Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials Decision Trees Andrew W. Moore Associate Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599	

Data Mining

- Data Mining is all about automating the process of searching for patterns in the data.

Which patterns are interesting?
That's what we'll look at right now. And the answer will turn out to be the engine that drives decision tree learning.
Which might be mere illusions?
And how can they be exploited?

Copyright © 2001, Andrew W. Moore

| Bits |
| :--- | :--- | :--- |
| You are watching a set of independent random samples of X |
| You see that X has four possible values |$]$| $P(X=A)=1 / 4$ | $P(X=B)=1 / 4$ | $P(X=C)=1 / 4$ |
| :--- | :--- | :--- |

Fewer Bits

Someone tells you that the probabilities are not equal

$P(X=A)=1 / 2$	$P(X=B)=1 / 4$	$P(X=C)=1 / 8$	$P(X=D)=1 / 8$

It's possible...

...to invent a coding for your transmission that only uses 1.75 bits on average per symbol. How?

Fewer Bits

Suppose there are three equally likely values...

$$
\begin{array}{|l|l|l|}
\hline P(X=B)=1 / 3 & P(X=C)=1 / 3 & P(X=D)=1 / 3 \\
\hline
\end{array}
$$

Here's a naïve coding, costing 2 bits per symbol

A	00
B	01
C	10

Can you think of a coding that would need only 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.
Copyright © 2001, Andrew W. Moore
Decision Trees: Slide 9

Fewer Bits

Someone tells you that the probabilities are not equal
$P(X=A)=1 / 2 \quad P(X=B)=1 / 4 \quad P(X=C)=1 / 8 \quad P(X=D)=1 / 8$
It's possible...
..to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?

A	0
B	10
C	110
D	111

(This is just one of several ways)

General Case

Suppose X can have one of m values... $V_{1,} V_{2}, \ldots V_{m}$

$P\left(X=V_{1}\right)=p_{1}$	$P\left(X=V_{2}\right)=p_{2}$	\ldots.	$P\left(X=V_{m}\right)=p_{m}$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$
\begin{aligned}
H(X) & =-p_{1} \log _{2} p_{1}-p_{2} \log _{2} p_{2}-\ldots-p_{m} \log _{2} p_{m} \\
& =-\sum_{j=1}^{m} p_{j} \log _{2} p_{j}
\end{aligned}
$$

$H(X)=$ The entropy of X

- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution Copyright © 2001, Andrew W. Moore

General Case

Suppose X can have one of m values... $V_{1}, V_{2}, \ldots V_{m}$

General Case

Suppose X can have one of m values... $V_{1,} V_{2} \ldots V_{m}$

$H(X)=$ The effropy or X - "High Entropy" means X is from a uniform (boring) distribution - "Low Entropy" means X is from varied (peaks and valleys) distribution Copyright (c) 2001, Andrew W. Moore				

Specific Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{v})$

Suppose I'm trying to predict output Y and I have input X
$\mathbf{X}=$ College Major
$\mathbf{Y}=$ Likes "Gladiator"

\mathbf{X}	\mathbf{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Let's assume this reflects the true
probabilities
E.G. From this data we estimate

- $P($ Like $G=Y e s)=0.5$
- $P($ Major $=$ Math \& LikeG $=$ No $)=0.25$
- $P($ Major $=$ Math $)=0.5$
- $P($ LikeG $=$ Yes \mid Major $=$ History $)=0$

Note:

- $H(X)=1.5$
- $H(Y)=1$

Copyright © 2001, Andrew W. Moore
Specific Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{v})$
$X=$ College Major
$\mathbf{Y}=$ Likes "Gladiator"
Definition of Specific Conditional Entropy:
$H(Y \mid X=v)=$ The entropy of Y
among only those records in which X has value v

\mathbf{X}	\mathbf{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Copyright © 2001, Andrew W. Moore

Specific Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{v})$

X = College Major

 $\mathbf{Y}=$ Likes "Gladiator"Definition of Specific Conditional Entropy:
$H(Y \mid X=v)=$ The entropy of Y

\mathbf{X}	\mathbf{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

among only those records in which X has value v

Example:

- $H(Y / X=$ Math $)=1$
- $H(Y \mid X=H i s t o r y)=0$
- $H(Y \mid X=C S)=0$

Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$

$\mathrm{X}=$ College Major
$\mathrm{Y}=$ Likes "Gladiator"

Definition of Conditional Entropy:

\mathbf{X}	\mathbf{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

$H(Y \mid X)=$ The average specific conditional entropy of Y
= if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
$=$ Expected number of bits to transmit Y if both sides will know the value of X
$=\Sigma_{j} \operatorname{Prob}\left(X=v_{j}\right) H\left(Y \mid X=v_{j}\right)$

