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What we’ll discuss

• Recall the numerous and dramatic benefits 
of Joint Distributions for describing uncertain 
worlds

• Reel with terror at the problem with using 
Joint Distributions

• Discover how Bayes Net methodology 
allows us to built Joint Distributions in 
manageable chunks

• Discover there’s still a lurking problem…
• …Start to solve that problem
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Why this matters
• In Andrew’s opinion, the most important 

technology in the Machine Learning / AI field 
to have emerged in the last 10 years.

• A clean, clear, manageable language and 
methodology for expressing what you’re 
certain and uncertain about

• Already, many practical applications in 
medicine, factories, helpdesks:

P(this problem | these symptoms)
anomalousness of this observation
choosing next diagnostic test | these observations
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Why this matters
• In Andrew’s opinion, the most important 

technology in the Machine Learning / AI field 
to have emerged in the last 10 years.

• A clean, clear, manageable language and 
methodology for expressing what you’re 
certain and uncertain about

• Already, many practical applications in 
medicine, factories, helpdesks:

P(this problem | these symptoms)
anomalousness of this observation
choosing next diagnostic test | these observations

Anomaly 
Detection

Inference

Active Data 
Collection
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Why Probability?
• There have been attempts to do different 

methodologies for uncertainty
• Fuzzy Logic
• Three-valued logic
• Dempster-Shafer
• Non-monotonic reasoning

• But the axioms of probability are the only 
system with this property: 
If you gamble using them you can’t be unfairly exploited by 
an opponent using some other system [di Finetti 1931]
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Definition of Conditional Probability

P(A ^ B) 
P(A|B)  =  -----------

P(B) 

Corollary: The Chain Rule
P(A ^ B) = P(A|B) P(B) 
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Bayes Rule
P(A ^ B)     P(A|B) P(B)

P(B|A) = ----------- = ---------------
P(A)             P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions 
of the Royal Society of London, 53:370-
418
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More General Forms of Bayes Rule
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More General Forms of Bayes Rule
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The Joint Distribution

Recipe for making a joint distribution 
of M variables:

1. Make a truth table listing all 
combinations of values of your 
variables (if there are M Boolean 
variables then the table will have 
2M rows).

2. For each combination of values, 
say how probable it is.

3. If you subscribe to the axioms of 
probability, those numbers must 
sum to 1.

Example: Boolean 
variables A, B, C

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

A

B

C0.05
0.25

0.10 0.050.05

0.10

0.10
0.30
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Joint distributions
• Good news

Once you have a joint 
distribution, you can 
ask important 
questions about 
stuff that involves a 
lot of uncertainty

• Bad news
Impossible to create 

for more than about 
ten attributes 
because there are 
so many numbers 
needed when you 
build the damn 
thing.
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Using fewer numbers
Suppose there are two events:

• M: Manuela teaches the class (otherwise it’s Andrew)
• S: It is sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we’ll have to invent those 
four numbers.  OR WILL WE??
• We don’t have to specify with bottom level conjunctive 

events such as P(~M^S) IF…
• …instead it may sometimes be more convenient for us 

to specify things like: P(M), P(S).
But just P(M) and  P(S) don’t derive the joint distribution.  So 

you can’t answer all questions.
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Using fewer numbers
Suppose there are two events:

• M: Manuela teaches the class (otherwise it’s Andrew)
• S: It is sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we’ll have to invent those 
four numbers.  OR WILL WE??
• We don’t have to specify with bottom level conjunctive 

events such as P(~M^S) IF…
• …instead it may sometimes be more convenient for us 

to specify things like: P(M), P(S).
But just P(M) and  P(S) don’t derive the joint distribution.  So 

you can’t answer all questions.

What extra assumption can you 

make?
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Independence
“The sunshine levels do not depend on and do not 
influence who is teaching.”

This can be specified very simply:
P(S ⏐ M) = P(S)

This is a powerful statement!

It required extra domain knowledge. A different kind 
of knowledge than numerical probabilities.  It needed 
an understanding of causation.
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Independence
From  P(S ⏐ M) = P(S), the rules of probability imply:  (can 
you prove these?)

• P(~S ⏐ M) = P(~S)

• P(M ⏐ S) = P(M)

• P(M ^ S) = P(M) P(S)

• P(~M ^ S) = P(~M) P(S), (PM^~S) = P(M)P(~S),
P(~M^~S) = P(~M)P(~S)
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Independence
From  P(S ⏐ M) = P(S), the rules of probability imply:  (can 
you prove these?)

