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Today’s lecture

« Information Gain for measuring association
between inputs and outputs

» Learning a decision tree classifier from data
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Data Mining

» Data Mining is all about automating the
process of searching for patterns in the
data.

Which patterns are interesting?
That's what we'll look at right now.

And the answer will turn out to be the engine that
drives decision tree learning.

Which might be mere illusions?
And how can they be exploited?
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Deciding whether a pattern is
interesting

o We will use information theory

* A very large topic, originally used for
compressing signals

* But more recently used for data mining...

(The topic of Information Gain will now be
discussed, but you will find it in a separate
Andrew Handout)
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Bits
You are watching a set of independent random samples of X

You see that X has four possible values

P(X=A) = 1/4 |P(X=B) = 1/4 |P(X=C) = 1/4|P(X=D) = 1/4

So you might see: BAACBADCDADDDA...

You transmit data over a binary serial link. You can encode
each reading with two bits (e.g. A=00,B=01,C=10,D =
11)

0100001001001110110011111100...
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Fewer Bits

Someone tells you that the probabilities are not equal

Fewer Bits

Someone tells you that the probabilities are not equal

P(X=A) = 1/2 ‘P(X=B) =1/4 \P(x=0) =1/8 \ P(X=D) = 1/8

P(X=A) = 1/2 |P(X=B) = 1/4 | P(X=C) = 1/8 | P(X=D) = 1/8

It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?
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It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?

0
10
110
111

o0 | >

(This is just one of several ways)
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Fewer Bits

Suppose there are three equally likely values...

| P(X=B) = 1/3 \ P(X=C) = 1/3 \ P(X=D) = 1/3|

Here's a naive coding, costing 2 bits per symbol

A 00
B 01
C 10

Can you think of a coding that would need only 1.6 bits
per symbol on average?

In theory, it can in fact be done with 1.58496 bits per
symbol.
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General Case

Suppose X can have one of mvalues... V; V, 1,

P(X=Vy) =p;[ P(X=V) =p, | | PX=V,) =Py

What's the smallest possible number of bits, on average, per
symbol, needed to transmit a stream of symbols drawn from
X's distribution? It's

H(X)=-p,log, p, - p,1og, p,—...— p, log, p,
= 7217/ 10g2 p;

J=1

H(X) = The entropy of X

« “High Entropy” means X is from a uniform (boring) distribution

* “Low Entropy” means X is from varied (peaks and valleys) distribution
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General Case

Suppose X can have one of mvalues... V, V, 1,

General Case

Suppose X can have one of mvalues... V; V, 1,

P(X=Vy) =p;| P(X=Vy) =p, | [ PX=V.,) = p,

P(X=Vy) =p;| P(X=Vy)=p, | [ PX=V.,) = p,,

A histogram of the

What's the smallest possible number of frequency distribution of
rean| values of X would have M
many lows and one or
two highs

stb_OIl_ A histogram of the
X’s distril frequency distribution of
H(X) values of X would be flat

125

* “High Entropy” means X is from a uniform (boring) distribution
e “Low Entropy” means X is from varied (peaks and valleys) distribution
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. A histogram of the
What's the smallest possible number of frequeﬁcy alsilauiiom o

symbol, [» histogram of the rean values of X would have M
X’s distril frequency distribution of many lows and one or
H(X)| values of X would be flat two highs,

Py~

..and so the values
sampled from it would
be all over the place

..and so the values
sampled from it would
be more predictable

* “High Entropy” means X is from a uniform (boring) distribution
e “Low Entropy” means X is from varied (peaks and valleys) distribution
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Entropy in a nut-shell Entropy in a nut-shell

Low Entropy High Entropy Low Entropy High Entropy

..the values (locations
of soup) sampled
entirely from within
the soup bowl!
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..the values (locations of
soup) unpredictable...
almost uniformly sampled
throughout our dining room

