Constraint Satisfaction and Scheduling

Andrew W. Moore
Professor
School of Computer Science Carnegie Mellon University
$\frac{\text { www.cs.cmu.edul-awm }}{\text { awm@cs.cmu }}$
$\frac{\text { awm@cs.cmu.ed }}{412-268-7599}$

A Constraint Satisfaction Problem

Inside each circle marked $V_{1} . . V_{6}$ we must assign: R, G or B. No two connected circles may be assigned the same symbol. Notice that two circles have already been given an assignment.

Overview

- CSPs defined
- Using standard search for CSPs
- Blindingly obvious improvements
- Backtracking search
- Forward Checking
- Constraint Propagation
- Some example CSP applications
- Overview
- Waltz Algorithm
- Job Shop Scheduling
- Variable ordering
- Value ordering
- Tedious Discussion

Formal Constraint Satisfaction Problem

A CSP is a triplet $\{V, D, C\}$. A CSP has a finite set of variables $V=\left\{V_{1}, V_{2}\right.$.. $\left.V_{N}\right\}$.
Each variable may be assigned a value from a domain D of values.
C are binary constraints. Each member of C is a pair. The first member of each
pair is a set of variables. The second element is a set of legal values which pair is a set of vari
that set may take.
that set m.
$V=\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\right\}$
$D=\{R, G, B\}$
$C=\left\{\left(V_{1}, V_{2}\right):\{(R, G),(R, B),(G, R),(G, B),(B, R)(B, G)\}\right.$, $\left\{\left(V_{1}, V_{3}\right):\{(R, G),(R, B),(G, R),(G, B),(B, R)(B, G)\}\right.$,
: \}

Obvious point: Usually C isn't represented explicitly, but by a function. Slide 4

How to solve our CSP?

-How about using a search algorithm?
-Define: a search state has variables $1 \ldots k$ assigned. Values $k+1 \ldots n$, as yet unassigned.

- Start state: All unassigned.
- Goal state: All assigned, and all constraints satisfied.
- Successors of a stated with $V_{1} \ldots V_{k}$ assigned and rest unassigned are all states (with $V_{1} \ldots V_{k}$ the same) with V_{k+1} assigned a value from D. - Cost on transitions: 0 is fine. We don't care. We just want any solution.

How to solve our CSP?

START $=\left(V_{1}=\right.$? $V_{2}=$? $V_{3}=$? $V_{4}=$? $V_{5}=$? $V_{6}=$? $)$ $\operatorname{succs}($ START $)=$
$\left(V_{1}=R \quad V_{2}=\right.$? $V_{3}=$? $V_{4}=$? $V_{5}=$? $V_{6}=$? $)$ $\left(V_{1}=G V_{2}=? V_{3}=\right.$? $V_{4}=$? $V_{5}=? V_{6}=$? $)$ $\left(V_{1}=B V_{2}=\right.$? $V_{3}=? V_{4}=$? $V_{5}=$? $V_{6}=$? $)$
What search algorithms could we use?
It turns out BFS is not a popular choice. Why not?

What about DFS?
Much more popular. At least it has a chance of finding an easy answer quickly.
What happens if we do DFS with the order of assignments as B tried first, then G then R ?
This makes DFS look very, very stupid!

Obvious improvement - Forward Checking

At start, for each variable, record the current set of possible legal values for it.
When you assign a value in the search, update set of legal values for all variables. Backtrack immediately if you empty a variable's constraint set.

Again, what happens if we do DFS with the order of assignments as B tried first, then G then R ?
What's the computational overhead?
Slide 9

Blindingly obvious improvement Consistency Checking: "Backtracking Search"

Don't ever try successor which causes inconsistency with its neighbors Again, what happens if we do DFS with the order of assignments as B tried first, then G then R ?
What's the computational overhead for this?
Backtracking still looks a little stupid!

