Planning using dynamic
optimization

© Chris Atkeson 2004

Problem characteristics

« Want optimal plan, not just feasible plan

* We will minimize a cost function
C(execution). Some examples:

e C() = c(Xq) + Zc(Xy,u,): deterministic with
explicit terminal cost function

o C() = E(c(Xq) + Zc(Xy,uy)): stochastic

Examples

« A number of us are currently working on
humanoid locomotion. We would like the
humanoid to be able to walk, run, vary
speed, turn, sit, get up from a chair,
handle steps, kick a ball, avoid obstacles,
handle rough terrain, ... [movies]

* The next assignment will be to write a
controller for a marble maze game.

Dynamic Optimization

* General methodology is dynamic

programming (DP).

We will talk about ways to apply DP.

* Requirement to represent all states, and
consider all actions from each state, lead
to “curse of dimensionality”: R,9R ¢

We will talk about special purpose solution
methods.

Dynamic Optimization Issues
Discrete vs. continuous states and actions?
Discrete vs. continuous time?

Globally optimal?

Stochastic vs. deterministic?
Clocked vs. autonomous?

What should be optimized, anyway?

Policies vs. Trajectories

u(t) open loop trajectory control

o U = Uug(t) + K(x — x4(t)) closed loop
trajectory control

* u(x) policy

Types of tasks

* Regulator tasks: want to stay at x4

* Trajectory tasks: go from Ato B intime T,

or attain goal set G

* Periodic tasks: cyclic behavior such as
walking

Typical reward functions

* Minimize error
¢ Minimum time
¢ Minimize tradeoff of error and effort

Example: Pendulum Swingup

. State: x=(8,6)
» Action: u=(7)
e Cost: X' Qx+Uu"Ru

b

Possifle Trajectories |

Global Planning Using Dynamic Programming

17
Swas)
%
7
X

|
—1 - ~ ——1
F , -
] NS __.l_._i_"_. i
AN
N
b || G _
: 0 |
|] |
| | |
S | I N B
|
[
B I | |
1 |
Ly
SR iy } The Policy

R
R

B: Policy u=P(x)

Trajectories

Discrete Dynamic Programming

How to do discrete deterministic DP
(specified time)

* Dynamics: X,,; = f(x,,u,)

» Cost: C() = c(X7) + Zc(Xy,Uy)

* Value function V,(x) is represented by table.

* Vi(x) = c1(x)

* For each x, V,(x) = min,(c(x,u) + V,,,(f(x,u)))

« This is Bellman’s Equation

* This version of DP is value iteration

+ Can also tabulate policy: u = m,(x)

How to do discrete deterministic DP
(no specified time)

Cost: C() = Zc(Xy,Uy)

* V\(X) = a guess, or all zeros.

< Apply Bellman’s equation.

* V(x) is given by V,(x) when V stops changing.

Goal needs to have zero cost, or need to
discount so V() does not grow to infinity:

Vi(X) = min,(c(x,u) + Vi (f(x,1))), v < 1

Discrete Policy Iteration
* u = n(X): general policy (a table in discrete
case).
* *) Compute V*(X):
V7(X) = c(x,m(X)) + V7, (f(x, (X))
 Update policy n(x) = argmin,(c(x,u) + V*(f(x,u)))
» Goto *)

Discrete Stochastic DP

» Cost: C() = ZE(C(X,Uy)
Bellman’s equation now involves
expectations:
* Vi) = min E(c(x,u) + Vi, (f(x,u)))

= minu(C(X,U) + Ep(xk+1)vk+1(xk+1))
Modified Bellman’s equation applies to
value and policy iteration.

¢ May need to add discount factor.

Discrete DP will work for Maze
Assignment

» Can have integral states and actions, and
measure time in steps, so:

* POS,,; = pOS, + vel,

* vel,, = vel + acc,

« Ball has linear dynamics, except at
collisions

* Discrete DP has problems with nonlinear
dynamics

Continuous State/Action DP

* Time is still discrete.

How to handle continuous states

and actions (value iteration)

Discretize value function V()

At each V point (x,), generate trajectory

segment of length N by minimizing C(u) =

Ze(XUy) + V(Xy)

V(xy): interpolate surrounding V()

N typically determined by when V(x)

independent of V(x,)

 Use favorite continuous function optimizer to

search for best u when minimizing C(u)

Update V() at that cell.