Specific Conditional Entropy H(Y|X=V) Specific Conditional Entropy H(Y|X=V)
Suppose I'm trying to predict output Y and I have input X X = College Major Definition of Specific Conditional
X = College Major Let’s assume this reflects the true ¥ = Likes “Gladiator Entropy:
Y = Likes “Gladiator” Probabilities H(Y|X=v) = The entropy of ¥
X Y E.G. From this data we estimate X Y among only those records in which
Math |Yes « P(LikeG = Yes) = 0.5 Math | Yes Xhas value v
History | No o P(Major = Math & LikeG = No) = 0.25 History | No
cs Yes « P(Major = Math) = 0.5 cs Yes
Math _|No « P(LikeG = Yes | Major = History) = 0 Math _|No
Math No . Math No
cs Yes Note: cs Yes
History |No cHX) =15 History |No
Math Yes *H(Y) =1 Math Yes
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Specific Conditional Entropy H(Y|X=V) Conditional Entropy H(Y|X)
X = College Major Definition of Specific Conditional X = College Major Definition of Conditional
Y = Likes “Gladiator” Entropy: Y = Likes “Gladiator” Entropy:
H(Y | X=v) = The entropy of ¥ _ .
X Y among only those records in which X Y (/:-:)(I'l):jlliﬂ)) r;r:ﬁtfoverigfe;pecmc
Math Yes Xhas value v Math Yes Py
History |No Example: History | No = if you choose a record at random what
[ Yes _ _ cs Yes will be the conditional entropy of ¥,
Math No * O PEHam) = 1 Math No conditioned on that row’s value of X
* H(Y|X=History) = 0
Math |No VNS = Math | No = Expected number of bits to transmit Yif
CS__ |Yes (Vx=c)= CS__ |Yes both sides will know the value of X
History |No History |No
Math | Yes Math | Yes =2, Prob(X=v)) H(Y | X = v;)
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Conditional Entropy
X = College Major Definition of Conditional Entropy:

Y = Likes “Gladiator” H(Y1X) = The average conditional
entropy of ¥

= ZProb(X=v) H(Y| X = v;)

X Y
Math |Yes Example:
History |No v, Prob(X=v,) |H(Y| X=v,)
S Math  |0.5 1
Math No -

Math |No History |0.25 0
cs Yes CS 0.25 0

History |No
Math Yes HNX)=05%1+025*%0+025*0=05
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Information Gain
X = College Major Definition of Information Gain:

¥ = Likes “Gladiator” IG(Y1 X) = I must transmit Y.
How many bits on average
would it save me if both ends of
the line knew X?

X Y
Math Yes IGIY1 X)= H(Y)-H(Y | X)
History |No
cs Yes Example:
Math No e HiY)=1
Math No
cs Yes e H(Y|X) =0.5

History | No e ThusIG(Y|X) =1-0.5=0.5
Math Yes
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Learning Decision Trees

¢ A Decision Tree is a tree-structured plan of
a set of attributes to test in order to predict
the output.

¢ To decide which attribute should be tested
first, simply find the one with the highest
information gain.

e Then recurse...
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A small dataset: Miles Per Gallon

mpg _ cyinders displacement |horsepower |weight _ acceleration | modelyear maker

good 4low low low high 750078 asia
bad 6modum medum medum _medum 70074 amerca
bad 4medum  medum  medum _low 751078 europe

40 bad 8 high high high low 700074 america
bad 6medum medum medum medum |70lo74 amerca

Records bag 4low medum lowmedum 700074 asia
bad Hlow medum low low 700074 asia
bad 8 high high high low 751078 | america
bad 8 high high high low 700074 america
good 8 high medum high _high 791083 america
bad 8high high high low 75078 | america
good 4low low low low 791083 america
bad 6medum medum medum _high 750078 america
good 4medum low low_low 791083 america
good 4low low medum _ high 791083 america
bad 8high high hgh low 700074 america
good 4low medum  low medum 75078 euope
bad Smedum |medum medum medum 751078 leurope

From the UCI repository (thanks to Ross Quinlan)
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ot Vee  Devbmon R Gsn

Suppose we want to .
predict MPG. s
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information —

gains... et
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A Decision Stump

mpg values: bad good

root
22 18
pchance = 0.001

cylinders =3 | cylinders = 4 | eylinders = 5 | eylinders = 6 | cylinders = 8
00 4 17 10 80 91
Predictbad  Predici good Predict bad  Predict bad  Predici bad
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Recursion Step

PO vakies! Dad good

root
22 e
pehance = 6.001

| rw =2 | : m = - e = inders = &
14

"

. o[ ey O
lo o [+ o s o @ 1
Fredict bad  Pregiol good y‘ucu B PIum baa F'Y [

Build tree from  Build tree from  Build tree from Build tree from
These records..  These records.. ~ These records..  These records..

