

The Central Limit Theorem

- If $(X_1, X_2, ... X_n)$ are i.i.d. continuous random variables
- Then define $z = f(x_1, x_2, ... x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$
- As n-->infinity, p(z)--->Gaussian with mean E[X_i] and variance Var[X_i]

Somewhat of a justification for assuming Gaussian noise is common

Copyright © 2001, Andrew W. Moore Gaussians: Slide 5

Bivariate Gaussians

Write r.v. $\mathbf{X} = \begin{pmatrix} X \\ Y \end{pmatrix}$ Then define $X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ to mean

$$p(\mathbf{x}) = \frac{1}{2\pi \|\mathbf{\Sigma}\|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right)$$

Where the Gaussian's parameters are..

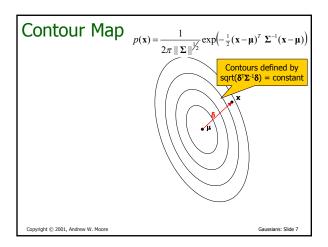
$$\boldsymbol{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{xy} & \sigma^2_y \end{pmatrix}$$

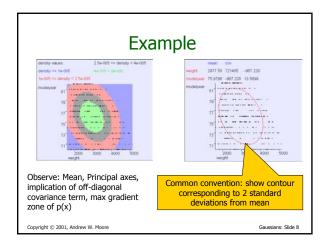
Where we insist that ${f \Sigma}$ is symmetric non-negative definite

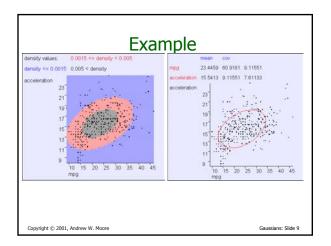
It turns out that $E[X] = \mu$ and $Cov[X] = \Sigma$. (Note that this is a resulting property of Gaussians, not a definition)*

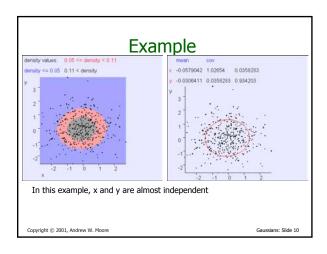
*This note rates 7.4 on the pedanticness scale

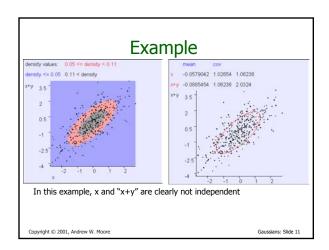
Copyright © 2001, Andrew W. Moore

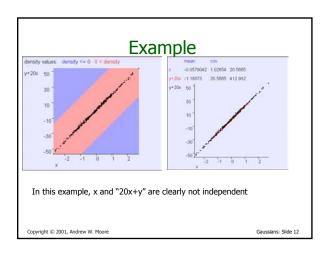












Multivariate Gaussians

Write r.v.
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$$
 Then define $X \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ to mean

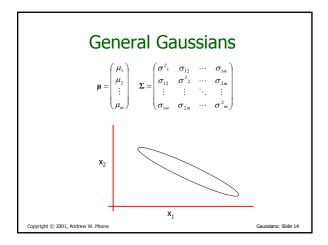
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m_2}{2}} \|\mathbf{\Sigma}\|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Where the Gaussian's parameters have...

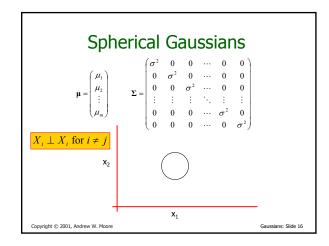
$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\sigma}^2_1 & \boldsymbol{\sigma}_{12} & \cdots & \boldsymbol{\sigma}_{1m} \\ \boldsymbol{\sigma}_{12} & \boldsymbol{\sigma}^2_2 & \cdots & \boldsymbol{\sigma}_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\sigma}_{1m} & \boldsymbol{\sigma}_{2m} & \cdots & \boldsymbol{\sigma}^2_m \end{pmatrix}$$

