# Planning using dynamic optimization

© Chris Atkeson 2004

#### Problem characteristics

- Want optimal plan, not just feasible plan
- We will minimize a cost function C(execution). Some examples:
- C() = c<sub>T</sub>(x<sub>T</sub>) + Σc(x<sub>k</sub>,u<sub>k</sub>): deterministic with explicit terminal cost function
- C() = E( $c_T(x_T) + \Sigma c(x_k, u_k)$ ): stochastic

#### Examples

- A number of us are currently working on humanoid locomotion. We would like the humanoid to be able to walk, run, vary speed, turn, sit, get up from a chair, handle steps, kick a ball, avoid obstacles, handle rough terrain, ... [movies]
- The next assignment will be to write a controller for a marble maze game.

## **Dynamic Optimization**

- General methodology is dynamic programming (DP).
- We will talk about ways to apply DP.
- Requirement to represent all states, and consider all actions from each state, lead to "curse of dimensionality": R<sub>x</sub><sup>d</sup>R<sub>u</sub><sup>d</sup>
- We will talk about special purpose solution methods.

#### **Dynamic Optimization Issues**

- Discrete vs. continuous states and actions?
- Discrete vs. continuous time?
- · Globally optimal?
- Stochastic vs. deterministic?
- Clocked vs. autonomous?
- · What should be optimized, anyway?

## Policies vs. Trajectories

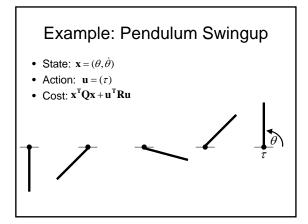
- u(t) open loop trajectory control
- u = u<sub>ff</sub>(t) + K(x x<sub>d</sub>(t)) closed loop trajectory control
- u(x) policy

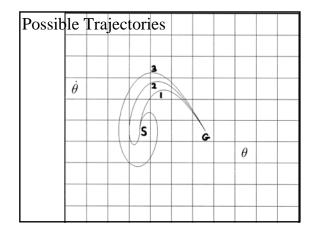
# Types of tasks

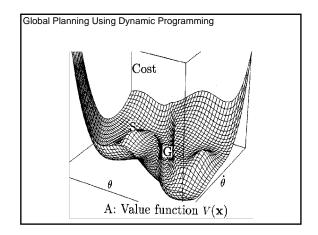
- Regulator tasks: want to stay at x<sub>d</sub>
- Trajectory tasks: go from A to B in time T, or attain goal set G
- Periodic tasks: cyclic behavior such as walking

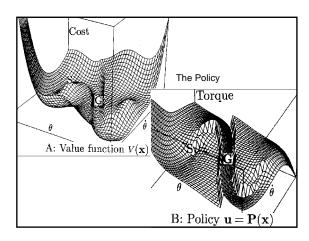
# Typical reward functions

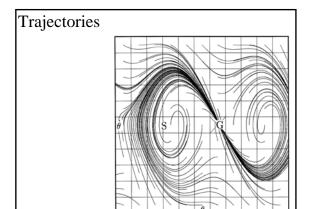
- Minimize error
- Minimum time
- · Minimize tradeoff of error and effort











# Discrete Dynamic Programming

# How to do discrete deterministic DP (specified time)

- Dynamics: x<sub>k+1</sub> = f(x<sub>k</sub>,u<sub>k</sub>)
- Cost: C() =  $c_T(x_T) + \Sigma c(x_k, u_k)$
- Value function V<sub>k</sub>(x) is represented by table.
- $V_T(x) = c_T(x)$
- For each x,  $V_k(x) = \min_{u} (c(x,u) + V_{k+1}(f(x,u)))$
- This is Bellman's Equation
- This version of DP is value iteration
- Can also tabulate policy:  $u = \pi_k(x)$

# How to do discrete deterministic DP (no specified time)

- Cost: C() =  $\Sigma c(x_k, u_k)$
- V<sub>N</sub>(x) = a guess, or all zeros.
- Apply Bellman's equation.
- V(x) is given by V<sub>k</sub>(x) when V stops changing.
- Goal needs to have zero cost, or need to discount so V() does not grow to infinity:
- $V_k(x) = \min_u(c(x,u) + \gamma V_{k+1}(f(x,u))), \gamma < 1$

#### Discrete Policy Iteration

- u = π(x): general policy (a table in discrete case).
- \*) Compute V<sup>π</sup>(x):

 $V_{k}^{\pi}(x) = c(x,\pi(x)) + V_{k+1}^{\pi}(f(x,\pi(x)))$ 

- Update policy  $\pi(x) = \operatorname{argmin}_{u}(c(x,u) + V^{\pi}(f(x,u)))$
- Goto \*)

#### Discrete Stochastic DP

- Cost: C() =  $\Sigma E(c(x_k, u_k))$
- Bellman's equation now involves expectations:
- $V_k(x) = min_u E(c(x,u) + V_{k+1}(f(x,u)))$ =  $min_u(c(x,u) + \sum p(x_{k+1})V_{k+1}(x_{k+1}))$
- Modified Bellman's equation applies to value and policy iteration.
- May need to add discount factor.