Records in
Records in ords
o cylinders = 8
i cylinders = 6
Records in Records in
‘which -~
cylinders = 4 cylinders = 5
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Recursion Step

mpg values: bad good

Procicibag  Preacl good Predibed  Predkclibed  Precicl bad

Take the And partition it

Original according

Dataset.. to the value of
the attribute
we split on
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Records

in which

cylinders

=4
Records
in which
cylinders
=5

Records

in which

cylinders
=6

Records
in which
cylinders
=8
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Second level of tree

mpg values: bad good

rool

Prasiet had | prhance = 0135 | Pradict bad

z .
pehance = 0.001
= = i
eyluos = 3 |cyinttrs =4 | cylmtees =5 [ cyindees =5 | cytirs =8
a o 4 17 10 ano

o 1

i Jow |

madium

maker = amenica | maker

asia | maker = eueope
22

010 %E

00 |D|

P high
90

Pradict gond  ffPredict good Predicibad  Pradict bad

Recursively build a tree from the seven
records in which there are four cylinders and
the maker was based in Asia
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Fradict good

Pradict bad

(Similar recursion in the
other cases)

Decision Trees: Slide 28

Peg vaes bad good

The final tree

einderz =3[ evinders a4 Jevansers <5 [evinsers <6 [eyinaen e
81

0o a7 10 80

pehance = 0135 |Fredci baa  Precct bed | pehance = 0,065

-wm-wlmm-m
o

Preaget b

—
For apawer = hgh
2 o

et e Prict goosd Brmcted bt

Pinats | eodetyser = TROTH

'__’_-7'_|_’-_»-~_h‘ - === I_m;;_. Tt

10 (R 00 01 10 o 0
Presct bad (unexpandabic) Presict bad Predict good Preict bad T
Erases bad
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Peg vaes bad good

Base Case

One

yinders = 3|
0o

Preaget b

Don't split a

node if all
matching
records have |
the same

output value

00 01
Predict good

Presct bad (unexpandabie) Presict bad

Erases bad
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| cceiention = tagh | modeeyeer = Tita7s | modeteer = TS078

10 o 0

Frecict kas

I...nm--. Totos
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Base Case
B Two

Peg vaes bad good

pchance = 00K
e |
cyinders = 3 | cinder a4 | eyanders o 5 [ e
20 0% 1k |° £ : | Don't split a
I—v—n:i_'l_nj _‘T:‘o-ﬂib‘i Fricct bad Imkl\z-:_:h node if none
S o o leselsn|  Of the
SKid 28 12 o0 ‘ 1 attributes
,:.1 ] T [
e T e T e St o multiple non- |
T ey
Pradat gosd ’--uﬂun-tlwu & Prea Children

| T e e )
10 " 9o o1 10 L
Teract bad (nevgardatie) Peesct by Fresct posd Preact Fresct oy

Erases bad
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Base Case Two: =S
No attributes 1 e

I

can dIStInngh ] o | R —
0o .
T T T
Pronmctind | pehance = 0438 [Fredcibn  Precke e
e ] [rrrerem e ®
PRI PR TR [eem—— ==
.
o 10 25 a2 0o S SR
bl g | pehancn 0317 |pohwnce = 0717 | Preaet tad .

.r-nrumr- -k d
a4
Fredct good
|
10 “
Proict bad
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Base Cases

¢ Base Case One: If all records in current data subset have
the same output then don't recurse

» Base Case Two: If all records have exactly the same set of
input attributes then don't recurse
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Base Cases: An idea

¢ Base Case One: If all records in current data subset have
the same output then don't recurse

¢ Base Case Two: If all records have exactly the same set of
input attributes then don't recurse

Proposed Base Case 3:

If all attributes have zero information
gain then don't recurse

o [s this a good idea?
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The problem with Base Case 3

a b y

0o 0 o Yy=aXORb
o 1 1
1 o] 1
1 1. 0
. . . The resulting decision
The information gains: tree:
Iinformation gains using the fraining set (4 records) y values: 0 1
yvalues: 0 1
inpul Value Disiribution info Gain root
a0
1 272
b o I i
- Predict O
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If we omit Base Case 3:

a b y
O O o yYy=aXORb
o 1 1
1 0 1 yvahoes 0 1
1 1. 0 r
rool
22

phance = 1,000

The resulting decision tree:

Prodict 0 Precict 1 Pradict 1 Pradict 0
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Basic Decision Tree Building
Summarized

BuildTree(DataSet, Output)

If all output values are the same in DataSet, return a leaf node that
says “predict this unique output”

If all input values are the same, return a leaf node that says “predict
the majority output”

Else find attribute X with highest Info Gain
Suppose X has 7, distinct values (i.e. X has arity 77,).