Constraint Propagation

Forward checking computes the domain of each variable independently at the start, and then only updates these domains when assignments are made in the DFS that are directly relevant to the current variable.
Constraint Propagation carries this further. When you delete a value from your domain, check all variables connected to you. If any of them change, delete all inconsistent values connected to them, etc...
Often constraint propagation is only performed at the start. In our example it is useless. But...

Constraint Propagation being non-useless

- In this example, constraint propagation solves the problem without search ... Not always that lucky!
- Constraint propagation can be done as a preprocessing step. (Cheap).
- Or it can be maintained dynamically during the search. Expensive: when you backtrack, you must undo some of your additional constraints.

Graph-coloring-specific Constraint Propagation

In the case of Graph Coloring, CP looks simple: after we've made a search step (instantiated a node with a color), propagate the color at that node.

PropagateColorAtNode(node,color)

1. remove color from all of "available lists" of our uninstantiated neighbors
2. If any of these neighbors gets the empty set, it's time to backtrack.
3. Foreach n in these neighbors: if n previously had two or more available colors but now has only one color c , run PropagateColorAtNode(n,c)

Graph-coloring-specific Constraint Propagation

In the case of Graph Coloring, CP looks simple: after we've made a search step (instantiated a node with a color), propagate the color at that node.

PropagateColorAtNode(node,color)

1. remove color from all of "available lists" of our uninstantiated neighbors.
2. If any of these noial But for General 3. propagation can do much mo gets a unique e propagating when a node gets a unique. P propag

General Constraint Propagation	
We'll keep iterating until we do a full iteration in which none of the availability lists change. The "finished" flag is just to record whether a change took place.	haller by that intersection SE 're toast. Break out with "Backtrack" signal. Slide 16

General Constraint Pronadation Propagate $\left(A_{1}, A_{2}, \ldots A_{n}\right)$ $N e w A_{i}$ is going to be filled up with the possible values for finished $=$ FALSE variable V_{i} taking into account while not finished the effects of constraint C finished = TRUE foreach constraint C Assume C concemis variables $V_{1}, V_{2}, \ldots V_{k}$ Set NewA ${ }_{V 1}=\{ \}$, NewA $_{V 2}=\{ \}, \ldots$ NewA $_{V k}=\{ \}$ Foreach assignment $\left(V_{1}=x_{1}, V_{2}=x_{2}, \ldots V_{\mathrm{k}}=x_{\mathrm{k}}\right)$ in C If x_{1} in $A_{\mathrm{V} 1}$ and x_{2} in $A_{\mathrm{V} 2}$ and $\ldots x_{\mathrm{k}}$ in A_{Vk} Add x_{1} to NewA ${ }_{\mathrm{V}_{1}}, x_{2}$ to NewA ${ }_{2} . . . x_{1}$ to NewA. for $i=1$, After we've finished all the $A_{v_{i}}:=A_{v_{i}}$ intersectiormo If $A_{v_{i}}$ was made smaller by that inte iterations of the foreach loop, NewA contains the full set of possible values of finished = FALSE variable V_{i} taking into If $A_{V_{i}}$ is empty, we're toast. Break account the effects of constraint C.

Propagate on Semi-magic Square

- The semi magic square
- Each variable can have value 1,2 or 3

1	123	123	$\psi^{\text {This row must }}$ sum to 6
123	123	123	This row must
123	123	123	This row must
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

After doing first row constraint...

1	23	23	$\left\langle\begin{array}{r}\text { This row must } \\ \text { sum to } 6\end{array}\right.$
123	123	123	$\left\langle\quad \begin{array}{r}\text { This row must } \\ \text { sum to } 6\end{array}\right.$
123	123	123	$\left\langle\begin{array}{r}\text { This row must } \\ \text { sum to } 6\end{array}\right.$
This column must sum to 6	This column must sum to 6	This column must sum to 6	This diagonal must sum to 6

After doing all row constraints and column constraints...