• P(~S ⏐ M) = P(~S)

• P(M ⏐ S) = P(M)

• P(M ^ S) = P(M) P(S)

• P(~M ^ S) = P(~M) P(S), (PM^~S) = P(M)P(~S),
P(~M^~S) = P(~M)P(~S)

And in general:

P(M=u ^ S=v) = P(M=u) P(S=v)

for each of the four combinations of

u=True/False

v=True/False
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Independence
We’ve stated:

P(M) = 0.6
P(S) = 0.3
P(S ⏐ M) = P(S)

FF
TF

FT
TT

ProbSM

And since we now have the joint pdf, we can make 
any queries we like.

From these statements, we can 
derive the full joint pdf.
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A more interesting case
• M : Manuela teaches the class
• S : It is sunny
• L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad 
weather. Andrew is more likely to arrive late than Manuela.
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A more interesting case
• M : Manuela teaches the class
• S : It is sunny
• L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad 
weather. Andrew is more likely to arrive late than Manuela.

Let’s begin with writing down knowledge we’re happy about:
P(S ⏐ M) = P(S), P(S) = 0.3,   P(M) = 0.6

Lateness is not independent of the weather and is not 
independent of the lecturer.  
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A more interesting case
• M : Manuela teaches the class
• S : It is sunny
• L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad 
weather. Andrew is more likely to arrive late than Manuela.

Let’s begin with writing down knowledge we’re happy about:
P(S ⏐ M) = P(S), P(S) = 0.3,   P(M) = 0.6

Lateness is not independent of the weather and is not 
independent of the lecturer.  

We already know the Joint of S and M, so all we need now is
P(L ⏐ S=u, M=v)

in the 4 cases of u/v = True/False.
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A more interesting case
• M : Manuela teaches the class
• S : It is sunny
• L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad 
weather. Andrew is more likely to arrive late than Manuela.

P(S ⏐ M) = P(S)
P(S) = 0.3
P(M) = 0.6

P(L ⏐ M ^ S) = 0.05
P(L ⏐ M ^ ~S) = 0.1
P(L ⏐ ~M ^ S) = 0.1
P(L ⏐ ~M ^ ~S) = 0.2

Now we can derive a full joint 
p.d.f. with a “mere” six numbers 
instead of seven*

*Savings are larger for larger numbers of variables.
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A more interesting case
• M : Manuela teaches the class
• S : It is sunny
• L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad 
weather. Andrew is more likely to arrive late than Manuela.

P(S ⏐ M) = P(S)
P(S) = 0.3
P(M) = 0.6

P(L ⏐ M ^ S) = 0.05
P(L ⏐ M ^ ~S) = 0.1
P(L ⏐ ~M ^ S) = 0.1
P(L ⏐ ~M ^ ~S) = 0.2

Question:  Express
P(L=x ^ M=y ^ S=z)

in terms that only need the above 
expressions, where x,y and z may 
each be True or False.
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A bit of notation
P(S ⏐ M) = P(S)
P(S) = 0.3
P(M) = 0.6

P(L ⏐ M ^ S) = 0.05
P(L ⏐ M ^ ~S) = 0.1
P(L ⏐ ~M ^ S) = 0.1
P(L ⏐ ~M ^ ~S) = 0.2

S M

L

P(s)=0.3
P(M)=0.6

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2
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A bit of notation
P(S ⏐ M) = P(S)
P(S) = 0.3
P(M) = 0.6

P(L ⏐ M ^ S) = 0.05
P(L ⏐ M ^ ~S) = 0.1
P(L ⏐ ~M ^ S) = 0.1
P(L ⏐ ~M ^ ~S) = 0.2

S M

L

P(s)=0.3
P(M)=0.6

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2

Read the absence of an arrow 
between S and M to mean “it 

would not help me predict M if I 
knew the value of S”

Read the two arrows into L to 
mean that if I want to know the 

value of L it may help me to 
know M and to know S.

This kind of stuff w
ill be 

thoroughly form
alized later
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An even cuter trick
Suppose we have these three events:
• M : Lecture taught by Manuela
• L : Lecturer arrives late
• R : Lecture concerns robots
Suppose:
• Andrew has a higher chance of being late than Manuela.
• Andrew has a higher chance of giving robotics lectures.
What kind of independence can we find?

How about:
• P(L ⏐ M) = P(L) ?
• P(R ⏐ M) = P(R) ?
• P(L ⏐ R) = P(L) ?
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Conditional independence
Once you know who the lecturer is, then whether 
they arrive late doesn’t affect whether the lecture 
concerns robots.