* Create and return a non-leaf node with 7, children.

* The /th child should be built by calling

BuildTree( DS, Output)

Where DS, built consists of all those records in DataSet for which X = th
distinct value of X.
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Training Set Error

¢ For each record, follow the decision tree to
see what it would predict

For what number of records does the decision
tree’s prediction disagree with the true value in
the database?

¢ This quantity is called the training set error.
The smaller the better.
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S MPG Training

ot

n error

pchance = 0.0
e H e
eingers o 3| cyindersa s [evaners o 5 [eyinders w6 [opnders a8
L] a7 10 0o 51

Preetbod | pehance = 0435 |Fredei bag  Predet bad | pehance = 0005

e~ e -

For apawer = hgh

2 o

ker = aestrica | Mkt 5k | Rk = durcpe 'wm-w‘mm-m

0 1m 26 o 1

Precielgoed | pehanes w0317 | petwnce = 0717 | Prectet tad Prict goosd Fracic bat

acririen ..w[_.m..n.m... l.xm_.. e |

Fracct ka1 Presct gosd o = 0717

= i

1 LI 01 10 o 0
Presct bad (unexpandabie) Presict bad Predict good Frecict kas Fredet bad
Erases bad
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S MPG Training

ot
2 error
chance = 0.0
e | e
Mum Errors  Set Size Percent Wrong
Training Set 1 40 2.50
R =
o 10 25 0a a o
pehancn = 0317 |pchwnce = 0717 | Precet [Em——
[ RS [ (S———
a4 21 o o 10 o 14
Predit good Exchanen = 0 B34 Fredet bas Fradict bad Prestict goced pxtwcs = 0717
| modotyear = PRoTE | sodehear = P0TE | modetyeer = PlRoEd
10 (] 0 1 10 0 0
Prect bad (Unexpardabie) Prect bad Fradict good Predict bad Pracet bad
Frackct bt
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e MPG Training

ot

n error

pchanca = .00

P o e

MNum Errers  Set Size Percent Wrong

Training Set 1 40 250
R =
bl g | pehancn 0317 |pohwnce = 0717 | Preaet tad S—— Frecict beet
.hrmlmn-lm o srgarever w medin | P s o = e | scorieraton = fagh
a4 21 0 0 ; 14
Frachet oo Fharcn = 06 Fredet bag Fracct ka1 Presct gosd o = 0 117
- 1 — =
| | modotyeer = PlRoTE | modofyer = PSS
|| 0 1 0 0
Prect bad (unepardabie] et bad Fradict good Pracet bad
Erackct bt
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Stop and reflect: Why are we
doing this learning anyway?

o It is not usually in order to predict the
training data’s output on data we have
already seen.
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Stop and reflect: Why are we
doing this learning anyway?

e It is not usually in order to predict the
training data’s output on data we have
already seen.

e It is more commonly in order to predict the
output value for future data we have not yet
seen.
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Stop and reflect: Why are we
doing this learning anyway?

e It is not usually in order to predict the
training data’s output on data we have
already seen.

¢ It is more commonly in order to predict the

output value for future data we have not yet
seen.

Warning: A common data mining misperception is that the
above two bullets are the only possible reasons for learning.
There are at least a dozen others.
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Test Set Error

» Suppose we are forward thinking.

¢ We hide some data away when we learn the
decision tree.

¢ But once learned, we see how well the tree
predicts that data.

¢ This is a good simulation of what happens
when we try to predict future data.

e And it is called Test Set Error.
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e MPG Test set

;me-arm
e [
Num Errors  Set Size Percent
Wrong
Training Set 1 40 2,50 o
fepawer = gt
Test Set 74 352 21.02

| = mocketyesr w TRTa | ecceteer = 1T | modstvesr = PiRsES
|| 0 01 10 o 0
Presct bad (ineparastie) Presict bad Predict good Predict tad P—r—
Erases bad
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e MPG Test set

error
pchance = 00K
Mum Errors Set Size Percent
Wrong
Training Set 1 40 2.50 B~
Jeosrvvar = hegh
Test Set 74 352 21.02
s o ]r..‘,..m.._,.., l....-n.m...,].,m_.....m[,.m.....m..‘l.,m_....;...
- The test set error is much worse than the

training set error...