Conditional Entropy				
$\begin{aligned} & \mathrm{X}=\text { College Major } \\ & \mathrm{Y}=\text { Likes "Gladiator" } \end{aligned}$		Definition of Conditional Entropy: $H(M X)=$ The average conditional entropy of Y		
		$=\varepsilon_{j} \operatorname{Prob}\left(X=v_{j}\right) H\left(Y \mid X=v_{j}\right)$		
Math	Yes			
History	No	v_{j}	$\operatorname{Prob}\left(X=v_{j}\right)$	$H\left(Y \mid X=v_{j}\right)$
Cs	Yes	Math	0.5	1
Ma	No	History	0.25	0
cs	Yes	CS	0.25	0
History	No	$H(Y X)=0.5 * 1+0.25 * 0+0.25 * 0=0.5$		
Math	Yes			
Coprigite e 200, Andeen w. Moore				Deasson Tres: Stue 19

Information Gain

$X=$ College Major
Definition of Information Gain:
$\mathbf{Y}=$ Likes "Gladiator"

\mathbf{X}	\mathbf{Y}
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Copyright © 2001, Andrew W. Moore
$I G(Y \mid X)=\mathbf{I}$ must transmit Y. How many bits on average would it save me if both ends of the line knew X ?
$I G(Y \mid X)=H(Y)-H(Y \mid X)$

Example:

- $H(Y)=1$
- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})=0.5$
- Thus $\operatorname{IG}(\mathrm{Y} \mid \mathrm{X})=1-0.5=0.5$

Learning Decision Trees

- A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output.
- To decide which attribute should be tested first, simply find the one with the highest information gain.
- Then recurse...

Suppose we want to predict MPG.

Look at all

 the information gains...
A Decision Stump

Recursion Step

Second level of tree

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

The problem with Base Case 3

a	b	y	
0	0	0	$y=a \operatorname{loR~b~}$
0	1	1	
1	0	1	
1	1	0	

The information gains:

The resulting decision tree:
y values: $0 \quad 1$
root
$2 \quad 2$
Predict 0

If we omit Base Case 3:

\mathbf{a}	b	y
0	0	0
0	$y=a X O R b$	

0	0	0
0	1	1
1	0	1
1	1	0

The resulting decision tree:

Basic Decision Tree Building Summarized

BuildTree(DataSet,Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_{X} distinct values (i.e. X has arity n_{X}).
- Create and return a non-leaf node with n_{X} children.
- The i th child should be built by calling

BuildTree(DS ${ }_{i j}$ Output)
Where $D S_{i}$ built consists of all those records in DataSet for which $\mathrm{X}=t \mathrm{th}$ distinct value of X.

- For each record, follow the decision tree to see what it would predict
For what number of records does the decision tree's prediction disagree with the true value in the database?
- This quantity is called the training set error. The smaller the better.

Training Set Error

- It is not usually in order to predict the training data's output on data we have already seen.

Stop and reflect: Why are we doing this learning anyway?

Stop and reflect: Why are we doing this learning anyway?

- It is not usually in order to predict the training data's output on data we have already seen.
- It is more commonly in order to predict the output value for future data we have not yet seen.

Test Set Error

- Suppose we are forward thinking.
- We hide some data away when we learn the decision tree.
- But once learned, we see how well the tree predicts that data.
- This is a good simulation of what happens when we try to predict future data.
- And it is called Test Set Error.

Stop and reflect: Why are we doing this learning anyway?

- It is not usually in order to predict the training data's output on data we have already seen.
- It is more commonly in order to predict the output value for future data we have not yet seen.

Warning: A common data mining misperception is that the above two bullets are the only possible reasons for learning. There are at least a dozen others.

In our artificial example

- Suppose someone generates a test set according to the same method.
- The test set is identical, except that some of the y's will be different.
- Some y's that were corrupted in the training set will be uncorrupted in the testing set.
- Some y's that were uncorrupted in the training set will be corrupted in the test set.

Testing the tree with the test set

	$1 / 4$ of the tree nodes are corrupted	$3 / 4$ are fine
$1 / 4$ of the test set records are corrupted	$1 / 16$ of the test set will be correctly predicted for the wrong reasons	$3 / 16$ of the test set will be wrongly predicted because the test record is corrupted
$3 / 4$ are fine	$3 / 16$ of the test predictions will be wrong because the tree node is corrupted	$9 / 16$ of the test predictions will be fine

In total, we expect to be wrong on $3 / 8$ of the test set predictions

Without access to the irrelevant bits...

Without access to the irrelevant bits...

		almost certainly none of the tree nodes are corrupted	almost certainly all are fine
	$3 / 4$ are fine	n / a	$1 / 4$ of the test set will be wrongly predicted because the test record is corrupted
set records corrupted			
are	n / a	$3 / 4$ of the test predictions will be fine	

In total, we expect to be wrong on only $1 / 4$ of the test set predictions

Avoiding overfitting

- Usually we do not know in advance which are the irrelevant variables
- ...and it may depend on the context

For example, if $y=a$ AND b then b is an irrelevant variable only in the portion of the tree in which $a=0$

But we can use simple statistics to warn us that we might be overfitting.

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

What is a Chi-Square test?