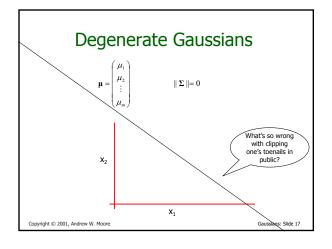
Where we insist that $\boldsymbol{\Sigma}$ is symmetric non-negative definite

Again, $E[X] = \mu$ and $Cov[X] = \Sigma$. (Note that this is a resulting property of Gaussians, not a definition) Copyright © 2001, Andrew W. Moore Gaussians: Slide I



Axis-Aligned Gaussians $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix} \Sigma = \begin{pmatrix} \sigma^2_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^2_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^2_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^2_{m-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^2_m \end{pmatrix}$ $X_1 \perp X_i \text{ for } i \neq j$ X_2 $X_1 = \begin{bmatrix} X_1 \perp X_i & \text{for } i \neq j \\ X_2 \end{bmatrix}$ $X_2 = \begin{bmatrix} \sigma^2_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^2_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^2_{m-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^2_m \end{bmatrix}$ Gaussians: Slide 15





Where are we now?

- We've seen the formulae for Gaussians
- We have an intuition of how they behave
- We have some experience of "reading" a Gaussian's covariance matrix
- Coming next:

Some useful tricks with Gaussians

Copyright © 2001, Andrew W. Moore

Subsets of variables

Write
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$$
 as $\mathbf{X} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix}$ where $\begin{pmatrix} \mathbf{V} \\ \vdots \\ X_{m(u)} \end{pmatrix}$ $\mathbf{V} = \begin{pmatrix} X_{1} \\ \vdots \\ X_{m(u)+1} \\ \vdots \\ X_m \end{pmatrix}$

This will be our standard notation for breaking an mdimensional distribution into subsets of variables

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 19

Gaussian Marginals (v) are Gaussian

$$\text{Write } \mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix} \text{as } \mathbf{X} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \text{where } \mathbf{U} = \begin{pmatrix} X_1 \\ \vdots \\ X_{m(u)} \end{pmatrix}, \mathbf{V} = \begin{pmatrix} X_{m(u)+1} \\ \vdots \\ X_m \end{pmatrix}$$

IF
$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} \begin{pmatrix} \mathbf{\mu}_{u} \\ \mathbf{\mu}_{v} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{uu} & \boldsymbol{\Sigma}_{uv} \\ \boldsymbol{\Sigma}_{uv}^{T} & \boldsymbol{\Sigma}_{w} \end{pmatrix}$$

THEN U is also distributed as a Gaussian

$$U \sim N(\mu_u, \Sigma_{uu})$$

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 20

Gaussian Marginals $\begin{pmatrix} \mathbf{U} \\ \mathbf{v} \end{pmatrix} \rightarrow \begin{bmatrix} \mathbf{Margin-alize} \\ \mathbf{alize} \end{bmatrix}$ are Gaussian

Write
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}$$
 as $\mathbf{X} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix}$ where $\mathbf{U} = \begin{pmatrix} X_1 \\ \vdots \\ X_{m(u)} \end{pmatrix}$, $\mathbf{V} = \begin{pmatrix} X_{m(u)+1} \\ \vdots \\ X_m \end{pmatrix}$

IF
$$\begin{pmatrix} \mathbf{U} \\ \mathbf{V} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_{u} \\ \boldsymbol{\mu}_{v} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{uu} & \boldsymbol{\Sigma}_{uv} \\ \boldsymbol{\Sigma}_{uv}^{T} & \boldsymbol{\Sigma}_{vv} \end{pmatrix}$$

This fact is not immediately obvious THEN U is also distributed as a Gaussian

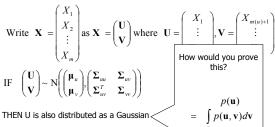
 $U \sim N(\mu_u, \Sigma_{uu})$

Copyright © 2001, Andrew W. Moore

Obvious, once we know

it's a Gaussian (why?)

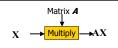
Gaussian Marginals $\binom{U}{V}$ Marginalize are Gaussian



 $U \sim N\big(\mu_{_{\mathit{u}}}, \Sigma_{_{\mathit{uu}}}\big)$ Copyright © 2001, Andrew W. Moore

(snore...)