ﬁ ...why? —m‘

Preact bad inespandabie] | Prodict bad Predct good Precict baa Predct Bed

Erases bad
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An artificial example
o We'll create a training datase

Output y = copy of e,

Five inputs, all bits, are Except a random 25%

generated in all 32 possible of the records have y
combinations set to the opposite of e
N (_L\
' N
a b c d e y
0 0 0 0 0 0
8 0 0 0 0 1 0
‘g 0 0 0 1 0 0
o 0 0 0 1 1 1
5 0 0 1 0 0 1
1 1 1 1 1 1
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In our artificial example
e Suppose someone generates a test set
according to the same method.

e The test set is identical, except that some of
the y’s will be different.

e Some y’s that were corrupted in the training
set will be uncorrupted in the testing set.

e Some y’s that were uncorrupted in the
training set will be corrupted in the test set.
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Building a tree with the artificial
training set

e Suppose we build a full tree (we always split until base case 2)

25% of these leaf node labels will be corrupted
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Training set error for our artificial
tree

All the leaf nodes contain exactly one record and so...

e We would have a training set error
of zero
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Testing the tree with the test set

1/4 of the tree nodes | 3/4 are fine
are corrupted

1/4 of the test set | 1/16 of the test set will | 3/16 of the test set will

records are be correctly predicted |be wrongly predicted
corrupted for the wrong reasons | because the test record is
corrupted
3/4 are fine 3/16 of the test 9/16 of the test
predictions will be predictions will be fine

wrong because the
tree node is corrupted

In total, we expect to be wrong on 3/8 of the test set predictions
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What's this example shown us?
¢ This explains the discrepancy between
training and test set error

¢ But more importantly... ... it indicates there’s
something we should do about it if we want
to predict well on future data.
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Suppose we had less data
e Let's not look at the irrelevant bits

Output y = copy of e, except a
random 25% of the records
‘ have y set to the opposite of e

‘ These bits are hidden
A

f
e y
0 0
(7)) 1 0
2
o 0 o
o
o 1 1
S 0 1
1 1
What decision tree would we learn now?
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Without access to the irrelevant bits...

These nodes will be unexpandable
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Without access to the irrelevant bits...

These nodes will be unexpandable

In about 12 of
the 16 records
in this node the
output will be 0

In about 12 of
the 16 records
in this node the
output will be 1

So this will So this will
almost certainly almost certainly
predict 0 predict 1
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Without access to the irrelevant bits...

almost certainly
none of the tree

almost certainly all
are fine

nodes are
corrupted
1/4 of the test | n/a 1/4 of the test set
set records will be wrongly
are corrupted predicted because
the test record is
corrupted
3/4 are fine n/a 3/4 of the test

predictions will be
fine

In total, we expect to be wrong on only 1/4 of the test set predictions

Copyright © 2001, Andrew W. Moore
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Overfitting

o Definition: If your machine learning
algorithm fits noise (i.e. pays attention to
parts of the data that are irrelevant) it is
overfitting.

¢ Fact (theoretical and empirical): If your
machine learning algorithm is overfitting
then it may perform less well on test set
data.
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Avoiding overfitting
¢ Usually we do not know in advance which
are the irrelevant variables

e ..and it may depend on the context

For example, if y = a AND b then b is an irrelevant
variable only in the portion of the tree in which a=0

But we can use simple statistics to
warn us that we might be
overfitting.
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Peg vales bad good

ot

pchanca = .00

— T
yinders = 8
a1

Cyines « 3 | cyinder « 4

eyinders = 5 | einders « 6
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A chi-squared test

| mpg vakies: bad gaod

|maker america 0 10 [N M Hi mog | maker = america ) = 0
ssa 25 M I g | maker = asia ) = 0853121
europe 2 2 [ I i g | maker = urcpe ) = 1

iﬂtm_\ =0.702467 Himpg|maker) = 0478183

1Gimpgimaker) = 0 224284

¢ Suppose that mpg was completely uncorrelated with
maker.

