

Data Mining • Data Mining is all about automating the process of searching for patterns in the data. • Which patterns are interesting? That's what we'll look at right now. And the answer will turn out to be the engine that drives decision tree learning. • Which might be mere illusions? And how can they be exploited? • Copyright © 2001, Andrew W. More

Deciding whether a pattern is interesting

- We will use information theory
- A very large topic, originally used for compressing signals
- But more recently used for data mining...

(The topic of Information Gain will now be discussed, but you will find it in a separate Andrew Handout)

Copyright © 2001, Andrew W. Moore

Decision Trees: Slide 4

Bits							
You are watching a set of independent random samples of X							
You see that X has four possible values							
P(X=A) = 1/4	P(X=B) = 1/4	P(X=C) = 1/4	P(X=D) = 1/4				
So you might see: BAACBADCDADDDA You transmit data over a binary serial link. You can encode each reading with two bits (e.g. A = 00, B = 01, C = 10, D = 11)							
010000100100	011101100111111	100					

Copyright © 2001, Andrew W. Moore

Fewer Bits Suppose there are three equally likely value						
P(X=B) = 1/3 P(X=C) = 1/3	P(X=D) = 1/3					
Here's a naïve coding, costing 2 bits per symbol						
A 00 B 01 C 10						
Can you think of a coding that would need only 1.6 bits per symbol on average?						
In theory, it can in fact be done with 1 symbol. Copyright © 2001, Andrew W. Moore	.58496 bits per Decision Trees: Slide 9					

General Case						
Suppose X can have one of <i>m</i> values $V_{I_c} V_{Z_c} \dots V_m$						
$P(X=V_1)=p_1$	$P(X=V_2) = p_2$		$P(X=V_m) = p_m$			
What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's $H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$ $= -\sum_{j=1}^m p_j \log_2 p_j$						
H(X) = The entropy of X						
	neans X is from a uniform					
 "Low Entropy" m 	eans X is from varied (pe	eaks and valle	eys) distribution			
Copyright © 2001, Andrew W	. Moore		Decision Trees: Slide 10			

Entropy in a nut-shell

Low Entropy

High Entropy

Copyright © 2001, Andrew W. Moore

Decision Trees: Slide 13

Entropy in a nut-shell

I = College MajorDefinition of Conditional Entropy: $I = $ Likes "Gladiator" $H(Y X) =$ The average conditional entropy of Y						
$= \sum_{j} Prob(X = v_j) H(Y \mid X = v_j)$						
X	Y					
Math	Yes	Example				
History	No	V _i	Prob(X=v _i)	$H(Y \mid X = v_i)$		
CS	Yes	Math	0.5	1		
Math	No	maun		1		
Math	No	History	0.25	0		
	Yes	CS	0.25	0		
CS				-		
CS History	No		*1+0.25*0+			

	good	4	low	low	low	high	75to78	asia	
	bad	6	medium	medium	medium	medium	70to74	america	
	bad	4	medium	medium	medium	low	75to78	europe	-
40	bad	8	high	high	high	low	70to74	america	
	bad	6	medium	medium	medium	medium	70to74	america	
Records	bad	4	low	medium	law	medium	70to74	asia	
	bad	4	low	medium	law	low	70to74	asia	
	bad	8	high	high	high	low	75to78	america	
	1				:	:		1	
					:	1:		1	
	bad		high	high	high	low	70to74	america	
	good		high	medium	high	high	79to83	america	
	bad		high	high	high	low	75to78	america	
	good		low	low	law	low	79to83	america	
	bad		medium	medium	medium	high	75to78	america	
	good		medium	low	law	low	79to83	america	
	good		low	low	medium	high	79to83	america	
	bad		high	high	high	low	70to74	america	_
	good		low	medium	low	medium	75to78	europe	_
	bad		medium	medium	medium	medium	75to78	europe	

Training Set Error

• For each record, follow the decision tree to see what it would predict

For what number of records does the decision tree's prediction disagree with the true value in the database?

• This quantity is called the *training set error*. The smaller the better.

Decision Trees: Slide 38

Copyright © 2001, Andrew W. Moore

Stop and reflect: Why are we doing this learning anyway?

- It is not usually in order to predict the training data's output on data we have already seen.
- It is more commonly in order to predict the output value for future data we have not yet seen.

Copyright © 2001, Andrew W. Moore

Decision Trees: Slide 43

Stop and reflect: Why are we doing this learning anyway?

- It is not usually in order to predict the training data's output on data we have already seen.
- It is more commonly in order to predict the output value for future data we have not yet seen.

Warning: A common data mining misperception is that the above two bullets are the only possible reasons for learning. There are at least a dozen others.