P(R ⏐ M,L) = P(R ⏐ M) and
P(R ⏐ ~M,L) = P(R ⏐ ~M)

We express this in the following way:

“R and L are conditionally independent given M”
M

L R
Given knowledge of M, 
knowing anything else in 
the diagram won’t help 
us with L, etc.

..which is also 
notated by the 
following diagram.
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Conditional Independence formalized
R and L are conditionally independent given M if
for all x,y,z in {T,F}:

P(R=x ⏐ M=y ^ L=z) = P(R=x ⏐ M=y)

More generally:
Let S1 and S2 and S3 be sets of variables.

Set-of-variables S1 and set-of-variables S2 are 
conditionally independent given S3 if for all 
assignments of values to the variables in the sets,

P(S1’s assignments ⏐ S2’s assignments & S3’s assignments)= 
P(S1’s assignments ⏐ S3’s assignments)
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Example:

R and L are conditionally independent given M if
for all x,y,z in {T,F}:

P(R=x ⏐ M=y ^ L=z) = P(R=x ⏐ M=y)

More generally:
Let S1 and S2 and S3 be sets of variables.

Set-of-variables S1 and set-of-variables S2 are 
conditionally independent given S3 if for all 
assignments of values to the variables in the sets,

P(S1’s assignments ⏐ S2’s assignments & S3’s assignments)= 
P(S1’s assignments ⏐ S3’s assignments)

“Shoe-size is conditionally independent of Glove-size given 
height weight and age”

means
forall s,g,h,w,a

P(ShoeSize=s|Height=h,Weight=w,Age=a)
=

P(ShoeSize=s|Height=h,Weight=w,Age=a,GloveSize=g)
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Example:

R and L are conditionally independent given M if
for all x,y,z in {T,F}:

P(R=x ⏐ M=y ^ L=z) = P(R=x ⏐ M=y)

More generally:
Let S1 and S2 and S3 be sets of variables.

Set-of-variables S1 and set-of-variables S2 are 
conditionally independent given S3 if for all 
assignments of values to the variables in the sets,

P(S1’s assignments ⏐ S2’s assignments & S3’s assignments)= 
P(S1’s assignments ⏐ S3’s assignments)

“Shoe-size is conditionally independent of Glove-size given 
height weight and age”

does not mean
forall s,g,h

P(ShoeSize=s|Height=h)
=

P(ShoeSize=s|Height=h, GloveSize=g)
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Conditional 
independence

M

L R

We can write down P(M).  And then, since we know 
L is only directly influenced by M, we can write 
down the values of P(L⏐M) and P(L⏐~M) and know 
we’ve fully specified L’s behavior.  Ditto for R.

P(M) = 0.6
P(L ⏐ M) = 0.085
P(L ⏐ ~M) = 0.17
P(R ⏐ M) = 0.3
P(R ⏐ ~M) = 0.6

‘R and L conditionally 
independent given M’
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Conditional independence
M

L R
P(M) = 0.6
P(L ⏐ M) = 0.085
P(L ⏐ ~M) = 0.17
P(R ⏐ M) = 0.3
P(R ⏐ ~M) = 0.6

Conditional Independence:

P(R⏐M,L) = P(R⏐M),

P(R⏐~M,L) = P(R⏐~M)

Again, we can obtain any member of the Joint 
prob dist that we desire:

P(L=x ^ R=y ^ M=z) =
Copyright © 2001, Andrew W. Moore Bayes Nets: Slide 32

Assume five variables
T: The lecture started by 10:35
L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: It is sunny

• T only directly influenced by L (i.e. T is 
conditionally independent of R,M,S given L)

• L only directly influenced by M and S (i.e. L is 
conditionally independent of R given M & S)

• R only directly influenced by M (i.e. R is 
conditionally independent of L,S, given M)

• M and S are independent
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Making a Bayes net

S M

R
L

T

Step One: add variables.
• Just choose the variables you’d like to be included in the 

net.

T: The lecture started by 10:35
L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: It is sunny
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Making a Bayes net

S M

R
L

T

Step Two: add links.
• The link structure must be acyclic.
• If node X is given parents Q1,Q2,..Qn you are promising 

that any variable that’s a non-descendent of X is 
conditionally independent of X given {Q1,Q2,..Qn}

T: The lecture started by 10:35
L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: It is sunny
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Making a Bayes net

S M

R
L

T

P(s)=0.3
P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2

Step Three: add a probability table for each node.
• The table for node X must list P(X|Parent Values) for each 

possible combination of parent values

T: The lecture started by 10:35
L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: It is sunny
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Making a Bayes net

S M

R
L

T

P(s)=0.3
P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2

• Two unconnected variables may still be correlated
• Each node is conditionally independent of all non-

descendants in the tree, given its parents.
• You can deduce many other conditional independence 

relations from a Bayes net. See the next lecture.