Linear Transforms remain Gaussian



Assume X is an m-dimensional Gaussian r.v.

$$X \sim N(\mu, \Sigma)$$

Define Y to be a p-dimensional r. v. thusly (note $p \le m$):

$$Y = AX$$

...where A is a p x m matrix. Then...

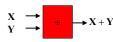
$$\mathbf{Y} \sim \mathbf{N} (\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^T)$$

Note: the "subset" result is a special case of this result

Convright © 2001, Andrew W. Moore

Gaussians: Slide 23

Adding samples of 2 independent Gaussians $X \rightarrow X+Y$



if
$$X \sim N(\mu_x, \Sigma_x)$$
 and $Y \sim N(\mu_y, \Sigma_y)$ and $X \perp Y$

then
$$X + Y \sim N(\mu_x + \mu_y, \Sigma_x + \Sigma_y)$$

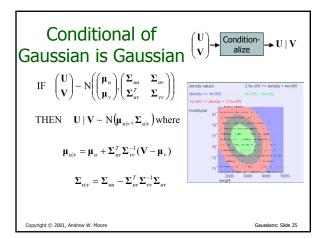
Why doesn't this hold if X and Y are dependent?

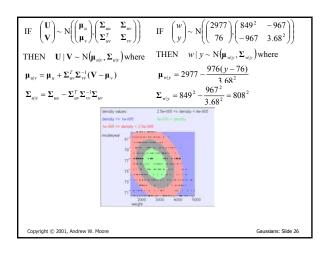
Which of the below statements is true?

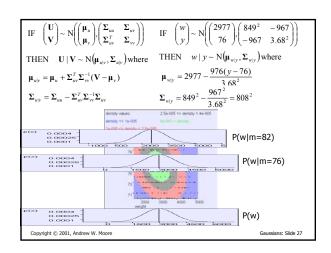
If X and Y are dependent, then X+Y is Gaussian but possibly with some other covariance

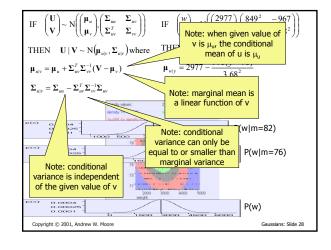
If X and Y are dependent, then X+Y might be non-Gaussian

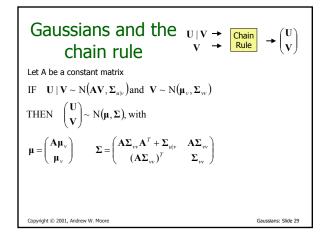
Convright © 2001, Andrew W. Moore

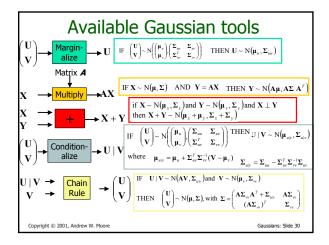












Assume...

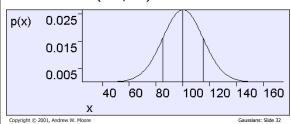
- · You are an intellectual snob
- · You have a child

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 31

Intellectual snobs with children

- ...are obsessed with IQ
- In the world as a whole, IQs are drawn from a Gaussian N(100,15²)



IQ tests

- If you take an IQ test you'll get a score that, on average (over many tests) will be your IQ
- But because of noise on any one test the score will often be a few points lower or higher than your true IQ.

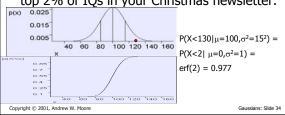
SCORE | IO $\sim N(IO, 10^2)$

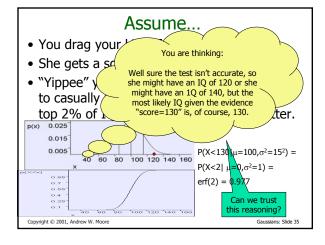
Copyright © 2001, Andrew W. Moore

aussians: Slide

Assume...