State Increment Dynamic
Programming (Larson)

V(o)

Co

State Increment Dynamic Programming

Munos and Moore, Variable
Resolution Discretization in Optimal
Control
Machine Learning, 49 (2/3),
291-323, 2002

Kuhn Triangulation, kd-trie

Kuhn Triangulation in 3D

O

Mountain Car

Current r. =+1 for zero velocity
Reinforcement: r=0 r, =1 for max. velocity
Resistance SL

Boundary \\ d
Reinforcement: <~ Thrust
F=-1 !_/
b . ///

. Gravitation

Ll

wn

Walue function
=

Value Function

F

Veloeity

-1 Position 1]

Discretizations

Policy Iteration: Continuous X, u
Discretize policy:
Each cell in table has constant u, or
u as knot points for linear or higher order spline
*) Same kind of trajectory segments used to
compute V& (X) = Zc(X, (X)) + V1 (Xn)
Optimize policy n(x) = argmin,(c(x,u) +
V7(f(x,u))) using favorite continuous function
optimizer.
« Goto *)

Stochastic DP: Continous X, u
Cost: C() = ZE(C(Xy,Uy))
Do Monte Carlo sampling of process noise for

each trajectory segment (many trajectory
segments), or

Propagate analytic distribution (see Kalman
filter)

Bellman’s equation involves expectations:
Vi(¥) = min E(C(x,U) + Vi (f(x,1)))

Regulator tasks

Examples: balance a pole, move at a constant

velocity

A reasonable starting point is a Linear

Quadratic Regulator (LQR controller)

» Might have nonlinear dynamics X,,; = f(X,u,),
but since stay around x4, can locally linearize
Xirp = AX + Buy

¢ Might have complex scoring function c(x,u), but
can locally approximate with a quadratic model
c~X'Qx + Uu'Ru

« digr() in matlab

LQR Derivation
Assume V() quadratic: V,,;(X) = XTV,r1X
C(x,u) = X"Qx + UTRU + (AX+BU)™V, s, (AXx+BuU)
Want 6C/ou = 0
BTVxx:k+1AX = (BTVxx:kﬂB + R)U
u = Kx (linear controller)
K== (B"V1B + R)'BTV,ppiaA
Vo= ATV, A + Q + ATV, . BK

More general LQR equations
xXp41 = f(x,u) ¥ Ax+Bu+tc

1 1T T, T

L(x,u)zix Qx+5u Ru+x'Su+ti‘u
V(x) zVo+Vxx+%xTszx

u?” = (R4 BTv,zB) 1x
BT VieAx + STx + B Ve + V;B + 1)

Trajectory Optimization (open loop)

Calculus of variations
Multiple shooting

Function optimization
— Represent x(t) and u(t) as splines, knot point vector

— Optimize cost(6) with dynamics x,,,=f(x,,u,) a
constraint or with dynamic error part of cost.

— DIRCOL example of current state of the art.

! phases (index i

cnultipk shooting aodes (inde iy

conmolgHid, one for cach component,

of the contml vecto, compongntindex

conmolapp i, {£.1. cmbic splnes o piecesiise lineat

constaint grilipointiie considertion)|

viohtion of part tonstains at te
a0 des of the cons taintgd

paritE e E ety “design pamras et eontelpammae

5= 5 _ -1 wlt)=w (7,0

Fo= lspin) F=(Fhd g MUERACAY
T ey " b, Th prol’s scbed 0 oreas
programming problem by discretizing state- and control- and functions f discretization grids. parameters

are the states' inital guesses and the control discretization parameters. At phase times, boundary consraints may be enforced. A solution i found when
the defects at the mulliple shooting nodes and allthe (discrelized) constraint violations vanish (see picture).

http://www.robotic.dlr.de/control/space/promis.html

“Desige’ pammeter st and contel ‘parame ervec o

Fe TN Bim o) P Guuoibngp P

Phases (odes 3}

¢ + i
f T T T
i b
Tocation oo des {index 1
sloie fom
E
stimate at estimate at
finode. vightnode, ot and.
e and. conmol
natol defect
hird oxlex Hemmite -pobmomial
. H
blation ofpa <otz int e o tion grid
constaints athe
aodes of fhe
Constrintgrid
constaint grid
TROPIC weatin roblems. The problem is transcribed to a nonlinear programming

problem by discretizing tate- and cortrol- and path consirain functions on a sequence of discretzation grids. The optimization parameters are th sates’
 controls estimates at the colocation grid points. At phase times, boundary consiraints may be enforced. A solution i found when the collocation
defects, measured n the center of the collocation ntervas, and al the (discretized) constrant violations vanish (see picture)

http://www.robotic.dlr.de/control/space/tropic.html

Trajectory Optimization (closed
loop)

« Differential Dynamic Programming (local
approach to DP).