Copyright © 2001, Andrew W. Moore

ingg values: bad ge	iod	root 22 1	0 xce = 0.001		Fest set Tror
	Num Errors	Set Size			
Training Set Test Set			2.50 21.02		epower = high
horsepower = low	horsepower = medium	horsepower = hig	h acceleration = k	ow acceleration = medium	acceleration = high
training	g set error	·		e than the wl	
	(unexpandable) Predict bad	Predict bad	Predict good	Predict bad	Decision Trees: Slide 47

In our artificial example

- Suppose someone generates a test set according to the same method.
- The test set is identical, except that some of the y's will be different.
- Some y's that were corrupted in the training set will be uncorrupted in the testing set.
- Some y's that were uncorrupted in the training set will be corrupted in the test set.

Decision Trees: Slide 49

Copyright © 2001, Andrew W. Moore

Building a tree with the artificial training set • Suppose we build a full tree (we always split until base case 2) Root e=0 a=1 a=0 cov z5% of these leaf node labels will be corrupted

	1/4 of the tree nodes are corrupted	3/4 are fine
1/4 of the test set records are corrupted	1/16 of the test set will be correctly predicted for the wrong reasons	3/16 of the test set will be wrongly predicted because the test record is corrupted
3/4 are fine	3/16 of the test predictions will be wrong because the tree node is corrupted	9/16 of the test predictions will be fine

What is a Chi-Sq	uare t	est?		
 Google "chi square" for excellent explanations 				
Takes into account "surprise"		CS	Non CS	
that a feature generates:	Likes	15972	145643	
$\Box \Sigma$ ((unsplit-number – split-	Matrix	-	07	
number) ² /unsplit-number)	Hates	3	37	
 Gives probability that rate 	Matrix			
you saw was generated by				
"luck of the draw"		CS	Non CS	
 Does "likes-Matrix" predict "CS grad"? 	Likes Matrix	21543	145643	
5		3	173	
	Hates	З	1/3	
Copyright © 2001, Andrew W. Moore	Matrix	Decision	Trees: Slide 63	

Using Chi-squared to avoid overfitting

- Build the full decision tree as before.
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which *p_{chance}* > *MaxPchance*.
 - Continue working your way up until there are no more prunable nodes.

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise.

Copyright © 2001, Andrew W. Moore

Decision Trees: Slide 64

- Good news: The decision tree can automatically adjust its pruning decisions according to the amount of apparent noise and data.
- Bad news: The user must come up with a good value of MaxPchance. (Note, Andrew usually uses 0.05, which is his favorite value for any magic parameter).
- Good news: But with extra work, the best MaxPchance value can be estimated automatically by a technique called cross-validation.

Copyright © 2001, Andrew W. Moore

Real-Valued inputs **Expressiveness of Decision Trees** Assume all inputs are Boolean and all outputs are • What should we do if some of the inputs are Boolean. real-valued? What is the class of Boolean functions that are good bad bad bad bad bad bad possible to represent by decision trees? 75 90 110 175 95 94 95 Answer: All Boolean functions. Simple proof: Take any Boolean function Convert it into a truth table Construct a decision tree in which each row of the truth table corresponds to one path through the decision tree. Idea One: Branch on each possible real value Copyright @ 2001, Andrew W. Moore Decision Trees: Slide 69 Copyright © 2001, Andrew W. Moore Decision Trees: Slide 70

1.

2.

3.

What you should know

- · What's information gain, and why we use it
- The recursive algorithm for building an unpruned decision tree
- What are training and test set errors
- Why test set errors can be bigger than training set
- Why pruning can reduce test set error
- How to exploit real-valued inputs

Copyright © 2001, Andrew W. Moore

What we haven't discussed • It's easy to have real-valued outputs too---these are called

- It's easy to have real-valued outputs too---these are called Regression Trees*
- Bayesian Decision Trees can take a different approach to preventing overfitting
- Computational complexity (straightforward and cheap) *
- Alternatives to Information Gain for splitting nodes
- How to choose MaxPchance automatically *
- The details of Chi-Squared testing *
- Boosting---a simple way to improve accuracy *

* = discussed in other Andrew lectures

Copyright © 2001, Andrew W. Moore

Decision Trees: Slide 83

For more information

- Two nice books
 - L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.
 - C4.5 : Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning) by J. Ross Quinlan
- Dozens of nice papers, including
 - Learning Classification Trees, Wray Buntine, Statistics and Computation (1992), Vol 2, pages 63-73
 - Kearns and Mansour, On the Boosting Ability of Top-Down Decision Tree Learning Algorithms, STOC: ACM Symposium on Theory of Computing, 1996"
- Dozens of software implementations available on the web for free and commercially for prices ranging between \$50 - \$300,000

Copyright © 2001, Andrew W. Moore

Discussion

- Instead of using information gain, why not choose the splitting attribute to be the one with the highest prediction accuracy?
- Instead of greedily, heuristically, building the tree, why not do a combinatorial search for the optimal tree?
- If you build a decision tree to predict wealth, and marital status, age and gender are chosen as attributes near the top of the tree, is it reasonable to conclude that those three inputs are the major causes of wealth?
- ...would it be reasonable to assume that attributes not mentioned in the tree are not causes of wealth?
- ...would it be reasonable to assume that attributes not mentioned in the tree are not correlated with wealth?
- What about multi-attribute splits?

Copyright © 2001, Andrew W. Moore