- You drag your kid off to get tested
- She gets a score of 130
- "Yippee" you screech and start deciding how to casually refer to her membership of the top 2% of IQs in your Christmas newsletter.





Maximum Likelihood IQ

- IQ~N(100,152)
- S|IQ ~ N(IQ, 10²)
- S=130

$$IQ^{mle} = \arg\max_{s} p(s = 130 \mid iq)$$

- The MLE is the value of the hidden parameter that makes the observed data most likely
- In this case

$$IQ^{mle} = 130$$

Copyright © 2001, Andrew W. Moore

BUT....

- IQ~N(100,15²)
- $S|IQ \sim N(IQ, 10^2)$
- S=130

$$IQ^{mle} = \arg\max_{iq} p(s = 130 \mid iq)$$

- The MLE is the value of the hidden parameter that makes the observed data most likely
- In this case

$$IQ^{mle} = 130$$

This is **not** the same as "The most likely value of the parameter given the observed data"

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 37

What we really want:

- IQ~N(100,152)
- S|IQ ~ N(IQ, 10²)
- S=130
- Question: What is IQ | (S=130)?

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 38

Which tool or tools?

- IQ~N(100,15²)
- S|IQ ~ N(IQ, 10^2)
- S=130
- Question: What is IQ | (S=130)?
- $\begin{array}{c} V \\ & \text{alize} \\ & \text{Matrix } A \\ X \\ & \text{Multiply} \\ & \text{AX} \\ X \\ & \text{Y} \\ & \text{\longrightarrow} \\ & \text{Y} \\ & \text{Y} \\ \end{array}$
- $\begin{pmatrix} U \\ V \end{pmatrix} \rightarrow \boxed{ \begin{array}{c} \text{Condition-} \\ \text{alize} \end{array} } \rightarrow U \mid V$
- $\begin{array}{ccc} U \mid V & \xrightarrow{} & \begin{array}{c} \text{Chain} \\ V & \xrightarrow{} & \begin{array}{c} \text{Rule} \end{array} \end{array} \rightarrow \begin{pmatrix} U \\ V \end{pmatrix}$

Copyright © 2001, Andrew W. Moore

Plan

- IQ~N(100,152)
- $S|IQ \sim N(IQ, 10^2)$
- S=130
- Question: What is IQ | (S=130)?

Copyright © 2001, Andrew W. Moore Gaussians: Slide 40

Working...

$$\begin{split} \mathrm{IF} & \left(\begin{matrix} \mathbf{U} \\ \mathbf{V} \end{matrix} \right) \sim N \! \left(\! \left(\begin{matrix} \boldsymbol{\mu}_{\scriptscriptstyle{H}} \\ \boldsymbol{\mu}_{\scriptscriptstyle{V}} \end{matrix} \right) \! \left(\begin{matrix} \boldsymbol{\Sigma}_{\scriptscriptstyle{\mathrm{BF}}} & \boldsymbol{\Sigma}_{\scriptscriptstyle{\mathrm{BF}}} \\ \boldsymbol{\Sigma}_{\scriptscriptstyle{\mathrm{TF}}}^T & \boldsymbol{\Sigma}_{\scriptscriptstyle{\mathrm{VV}}} \end{matrix} \right) \! \right) \mathrm{THEN} \\ & \boldsymbol{\mu}_{\scriptscriptstyle{\mathrm{BF}}} = \boldsymbol{\mu}_{\scriptscriptstyle{\mathrm{H}}} + \boldsymbol{\Sigma}_{\scriptscriptstyle{\mathrm{BF}}}^{-1} \boldsymbol{\Sigma}_{\scriptscriptstyle{\mathrm{VV}}}^{-1} (\mathbf{V} - \boldsymbol{\mu}_{\scriptscriptstyle{\mathrm{V}}}) \end{split}$$

 $IQ \sim N(100,15^2)$ $S|IQ \sim N(IQ, 10^2)$ S=130

Question: What is IQ | (S=130)?