T: The lecture started by 10:35
L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: It is sunny
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Bayes Nets Formalized
A Bayes net (also called a belief network) is an 
augmented directed acyclic graph, represented by 
the pair V , E where:

• V is a set of vertices.
• E is a set of directed edges joining vertices.  No 

loops of any length are allowed.

Each vertex in V contains the following information:
• The name of a random variable
• A probability distribution table indicating how the 

probability of this variable’s values depends on 
all possible combinations of parental values.
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Building a Bayes Net
1. Choose a set of relevant variables.
2. Choose an ordering for them
3. Assume they’re called X1 .. Xm (where X1 is the 

first in the ordering, X1  is the second, etc)
4. For i = 1 to m:

1. Add the Xi node to the network
2. Set Parents(Xi ) to be a minimal subset of 

{X1…Xi-1} such that we have conditional 
independence of Xi and all other members of 
{X1…Xi-1} given Parents(Xi )

3. Define the probability table of 
P(Xi =k ⏐ Assignments of Parents(Xi ) ).
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Example Bayes Net Building
Suppose we’re building a nuclear power station.
There are the following random variables:

GRL : Gauge Reads Low.
CTL : Core temperature is low.
FG : Gauge is faulty.
FA : Alarm is faulty
AS : Alarm sounds

• If alarm working properly, the alarm is meant to 
sound if the gauge stops reading a low temp.

• If gauge working properly, the gauge is meant to 
read the temp of the core.
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Computing a Joint Entry
How to compute an entry in a joint distribution?
E.G: What is P(S ^ ~M ^ L ~R ^ T)?

S M

R
L

T

P(s)=0.3
P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2
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Computing with Bayes Net

P(T ^ ~R ^ L ^ ~M ^ S) =
P(T ⏐ ~R ^ L ^ ~M ^ S) * P(~R ^ L ^ ~M ^ S) = 
P(T ⏐ L) *  P(~R ^ L ^ ~M ^ S) =
P(T ⏐ L) *  P(~R ⏐ L ^ ~M ^ S) * P(L^~M^S) =
P(T ⏐ L) *  P(~R ⏐ ~M) * P(L^~M^S) =
P(T ⏐ L) *  P(~R ⏐ ~M) * P(L⏐~M^S)*P(~M^S) =
P(T ⏐ L) *  P(~R ⏐ ~M) * P(L⏐~M^S)*P(~M | S)*P(S) =
P(T ⏐ L) *  P(~R ⏐ ~M) * P(L⏐~M^S)*P(~M)*P(S).

S M

R
L

T

P(s)=0.3 P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2
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The general case
P(X1

=x1 ^ X2=x2 ^ ….Xn-1=xn-1 ^ Xn=xn) =
P(Xn=xn ^ Xn-1=xn-1 ^ ….X2=x2 ^ X1=x1) =
P(Xn=xn ⏐ Xn-1=xn-1 ^ ….X2=x2 ^ X1=x1) * P(Xn-1=xn-1 ^…. X2=x2 ^ X1=x1) =
P(Xn=xn ⏐ Xn-1=xn-1 ^ ….X2=x2 ^ X1=x1) * P(Xn-1=xn-1 ⏐…. X2=x2 ^ X1=x1) *
P(Xn-2=xn-2 ^…. X2=x2 ^ X1=x1) =

:
:

=
( ) ( ) ( )( )( )

( ) ( )( )∏

∏

=

=
−−

=

=

=∧==

n

i
iii

n

i
iiii

XxXP

xXxXxXP

1

1
1111

Parents of sAssignment

K

So any entry in joint pdf table can be computed. And so any 
conditional probability can be computed.
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Where are we now?
• We have a methodology for building Bayes nets.
• We don’t require exponential storage to hold our probability 

table.  Only exponential in the maximum number of parents 
of any node.

• We can compute probabilities of any given assignment of 
truth values to the variables.  And we can do it in time 
linear with the number of nodes.

• So we can also compute answers to any questions.

E.G. What could we do to compute P(R ⏐ T,~S)?

S M

R
L

T

P(s)=0.3 P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2
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Where are we now?
• We have a methodology for building Bayes nets.
• We don’t require exponential storage to hold our probability 

table.  Only exponential in the maximum number of parents 
of any node.

• We can compute probabilities of any given assignment of 
truth values to the variables.  And we can do it in time 
linear with the number of nodes.

• So we can also compute answers to any questions.