# Discrete DP will work for Maze Assignment

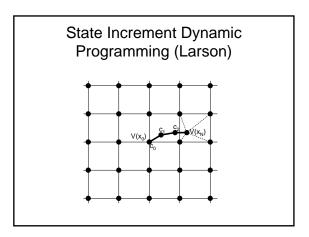
- Can have integral states and actions, and measure time in steps, so:
- $pos_{k+1} = pos_k + vel_k$
- $vel_{k+1} = vel_k + acc_k$
- Ball has linear dynamics, except at collisions
- Discrete DP has problems with nonlinear dynamics

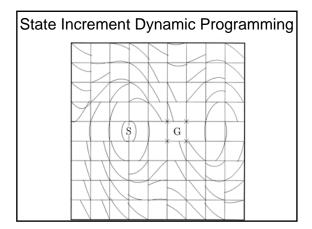
#### Continuous State/Action DP

• Time is still discrete.

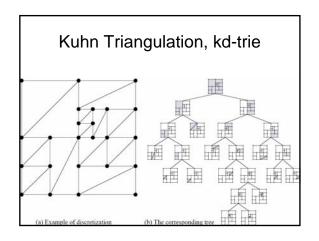
# How to handle continuous states and actions (value iteration)

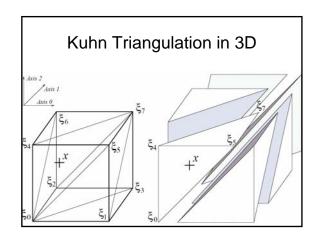
- Discretize value function V()
- At each V point (x<sub>0</sub>), generate trajectory segment of length N by minimizing C(u) = Σc(x<sub>k</sub>, u<sub>k</sub>) + V(x<sub>N</sub>)
- V(x<sub>N</sub>): interpolate surrounding V()
- N typically determined by when V(x<sub>N</sub>) independent of V(x<sub>n</sub>)
- Use favorite continuous function optimizer to search for best u when minimizing C(u)
- Update V() at that cell.

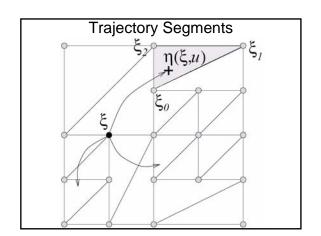


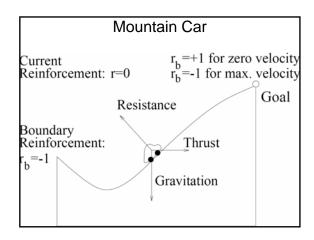


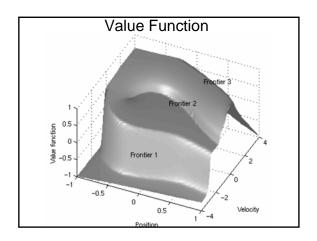
Munos and Moore, Variable Resolution Discretization in Optimal Control Machine Learning, 49 (2/3), 291-323, 2002

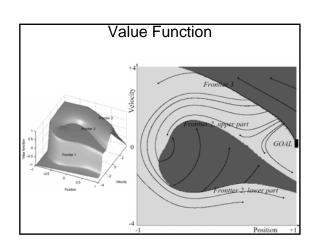




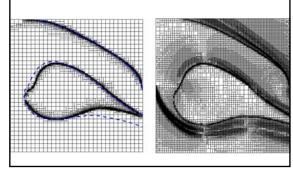








#### Discretizations



#### Policy Iteration: Continuous x, u

- · Discretize policy:
- · Each cell in table has constant u, or
- · u as knot points for linear or higher order spline
- \*) Same kind of trajectory segments used to compute V<sup>π</sup><sub>k</sub>(x) = Σc(x,π(x)) + V<sup>π</sup><sub>k+1</sub>(x<sub>N</sub>)
- Optimize policy  $\pi(x) = \operatorname{argmin}_{u}(c(x,u) + V^{\pi}(f(x,u)))$  using favorite continuous function optimizer.
- Goto \*)