¢ What is the chance we’d have seen data of at least this
apparent level of association anyway?
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A chi-squared test

| mpg vakses: bad geod

|maker america 0 10 N I i g | maker = america ) = 0
asa 25 N I i rog | maker = asia ) = 0853121
eorope 2 2 [N I i mpg | maker = eurcpe ) = 1

|Himpg) = 0.702467 Himpglmaker} = 0.478183

| |Gimpgimaker] = 0 224784

e Suppose that mpg was completely uncorrelated with
maker.

¢ What is the chance we’d have seen data of at least this
apparent level of association anyway?

By using a particular kind of chi-squared test, the
answer is 13.5%.
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What is a Chi-Square test?

¢ Google “chi square” for
excellent explanations

¢ Takes into account “surprise” G Non CS
that a feature generates: Likes 15972 1145643
U 2((unsplit-number — split- Matrix
number)?/unsplit-number)  |Hates |3 37
« Gives probability that rate Matrix
you saw was generated by
“luck of the draw” CS Non CS
¢ Does “likes-Matrix” predict Likes |21543 |145643
“CS grad™ Matrix
Hates (3 173
Copyright © 2001, Andrew W. Moore Matrix Decision Trees: Slide 63

Using Chi-squared to avoid
overfitting

« Build the full decision tree as before.
¢ But when you can grow it no more, start to
prune:

¢ Beginning at the bottom of the tree, delete
splits in which p..c > MaxPchance.

¢ Continue working your way up until there are no
more prunable nodes.

MaxPchance is a magic parameter you must specify to the decision tree,
indicating your willingness to risk fitting noise.
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Pruning example

¢ With MaxPchance = 0.1, you will see the
following MPG decision tree:

mpg vatms: bad gosd

ool
Lpetmncr= 000 Note the improved
test set accuracy
compared with the
unpruned tree

cyfiectars = 3| eyindecs = 4 | crinders = 5 | cyiecars = | cytecers = 8|
L 417 10 (%] o 1

Predicibad  Fredicigood Predicibed  Predicibad  Predict bad

—
Num Erors Set Size Percent ™
Wrong
Training Set 5 40 12.50
Test Set 56 352 15.81
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MaxPchance

e Good news: The decision tree can automatically adjust
its pruning decisions according to the amount of apparent
noise and data.

® Bad news: The user must come up with a good value of
MaxPchance. (Note, Andrew usually uses 0.05, which is his
favorite value for any magic parameter).

e Good news: But with extra work, the best MaxPchance
value can be estimated automatically by a technique called
cross-validation.
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MaxPchance

¢ Technical note (dealt with in other lectures):
MaxPchance is a regularization parameter.

N

Decreasing MaxPchance —’Increasmg
—

Expected Test set
Error

>

High Bias High Variance
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The simplest tree
* Note that this pruning is heuristically trying

to find

The simplest tree structure for which all within-leaf-
node disagreements can be explained by chance

¢ This is not the same as saying “the simplest
classification scheme for which...”

» Decision trees are biased to prefer classifiers
that can be expressed as trees.
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Expressiveness of Decision Trees

e Assume all inputs are Boolean and all outputs are
Boolean.

e What is the class of Boolean functions that are
possible to represent by decision trees?

e Answer: All Boolean functions.

Simple proof:

1. Take any Boolean function

2.  Convert it into a truth table

3. Construct a decision tree in which each row of the truth table
corresponds to one path through the decision tree.
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Real-Valued inputs

¢ What should we do if some of the inputs are
real-valued?

mpg_[cylinders. weight

good o7] 75 2265 82

Idea One: Branch on each possible real value
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“One branch for each numeric
value” idea:

Hopeless: with such high branching factor will shatter
the dataset and over fit

Note pchance is 0.222 in the above...if MaxPchance
was 0.05 that would end up pruning away to a single
root node.
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A better idea: thresholded splits

e Suppose X is real valued.
o Define IG(Y/X:t)as H(Y) - H(Y/X:t)

o Define H(Y/X:t) =
HYIX <t) PIX < t) + HYIX >= t) PX >= 1)

o IG('Y/X:t)is the information gain for predicting Y if all
you know is whether X is greater than or less than ¢

» Then define IG*(Y/X) = max, IG(Y/X:t)
¢ For each real-valued attribute, use /G*(Y/X)
for assessing its suitability as a split

Copyright © 2001, Andrew W. Moore Decision Trees: Slide 72




Computational Issues

¢ You can compute IG*(Y|X) in time
RlogR +2Rn,

e Where

R is the number of records in the node under consideration
n,is the arity (number of distinct values of) Y

How?