1	23	23	\langle This row must
sum to 6			

And after doing diagonal constraint...

1	23	23	$\left\langle\zeta \begin{array}{r}\text { This row must } \\ \text { sum to } 6\end{array}\right.$
23	23	123	$\left\langle\begin{array}{r}\text { This row must } \\ \text { sum to } 6\end{array}\right.$
23	123	23	$\left\langle\psi^{\text {This row must }}\right.$
sum to 6			

CP has now iterated through all constraints once. But does it make further progress when it tries iterating through them again?

CSP Search with Constraint Propagation

CSP Search with Constraint Propagation
$\operatorname{CPSearch}\left(A_{1}, A_{2}, \ldots A_{n}\right)$
Let $\mathrm{i}=$ lowest index such that A_{i} has more than one value foreach available value x in A_{i}
foreach k in 1, 2.. n
Define $A_{k}^{\prime}:=A_{k}$
$A_{i}^{\prime}:=\{\mathrm{x}\}$
Call Propagate $\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}\right)$
If no "Backtrack" signal
If $A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}$ are all unique we're done! Recursively Call CPSearch $\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}\right)$

What's the top-level call?
Call with that $A_{i}=$ complete set of possible values for V_{i}.
Slide 29

CSP Search with Constraint Propagation
$\operatorname{CPSearch}\left(A_{1}, A_{2}, \ldots A_{n}\right)$
Let $\mathrm{i}=$ lowest index such that A_{i} has more than one value foreach available value x in A_{i}
foreach k in 1, 2.. n
Define $A_{k}^{\prime}:=A_{k}$
$A_{i}^{\prime}:=\{x\}$
Call Propagate $\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}\right)$
If no "Backtrack" signal
If $A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}$ are all unique we're done! Recursively Call CPSearch $\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}\right)$
$\operatorname{CPSearch}\left(A_{1}, A_{2}, \ldots A_{n}\right)$
Let $\mathrm{i}=$ lowest index such that A_{i} has more than one value
foreach available value x in A_{i}
foreach k in 1, 2.. n
Define $A_{k}^{\prime}:=A_{k}$
$A_{i}^{\prime}:=\{x\}$
Call Propagate $\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}\right)$
If no "Backtrack" signal
If $A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{\mathrm{n}}^{\prime}$ are all unique we're done! Recursively Call CPSearch $\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{\mathrm{n}}^{\prime}\right)$

What's the top-level call?
What's the top-level call?

CSP Search with Constraint Propagation
CPSearch $\left(A_{1}, A_{2}, \ldots A_{n}\right)$ Let $\mathrm{i}=$ lowest index such that A_{i} has more than one value foreach available value x in A_{i} foreach k in $1,2 \ldots \mathrm{n}$ Define $A_{\mathrm{k}}^{\prime}:=A_{\mathrm{k}}$
$A_{\mathrm{i}}^{\prime}:=\{\mathrm{x}\}$ Call Propagate $\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{\mathrm{n}}^{\prime}\right)$ If no "Backtrack" signal If $A_{1}^{\prime}, A_{2}^{\prime}, \ldots A_{n}^{\prime}$ are all unique we're done! Recursively Call CPSearch $\left(A_{1}^{\prime}, A^{\prime}{ }_{2}, \ldots A_{n}^{\prime}\right)$
What's the top-level call?
Call with that $A_{\mathrm{i}}=$ complete set of possible values for V_{i}.

