I,

Bigs =Mig + Zig(Zig + Egig) ™ (- Iyg)
Z'IQIS - ZIQ + ZIQ(EIQ + ZS\IQ)-IZIQ

What happens when Zgq = 0? Zg;q = %?
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That was an important result!
It explains how to combine noisy
measurements (sensor fusion)
So I will do it again in 1D

Copyright © 2001, Andrew W. Moore Gaussians: Slide 42




Combining Measurements: 1D
True value x
Measurements m;, m2: E(m;-x) = 0, Var(m,) = ¢,%,
E(m,-x) = 0, Var(m,) = c,2, independent
Linear estimate x =k;m; + k,m,
Unbiased estimate means k, = 1 - k; so E(x) = x
Minimize Var(x) = k20,2 + (1 —k;)? 6,2
So oVar(x)/ok, =0 -> 2k,(c,2 + 6,2 - 26,2=0
So k; = 6,%/(0,2 + 5,2), k; = 6,%/(c,2 + 5,2)
So Var(x) = 6,2 6,%/(c,2 + 5,%)
What happens when c,2 = 0? 5,2 = infinity?
BLUE: Best Linear Unbiased Estimator
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Your pride and joy's posterior IQ

e If you did the working, you now have
p(IQ|S=130)

¢ This is a density, not a number!

¢ If you have to give the most likely IQ given
the score you should give
10" =arg max plig|s=130)

e This is the mean for a Gaussian

e MAP means “Maximum A-posteriori”
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What you should Know

¢ The Gaussian PDF formula off by heart

¢ Understand the workings of the formula for
a Gaussian

¢ Be able to understand the Gaussian tools
described so far

* Have a rough idea of how you could prove
them

¢ Be happy with how you could use them
¢ Understand the Bayesian approach to
combining information
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