$$\begin{split} & \text{IF} \quad U \mid V \sim N \Big(AV, \, \boldsymbol{\Sigma}_{_{\boldsymbol{W}^{\boldsymbol{U}}}} \Big) \text{and} \quad V \sim N \big(\boldsymbol{\mu}_{_{\boldsymbol{V}}}, \, \boldsymbol{\Sigma}_{_{_{\boldsymbol{W}}}} \big) \\ & \text{THEN} \quad \begin{pmatrix} \boldsymbol{U} \\ \boldsymbol{V} \end{pmatrix} \sim N \big(\boldsymbol{\mu}, \, \boldsymbol{\Sigma} \big), \, \text{with} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{A}\boldsymbol{\Sigma}_{_{\boldsymbol{W}}} \boldsymbol{A}^{\mathcal{T}} + \boldsymbol{\Sigma}_{_{\boldsymbol{W}^{\boldsymbol{U}}}} & \boldsymbol{A}\boldsymbol{\Sigma}_{_{_{\boldsymbol{W}}}} \\ (\boldsymbol{A}\boldsymbol{\Sigma}_{_{\boldsymbol{W}}})^{\mathcal{T}} & \boldsymbol{\Sigma}_{_{_{\boldsymbol{W}}}} \end{pmatrix} \end{split}$$

 $\mu_{\mathrm{IQ}|S} = \mu_{\mathrm{IQ}} + \Sigma_{\mathrm{IQ}} (\Sigma_{\mathrm{IQ}} + \Sigma_{\mathrm{S}|\mathrm{IQ}})^{\text{--1}} (s - \mu_{\mathrm{IQ}})$

 $\boldsymbol{\Sigma}_{\mathrm{IQ}|\mathrm{S}} = \boldsymbol{\Sigma}_{\mathrm{IQ}} + \boldsymbol{\Sigma}_{\mathrm{IQ}} (\boldsymbol{\Sigma}_{\mathrm{IQ}} + \boldsymbol{\Sigma}_{\mathrm{S}|\mathrm{IO}})^{\text{-}1} \boldsymbol{\Sigma}_{\mathrm{IO}}$

What happens when $\Sigma_{S|IQ}$ = 0? $\Sigma_{S|IQ}$ = ∞ ?

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 41

That was an important result!
It explains how to combine noisy measurements (sensor fusion)
So I will do it again in 1D

Copyright © 2001, Andrew W. Moore

Combining Measurements: 1D

- True value x
- Measurements m_1 , m2: $E(m_1-x) = 0$, $Var(m_1) = \sigma_1^2$, $E(m_2-x) = 0$, $Var(m_2) = \sigma_2^2$, independent
- Linear estimate $x = k_1 m_1 + k_2 m_2$
- Unbiased estimate means k₂ = 1 k₁ so E(x) = x
- Minimize $Var(x) = k_1^2 \sigma_1^2 + (1 k_1)^2 \sigma_2^2$
- So $\partial Var(x)/\partial k_1 = 0 \rightarrow 2k_1(\sigma_1^2 + \sigma_2^2) 2\sigma_2^2 = 0$
- So $k_1 = \sigma_2^2/(\sigma_1^2 + \sigma_2^2)$, $k_2 = \sigma_1^2/(\sigma_1^2 + \sigma_2^2)$
- So $Var(x) = \sigma_1^2 \sigma_2^2 / (\sigma_1^2 + \sigma_2^2)$
- What happens when $\sigma_2^2 = 0$? $\sigma_2^2 = infinity$?
- · BLUE: Best Linear Unbiased Estimator

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 43

Your pride and joy's posterior IQ

- If you did the working, you now have p(IQ|S=130)
- This is a density, not a number!
- If you have to give the most likely IQ given the score you should give

$$IQ^{map} = \arg\max_{i} p(iq \mid s = 130)$$

- This is the mean for a Gaussian
- MAP means "Maximum A-posteriori"

Copyright © 2001, Andrew W. Moore

Gaussians: Slide 44

What you should know

- The Gaussian PDF formula off by heart
- Understand the workings of the formula for a Gaussian
- Be able to understand the Gaussian tools described so far
- Have a rough idea of how you could prove them
- Be happy with how you could use them
- Understand the Bayesian approach to combining information

Copyright © 2001, Andrew W. Moore