Semi-magic Square CPSearch Tree					123 123 123	123 123 123	123 123 123			
			23	23	2	123	123	3	12	12
			23	12	123	123	123	12	12	23
			12	23	123	123	123	12	23	12
1	2	3		13	2					
2	3	1		32	1					
3	1			2 1	3					
Slide 30										

＂Minesweeper＂CSP

$V=\left\{V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}, V_{7}, V_{8}\right\}, D=\{B$（bomb）,$S$（space）$\}$ $C=\left\{\left(V_{1}, V_{2}\right):\{(B, S),(S, B)\},\left(V_{1}, V_{2}, V_{3}\right):\{(B, S, S),(S, B, S),(S, S, B)\}, \ldots\right\}$

Some real CSPs

－Graph coloring is a real，and useful，CSP．Applied to problems with many hundreds of thousands of nodes． Not very AI－esque．
－VLSI or PCB board layout．
－Selecting a move in the game of＂minesweeper＂．

Which squares have a bomb？Squares with numbers don＇t．Other squares might．Numbers tell how many of the eight adjacent squares have bombs．We want to find out if a given square can possibly have a bomb．．．

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP The Waltz algorithm is for interpreting line drawings of solid polyhedra．

Look at all intersections．
What kind of intersection could this be？A concave intersection of three faces？Or an external convex intersection？

Adjacent intersections impose constraints on each other．Use CSP to find a unique set of labelings．Important step to＂understanding＂the image．

Waltz Alg．on simple scenes

Assume all objects：
－Have no shadows or cracks
－Three－faced vertices
－＂General position＂：no junctions change with small movements of the eye．
Then each line on image is one of the following：
－Boundary line（edge of an object）（＜）with right hand of arrow denoting ＂solid＂and left hand denoting＂space＂
－Interior convex edge（＋）
－Interior concave edge（－）

18 legal kinds of junctions
Kん＊ォ＋ォ

$7+$ manners
The junctions must be labeled so that lines are labeled consistently at both ends．
Can you formulate that as a CSP？FUN FACT：Constraint Propagation always works perfectly．

Scheduling

A very big, important use of CSP methods.

- Used in many industries. Makes many multi-million dollar decisions.
- Used extensively for space mission planning.
- Military uses.

People really care about improving scheduling algorithms!
Problems with phenomenally huge state spaces. But for which solutions are needed very quickly.
Many kinds of scheduling problems e.g.:

* Job shop: Discrete time; weird ordering of operations possible; set of separate jobs.
* Batch shop: Discrete or continuous time; restricted operation of ordering; grouping is important.
* Manufacturing cell: Discrete, automated version of open job shop.

Job Shop Formalized

A Job Shop problem is a pair (J, RES)
J is a set of jobs $J=\left\{j_{1}, j_{2}, \ldots j_{n}\right\}$
RES is a set of resources RES $=\left\{R_{1} . . R_{m}\right\}$
Each job j, is specified by:

- a set of operations $O^{\prime}=\left\{O_{1}^{\prime} O_{2}^{\prime} \ldots O_{n(1)}^{\prime}\right\}$
- and must be carried out between release-date $r d_{l}$ and due-date $d d_{l}$.
- and a partial order of operations: $\left(O_{i}^{\prime}\right.$ before $\left.O_{j}^{\prime}\right)$, $\left(O_{i}^{\prime}\right.$, before $\left.O_{j}^{\prime}\right)$, etc.

Each operation O_{i}^{\prime} has a variable start time $s t_{i}^{\prime}$ and a fixed duration $d u_{i}^{\prime}$ and requires a set of resources. e.g.: O_{i}^{\prime} requires $\left\{R_{i 1}^{\prime}, R_{i 2}^{\prime} \cdots\right\}$.

Each resource can be accomplished by one of several possible physical resources, e.g. $R_{i 1}^{\prime}$ might be accomplished by any one of $\left\{r_{i j 1}^{\prime}, r_{i j 2}^{\prime}, \ldots\right\}$. Each of the $r_{i j k} \mathrm{~s}$ are a member of RES