Propagate Value Function V()
Along Trajectories

1
Vi(x) = Vg + Vex + 5x’A”me

Zy = VeA 4 Q(x—xg)
Zu VaB 4+ R(u —uy)
Zee = ATVizA+Q
e BTV,;A + 8
- B'V2:B+ R
K = 7,17
Vi, 1 = Zz— ZuK
Vﬂ’fl’k—l = gz — ZzuK

Trajectory-Based
Dynamic
Programming

Full Trajectories Helps Reduce
Resolution Needed

SIDP Trajectory Based
T —
\
// AN
I Ay
/ Y
Iy
- x —
é H G
.
- x N —
AN AN
\\ [\ L
\ [\\.___ [
O Low resplution version of A I Low lution version of B

An Adaptive Grid Approach

L

Ll

Jrtdog

T
ety 2y 7
7

A: Value function v

E: Adaptive grid representation

Global Planning
Propagate Value Function Across
Trajectories
in Adaptive Grid

Vo, =~ Vo, + Va,(x1 —x2) +

1
E(Xl —x2) 'Vagy (%1 — x2)

Growing the
Explored
Region:
Adaptive
Grids

Bidirectional Search

Bidire(
Search
Closed

Growing the .

Explored \ \
Region: \ N
Spine \
Representation —

E: Adaptive grid representat \ \v/

What Changes When Task
Periodic?

o [« |- [2 Fa A + Discount factor means V() might increase
\ i \ ’ \ \ v \) N along trajectory. V() cannot always
_ | " | 2| k| 4 decrease in periodic tasks.

A periodic system example: Simple harmonic oscillator

Robot Hopper Example

Policy Search

» Parameterized policy u = n(x,6), 0 is vector of
adjustable parameters.

Simplest approach: Run it for a while, and
measure total cost.

Use favorite function optimization approach to
search for best 6.

There are tricks to improve policy comparison,
such as using the same perturbations in
different trials, and terminating trial early if really
bad (racing algorithms).

Policy Search For Structured Policies:
Gradient Descent

I(B] = L [}(X(])VE(X(;.G)(]X[} ~ Zp(x“)V“(xn.ﬂ)

Xp

v.(0) ~ 3 p(xo) 2 o)

X0

Computing the derivatives of V()
V™ (Xk,0) = r(xXk, T(Xk,0)) + AV (X341, 0

X1 = F(xp, 70(x4. 0))

V =r+4Apktl

Vo = rumo+ AV ume+ Vot

Vi = re+rafe +AVE U + VA)

Policy Search: Stochastic Case

-J(B) ~E (Zp(X::)V“(xu.Q)) = ZP{XU}E“',H{XU.B)

X0 X0

.
2(V™(x0.0)) = E?..J"{r{ik.ﬁ;.-l
=0

+Trace(Z(k)(ryy + ryufy + n:"uv + n,]\."ullnx)li;..ﬁj..ul

I
= Jy+ E ?.J'"I'mcu(Z(k}R“(.{-]}
k=0

10

Partially Observable Markov
Decision Processes (POMDPSs)

Plan using belief state (too expensive?)

Certainty equivalent approaches: use
maximum likelihood estimate of state.

Policy search

Dual control problem: want to control, but
also want to perturb to reduce uncertainty.

Planning For Dynamic Tasks

The computational cost of planning is the
big challenge for model-based RL.

Local planning is fast, but only locally
optimal.

Global planning is expensive, but globally
optimal.

Can we combine local and global planning
to get fast planning with good plans?

How to do marble maze task:
Solving one maze

Path plan, then LQR servo: A*, RRT, PRM
Potential field in configuration space.
Potential field in state space.

A*/DP in discretized state space.
Continuous state/action DP

Policy search

But what can you learn that
generalizes across mazes?

Planning and Learning

» Learn better model, and replan.

* Plan faster

— Initialize value function or policy

— Find best meta-parameters

— Find best planning method

» Make better plans

— Find better optima

— More robust plans (plan for modeling error)

11