Sort records according to increasing values of X. Then create a 2xn,
contingency table corresponding to computation of IG(Y|X:Xy,). Then
iterate through the records, testing for each threshold between adjacent
values of X, incrementally updating the contingency table as you go. For a
minor additional speedup, only test between values of Y that differ.
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Inforrnation gains using the training set (40 records)

mog vakies: bad good

Input Value  Distribution Irnfi Gain
cyfinders <5 [N 0 25550
=5
crspracerment < 196 [N © <26205
>= 195 I
horsepower <54 (DD O <00e
=0 I
weight <2760 [ 0 375471
== 3780 [N
accelerabon <102 | © 155967
>= 192 I
madelyear <81 [ O 315153
>=6 [

miaker amenica [N © 0437265
asia (I
evope [
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Example with
MPG
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mpgvalues bad

dheplacement < 118 | deplacement
[ 1

Predct had
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Unpruned
tree using
reals
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Pruned tree using reals

mpg values: bad good
[ roat
22 18
| pchance = 0.000
cyinders <5 | cyiinders 2= 5
4 17 18 1
pechance = 0.001 | pchance = 0.003
wer<ot| ey <18 =18
117 !3 0 180 01
Predetgood  Predctbsd  Predetbad  Predict good
MNum Errors  Set Size Percent
Wirong
Training Set 1 40 280
Test Set 53 362 15.08
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Binary categorical splits

e One of Andrew’s
favorite tricks

o Allow splits of the
following form

Attribute Attribute
equals doesn't
value equal value
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Example:

3 § |7

&3 | modetyear isnt 798083 |

Pred
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Predicting age
from census
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Predicting
wealth from
census
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Predicting gender from census
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Conclusions

 Decision trees are the single most popular
data mining tool
¢ Easy to understand
¢ Easy to implement
e Easy to use
« Computationally cheap
e It's possible to get in trouble with overfitting
* They do classification: predict a categorical
output from categorical and/or real inputs
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What you should know

¢ What's information gain, and why we use it

¢ The recursive algorithm for building an
unpruned decision tree

¢ What are training and test set errors

* Why test set errors can be bigger than
training set

e Why pruning can reduce test set error
¢ How to exploit real-valued inputs
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What we haven't discussed

o It's easy to have real-valued outputs too---these are called
Regression Trees*

* Bayesian Decision Trees can take a different approach to
preventing overfitting

« Computational complexity (straightforward and cheap) *
¢ Alternatives to Information Gain for splitting nodes

¢ How to choose MaxPchance automatically *

¢ The details of Chi-Squared testing *

¢ Boosting---a simple way to improve accuracy *

* = discussed in other Andrew lectures
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For more information

e Two nice books
e L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, Belmont,
CA, 1984,
* C4.5 : Programs for Machine Learning (Morgan Kaufmann
Series in Machine Learning) by J. Ross Quinlan

* Dozens of nice papers, including
* Learning Classification Trees, Wray Buntine, Statistics and
Computation (1992), Vol 2, pages 63-73
« Kearns and Mansour, On the Boosting Ability of Top-Down
Decision Tree Learning Algorithms, STOC: ACM Symposium
on Theory of Computing, 1996"

* Dozens of software implementations available on the web for free and
commercially for prices ranging between $50 - $300,000
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Discussion

¢ Instead of using information gain, why not choose the
splitting attribute to be the one with the highest prediction
accuracy?

» Instead of greedily, heuristically, building the tree, why not
do a combinatorial search for the optimal tree?

« If you build a decision tree to predict wealth, and marital
status, age and gender are chosen as attributes near the
top of the tree, is it reasonable to conclude that those
three inputs are the major causes of wealth?

e ..would it be reasonable to assume that attributes not
mentioned in the tree are not causes of wealth?

¢ ..would it be reasonable to assume that attributes not
mentioned in the tree are not correlated with wealth?

¢ What about multi-attribute splits?
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