Job Shop Example

```
j}=\mathrm{ polished-hole-thing ={ O}\mp@subsup{}{1}{1},\mp@subsup{O}{1}{1}\mp@subsup{}{2}{}
j}\mp@subsup{j}{2}{}=\mathrm{ painted-hole-widget ={OO
RES = { Pat,Chris,Drill,Paint,Drill,Polisher }
O}\mp@subsup{}{1}{\prime}=\mathrm{ polish-thing: need resources..
            { R 1 }\mp@subsup{}{11}{}=\mathrm{ Pat , R'12 = Polisher }
O}\mp@subsup{}{2}{2}=\mathrm{ drill-thing: need resources..
```



```
O2
            { R 2}\mp@subsup{}{11}{}=\mathrm{ Paint }
O2}\mp@subsup{}{2}{}=\mathrm{ drill-widget : need resources.
```



```
Precedence constraints: O}\mp@subsup{}{2}{2}\mathrm{ before O}\mp@subsup{O}{1}{2}\mathrm{ . All operations take one time unit du}\mp@subsup{}{i}{\prime
=1 forall i,l. Both jobs have release-date rd}\mp@subsup{|}{}{\prime}=0\mathrm{ and due-date }d\mp@subsup{d}{}{\prime\prime}=1\mathrm{ .
```


Job-shop: the Variables and Constraints

Variables

- The operation state times st ${ }_{i}$
- The resources R^{\prime} (usually these are obvious from the definition of O_{i}^{\prime}. Only need to be assigned values when there are alternative physical resources available, e.g. Pat or Chris for operating the dril) Constraints:
- Precedence constraints. (Some $O_{i}^{\prime} \mathrm{s}$ must be before some other $\mathrm{O}^{\prime} \mathrm{s}$).
- Capacity constraints. There must never be a pair of operations with overlapping periods of operation that use the same resources.

Non-challenging question. Can you schedule our Job-shop?

Further CSP techniques

Let's look at some other important CSP methods. Keep the job-shop example in mind.
Here's another graph-coloring example (you're now allowed R, G, B and Y)

General purpose Value Ordering Heuristics

A good general purpose one is "least-constrained-value". Choose the value which causes the smallest reduction in number of available values for neighboring variables

General purpose CSP algorithm

(From Sadeh+Fox)

1. If all values have been successfully assigned then stop, else go on to 2.
2. Apply the consistency enforcing procedure (e.g. forward-checking if feeling computationally mean, or constraint propagation if extravagant. There are other possibilities, too.)
3. If a deadend is detected then backtrack (simplest case: DFS-type backtrack. Other options can be tried, too). Else go on to step 4.
4. Select the next variable to be assigned (using your variable ordering heuristic).
5. Select a promising value (using your value ordering heuristic).
6. Create a new search state. Cache the info you need for backtracking. And go back to 1.

Job-shop example. Consistency enforcement

Sadeh claims that generally forward-checking is better, computationally, than full constraint propagation. But it can be supplemented with a Job-shop specific TRICK.

The precedence constraints (i.e. the available times for the operations to start due to the ordering of operations) can be computed exactly, given a partial schedule, very efficiently.

Other approaches. And What You Should Know

Other Approaches:
> Hill-climbing, Tabu-search, Simulated annealing, Genetic Algorithms. (to be discussed later)
What you should know:
\checkmark How to formalize problems as CSPs
\checkmark Backtracking Search, Forward Checking, Constraint Propagation
\checkmark The Waltz algorithm
\checkmark You should understand and appreciate the way job-shop scheduling is formalized. It is an excellent representative example of how important well-studied constraint satisfaction problems are represented.
\checkmark Understand examples of Variable ordering and Value ordering heuristics
in those cases where your lecturer or these handouts are too incomprehensible, consult the Russell and Norvig. Winston's "Artificial Intelligence" book also has

Reactive CSP solutions

- Say you have built a large schedule.
- Disaster! Halfway through execution, one of the resources breaks down. We have to reschedule!
- Bad to have to wait 15 minutes for the scheduler to make a new suggestion.

Important area of research: efficient schedule repair algorithms.

- Question: If you expect that resources may sometimes break, what could a scheduling program do to take that into account?
- Unrelated Question: Why has none of this lecture used A^{*} ?