#### Stochastic DP: Continous x, u

- Cost: C() =  $\Sigma E(c(x_k, u_k))$
- Do Monte Carlo sampling of process noise for each trajectory segment (many trajectory segments), or
- Propagate analytic distribution (see Kalman filter)
- Bellman's equation involves expectations:
- $V_k(x) = \min_{u} E(c(x,u) + V_{k+1}(f(x,u)))$

#### Regulator tasks

- Examples: balance a pole, move at a constant velocity
- A reasonable starting point is a Linear Quadratic Regulator (LQR controller)
- Might have nonlinear dynamics x<sub>k+1</sub> = f(x<sub>k</sub>, u<sub>k</sub>), but since stay around x<sub>d</sub>, can locally linearize x<sub>k+1</sub> = Ax<sub>k</sub> + Bu<sub>k</sub>
- Might have complex scoring function c(x,u), but can locally approximate with a quadratic model  $c \approx x^TQx + u^TRu$
- dlgr() in matlab

## LQR Derivation

- Assume V() quadratic: V<sub>k+1</sub>(x) = x<sup>T</sup>V<sub>xx·k+1</sub>x
- $C(x,u) = x^TQx + u^TRu + (Ax+Bu)^TV_{xx\cdot k+1} (Ax+Bu)$
- Want ∂C/∂u = 0
- $B^TV_{xx:k+1}Ax = (B^TV_{xx:k+1}B + R)u$
- u = Kx (linear controller)
- $K = -(B^TV_{xx:k+1}B + R)^{-1}B^TV_{xx:k+1}A$
- $V_{xx:k} = A^T V_{xx:k+1} A + Q + A^T V_{xx:k+1} BK$

More general LQR equations

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \approx \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{c}$$

$$L(\mathbf{x}, \mathbf{u}) \approx \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u} + \mathbf{x}^T \mathbf{S} \mathbf{u} + \mathbf{t}^T \mathbf{u}$$

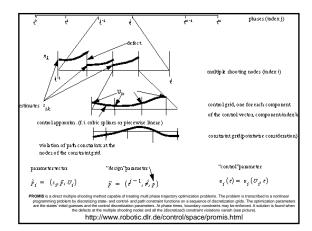
$$V(\mathbf{x}) \approx V_0 + V_x \mathbf{x} + \frac{1}{2} \mathbf{x}^T V_{xx} \mathbf{x}$$

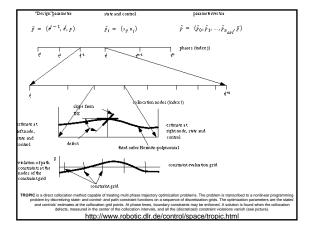
$$\mathbf{u}^{opt} = -(\mathbf{R} + \mathbf{B}^T V_{xx} \mathbf{B})^{-1} \times$$

$$(\mathbf{B}^T V_{xx} \mathbf{A} \mathbf{x} + \mathbf{S}^T \mathbf{x} + \mathbf{B}^T V_{xx} \mathbf{c} + V_x \mathbf{B} + \mathbf{t})$$

## Trajectory Optimization (open loop)

- Calculus of variations
- Multiple shooting
- Function optimization
  - Represent x(t) and u(t) as splines, knot point vector  $\boldsymbol{\theta}$
  - Optimize  $cost(\theta)$  with dynamics  $x_{k+1}$ = $f(x_k, u_k)$  a constraint or with dynamic error part of cost.
  - DIRCOL example of current state of the art.

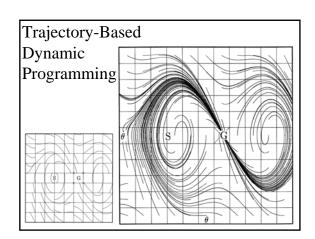


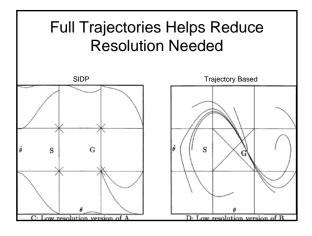


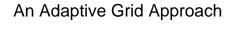
# Trajectory Optimization (closed loop)

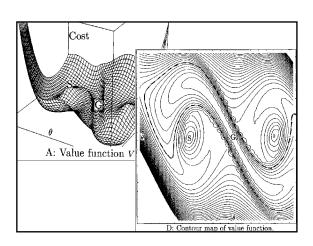
• Differential Dynamic Programming (local approach to DP).