- Google "chi square" for excellent explanations
- Takes into account "surprise" that a feature generates: Σ ((unsplit-number - split-number)²/unsplit-number)
- Gives probability that rate you saw was generated by "luck of the draw"
- Does "likes-Matrix" predict "CS grad"?

Copyright © 2001, Andrew W. Moore

	CS	Non CS
Likes Matrix	15972	145643
Hates Matrix	3	37
CS Non CS Likes Matrix 21543 145643 Hates Matrix 3 173 Decsisin tress side 63		

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?
By using a particular kind of chi-squared test, the answer is 13.5%.

Using Chi-squared to avoid overfitting

- Build the full decision tree as before.
- But when you can grow it no more, start to prune:
- Beginning at the bottom of the tree, delete splits in which $p_{\text {chance }}>$ MaxPChance.
- Continue working your way up until there are no more prunable nodes.

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise.

Copyright © 2001, Andrew W. Moore
Decision Trees: Slide 64

Pruning example

- With MaxPchance $=0.1$, you will see the following MPG decision tree:

MaxPchance

- Good news: The decision tree can automatically adjust its pruning decisions according to the amount of apparent noise and data.
- Bad news: The user must come up with a good value of MaxPchance. (Note, Andrew usually uses 0.05, which is his favorite value for any magic parameter).
- Good news: But with extra work, the best MaxPchance value can be estimated automatically by a technique called cross-validation.

MaxPchance

- Technical note (dealt with in other lectures): MaxPchance is a regularization parameter.

Real-Valued inputs

- What should we do if some of the inputs are real-valued?

> Idea One: Branch on each possible real value

A better idea: thresholded splits

- Suppose X is real valued.
- Define $I G(Y / X: t)$ as $H(Y)-H(Y / X: t)$
- Define $H(Y / X: t)=$

$$
H(Y \mid X<t) P(X<t)+H(Y \mid X>=t) P(X>=t)
$$

- IG(Y|X:t) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define $I G^{*}(Y / X)=\max _{t} I G(Y / X: t)$
- For each real-valued attribute, use $I G^{*}(Y / X)$ for assessing its suitability as a split

Computational Issues

- You can compute IG*(Y|X) in time

$$
R \log R+2 R n_{y}
$$

- Where
R is the number of records in the node under consideration n_{y} is the arity (number of distinct values of) Y

How?

Sort records according to increasing values of X . Then create a $2 \times n_{y}$ contingency table corresponding to computation of $\mathrm{IG}\left(\mathrm{Y} \mid \mathrm{X}: \mathrm{X}_{\text {min }}\right)$. Then iterate through the records, testing for each threshold between adjacent values of X, incrementally updating the contingency table as you go. For a minor additional speedup, only test between values of Y that differ.

Copyright © 2001, Andrew W. Moore

Binary categorical splits

- One of Andrew's favorite tricks
- Allow splits of the following form

Example:

Predicting gender from census

Copyright © 2001, Andrew W. Moore

Conclusions

- Decision trees are the single most popular data mining tool
- Easy to understand
- Easy to implement
- Easy to use
- Computationally cheap
- It's possible to get in trouble with overfitting
- They do classification: predict a categorical output from categorical and/or real inputs

What you should know

- What's information gain, and why we use it
- The recursive algorithm for building an unpruned decision tree
- What are training and test set errors
- Why test set errors can be bigger than training set
- Why pruning can reduce test set error
- How to exploit real-valued inputs

Copyright © 2001, Andrew W. Moore

What we haven't discussed

- It's easy to have real-valued outputs too---these are called Regression Trees*
- Bayesian Decision Trees can take a different approach to preventing overfitting
- Computational complexity (straightforward and cheap) *
- Alternatives to Information Gain for splitting nodes
- How to choose MaxPchance automatically *
- The details of Chi-Squared testing *
- Boosting---a simple way to improve accuracy *
* $=$ discussed in other Andrew lectures

For more information

- Two nice books
- L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.
- C4.5 : Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning) by J. Ross Quinlan
- Dozens of nice papers, including
- Learning Classification Trees, Wray Buntine, Statistics and Computation (1992), Vol 2, pages 63-73
- Kearns and Mansour, On the Boosting Ability of Top-Down Decision Tree Learning Algorithms, STOC: ACM Symposium on Theory of Computing, 1996"
- Dozens of software implementations available on the web for free and commercially for prices ranging between $\$ 50-\$ 300,000$
Copyright © 2001, Andrew W. Moore

DISCUSSIOn

- Instead of using information gain, why not choose the splitting attribute to be the one with the highest prediction accuracy?
- Instead of greedily, heuristically, building the tree, why not do a combinatorial search for the optimal tree?
- If you build a decision tree to predict wealth, and marital status, age and gender are chosen as attributes near the top of the tree, is it reasonable to conclude that those three inputs are the major causes of wealth?
- ..would it be reasonable to assume that attributes not mentioned in the tree are not causes of wealth?
- ..would it be reasonable to assume that attributes not mentioned in the tree are not correlated with wealth?
- What about multi-attribute splits?