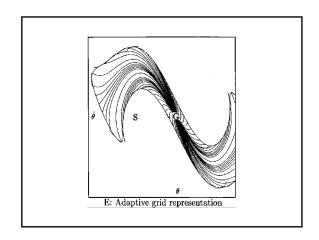
# Propagate Value Function V() Along Trajectories $V(\mathbf{x}) \approx V_0 + V_x \mathbf{x} + \frac{1}{2} \mathbf{x}^T V_{xx} \mathbf{x}$ $Z_x = V_x \mathbf{A} + \mathbf{Q}(\mathbf{x} - \mathbf{x}_d)$ $Z_u = V_x \mathbf{B} + \mathbf{R}(\mathbf{u} - \mathbf{u}_d)$ $Z_{xx} = \mathbf{A}^T V_{xx} \mathbf{A} + \mathbf{Q}$ $Z_{ux} = \mathbf{B}^T V_{xx} \mathbf{A} + \mathbf{S}$ $Z_{uu} = \mathbf{B}^T V_{xx} \mathbf{B} + \mathbf{R}$ $\mathbf{K} = Z_{uu}^{-1} Z_{ux}$ $V_{x_{k-1}} = Z_x - Z_u \mathbf{K}$ $V_{xx_{k-1}} = Z_{xx} - Z_{xu} \mathbf{K}$





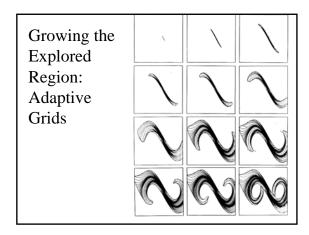


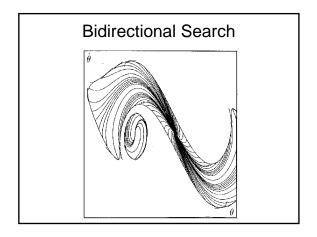


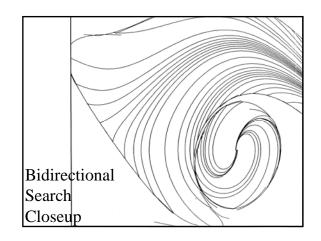


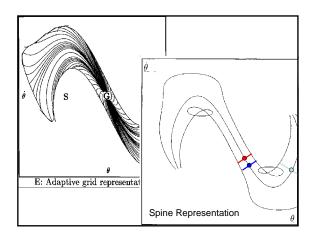
Global Planning
Propagate Value Function Across
Trajectories
in Adaptive Grid

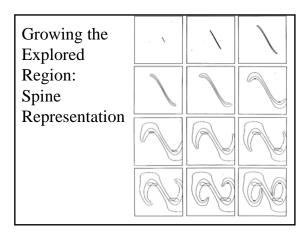
$$V_{0_1} \approx V_{0_2} + V_{x_2}(\mathbf{x}_1 - \mathbf{x}_2) + \frac{1}{2}(\mathbf{x}_1 - \mathbf{x}_2)^T V_{xx_2}(\mathbf{x}_1 - \mathbf{x}_2)$$

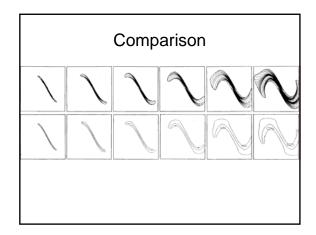






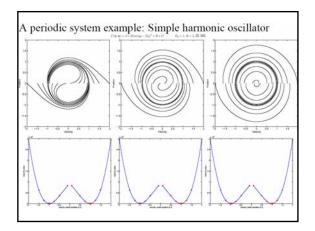


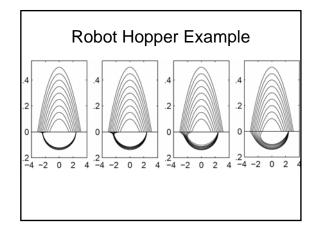




# What Changes When Task Periodic?

 Discount factor means V() might increase along trajectory. V() cannot always decrease in periodic tasks.





#### Policy Search

- Parameterized policy  $u = \pi(x, \theta)$ ,  $\theta$  is vector of adjustable parameters.
- Simplest approach: Run it for a while, and measure total cost.
- Use favorite function optimization approach to search for best  $\theta$ .
- There are tricks to improve policy comparison, such as using the same perturbations in different trials, and terminating trial early if really bad (racing algorithms).

## Policy Search For Structured Policies: **Gradient Descent**

$$J(\mathbf{\theta}) = \int_{\mathbf{x}_0} p(\mathbf{x}_0) V^{\pi}(\mathbf{x}_0, \mathbf{\theta}) d\mathbf{x}_0 \approx \sum_{\mathbf{x}_0} p(\mathbf{x}_0) V^{\pi}(\mathbf{x}_0, \mathbf{\theta})$$

$$\nabla J(\mathbf{\theta}) \approx \sum_{\mathbf{x}_0} p(\mathbf{x}_0) \frac{\partial V^{\pi}(\mathbf{x}_0, \mathbf{\theta})}{\partial \mathbf{\theta}}$$

# Computing the derivatives of V()

$$V^{\pi}(\mathbf{x}_k, \mathbf{\theta}) = r(\mathbf{x}_k, \pi(\mathbf{x}_k, \mathbf{\theta})) + \lambda V^{\pi}(\mathbf{x}_{k+1}, \mathbf{\theta})$$

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{\pi}(\mathbf{x}_k, \mathbf{\theta}))$$

$$V = r + \lambda V^{k+1}$$

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{\pi}(\mathbf{x}_k, \mathbf{\theta}))$$

$$V = r + \lambda V^{k+1}$$

$$V_{\theta} = r_{\mathbf{u}} \mathbf{\pi}_{\theta} + \lambda (V_{\mathbf{x}}^{k+1} \mathbf{f}_{\mathbf{u}} \mathbf{\pi}_{\theta} + V_{\theta}^{k+1})$$

$$V_{\mathbf{x}} = r_{\mathbf{x}} + r_{\mathbf{u}}\mathbf{\pi}_{\mathbf{x}} + \lambda(V_{\mathbf{x}}^{k+1}\mathbf{f}_{\mathbf{x}} + V_{\mathbf{x}}^{k+1}\mathbf{f}_{\mathbf{u}}\mathbf{\pi}_{\mathbf{x}})$$

## Policy Search: Stochastic Case

$$J(\mathbf{\theta}) \approx \mathbb{E}\left(\sum_{\mathbf{x}_0} p(\mathbf{x}_0) V^{\pi}(\mathbf{x}_0, \mathbf{\theta})\right) = \sum_{\mathbf{x}_0} p(\mathbf{x}_0) \mathbb{E}\left(V^{\pi}(\mathbf{x}_0, \mathbf{\theta})\right)$$

$$\begin{split} \Xi(V^{\pi}(\mathbf{x}_{0}, \mathbf{\theta})) &\approx \sum_{k=0}^{T} \lambda^{k}(r(\hat{\mathbf{x}}_{k}, \hat{\mathbf{u}}_{k}) \\ &+ \mathrm{Trace}(\Sigma(k)(r_{\mathbf{x}\mathbf{x}} + r_{\mathbf{x}\mathbf{u}}\mathbf{\pi}_{\mathbf{x}} + \mathbf{\pi}_{\mathbf{x}}^{\mathsf{T}}r_{\mathbf{u}\mathbf{x}} + \mathbf{\pi}_{\mathbf{x}}^{\mathsf{T}}r_{\mathbf{u}\mathbf{u}}\mathbf{\pi}_{\mathbf{x}})|_{\hat{\mathbf{x}}_{k}, \hat{\mathbf{u}}_{k}, \mathbf{\theta}}) \\ &\approx J_{d} + \sum_{k=0}^{T} \lambda^{k} \mathrm{Trace}\left(\Sigma(k)\mathbf{R}_{\mathbf{x}\mathbf{x}}(k)\right) \end{split}$$

## Partially Observable Markov Decision Processes (POMDPs)

- Plan using belief state (too expensive?)
- Certainty equivalent approaches: use maximum likelihood estimate of state.
- · Policy search
- Dual control problem: want to control, but also want to perturb to reduce uncertainty.

## Planning For Dynamic Tasks

- The computational cost of planning is the big challenge for model-based RL.
- Local planning is fast, but only locally optimal.
- Global planning is expensive, but globally optimal.
- Can we combine local and global planning to get fast planning with good plans?

#### How to do marble maze task: Solving one maze

- Path plan, then LQR servo: A\*, RRT, PRM
- Potential field in configuration space.
- Potential field in state space.
- A\*/DP in discretized state space.
- Continuous state/action DP
- · Policy search

But what can you learn that generalizes across mazes?

# Planning and Learning

- Learn better model, and replan.
- · Plan faster
  - Initialize value function or policy
  - Find best meta-parameters
  - Find best planning method
- · Make better plans
  - Find better optima
  - More robust plans (plan for modeling error)