E.G. What could we do to compute P(R ⏐ T,~S)?

S M

R
L

T

P(s)=0.3 P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2

Step 1: Compute P(R ^ T ^ ~S)

Step 2: Compute P(~R ^ T ^ ~S)

Step 3: Return

P(R ^ T ^ ~S)
-------------------------------------

P(R ^ T ^ ~S)+ P(~R ^ T ^ ~S)
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Where are we now?
• We have a methodology for building Bayes nets.
• We don’t require exponential storage to hold our probability 

table.  Only exponential in the maximum number of parents 
of any node.

• We can compute probabilities of any given assignment of 
truth values to the variables.  And we can do it in time 
linear with the number of nodes.

• So we can also compute answers to any questions.

E.G. What could we do to compute P(R ⏐ T,~S)?

S M

R
L

T

P(s)=0.3 P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2

Step 1: Compute P(R ^ T ^ ~S)

Step 2: Compute P(~R ^ T ^ ~S)

Step 3: Return

P(R ^ T ^ ~S)
-------------------------------------

P(R ^ T ^ ~S)+ P(~R ^ T ^ ~S)

Sum of all the rows in the Joint 
that match R ^ T ^ ~S

Sum of all the rows in the Joint 
that match ~R ^ T ^ ~S
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Where are we now?
• We have a methodology for building Bayes nets.
• We don’t require exponential storage to hold our probability 

table.  Only exponential in the maximum number of parents 
of any node.

• We can compute probabilities of any given assignment of 
truth values to the variables.  And we can do it in time 
linear with the number of nodes.

• So we can also compute answers to any questions.

E.G. What could we do to compute P(R ⏐ T,~S)?

S M

R
L

T

P(s)=0.3 P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2

Step 1: Compute P(R ^ T ^ ~S)

Step 2: Compute P(~R ^ T ^ ~S)

Step 3: Return

P(R ^ T ^ ~S)
-------------------------------------

P(R ^ T ^ ~S)+ P(~R ^ T ^ ~S)

Sum of all the rows in the Joint 
that match R ^ T ^ ~S

Sum of all the rows in the Joint 
that match ~R ^ T ^ ~S

Each of these obtained by 
the “computing a joint 
probability entry” method of 
the earlier slides

4 joint computes

4 joint computes
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The good news
We can do inference. We can compute any 

conditional probability:
P( Some variable ⏐ Some other variable values )
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The good news
We can do inference. We can compute any 

conditional probability:
P( Some variable ⏐ Some other variable values )
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∑
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 and matching entriesjoint 
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Suppose you have m binary-valued variables in your Bayes 
Net and expression E2 mentions k variables.

How much work is the above computation?
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The sad, bad news
Conditional probabilities by enumerating all matching entries 

in the joint are expensive:

Exponential in the number of variables.
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The sad, bad news
Conditional probabilities by enumerating all matching entries 

in the joint are expensive:

Exponential in the number of variables.

But perhaps there are faster ways of querying Bayes nets?
• In fact, if I ever ask you to manually do a Bayes Net 

inference, you’ll find there are often many tricks to save you 
time.

• So we’ve just got to program our computer to do those tricks 
too, right?
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The sad, bad news
Conditional probabilities by enumerating all matching entries 

in the joint are expensive:

Exponential in the number of variables.

But perhaps there are faster ways of querying Bayes nets?
• In fact, if I ever ask you to manually do a Bayes Net 

inference, you’ll find there are often many tricks to save you 
time.

• So we’ve just got to program our computer to do those tricks 
too, right?

Sadder and worse news:
General querying of Bayes nets is NP-complete.
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Bayes nets inference algorithms
A poly-tree is a directed acyclic graph in which no two nodes have more than one 
path between them.

A poly tree Not a poly tree
(but still a legal Bayes net)

S

RL

T

L

T

MSM

R

X1
X2

X4
X3

X5

X1 X2

X3

X5

X4

• If net is a poly-tree, there is a linear-time algorithm (see a later 
Andrew lecture).

• The best general-case algorithms convert a general net to a poly-
tree (often at huge expense) and calls the poly-tree algorithm.

• Another popular, practical approach (doesn’t assume poly-tree): 
Stochastic Simulation.
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Sampling from the Joint Distribution

It’s pretty easy to generate a set of variable-assignments at random with 
the same probability as the underlying joint distribution.

How?

S M

R
L

T

P(s)=0.3 P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2
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Sampling from the Joint Distribution

1.  Randomly choose S.  S = True with prob 0.3
2.  Randomly choose M.  M = True with prob 0.6
3.  Randomly choose L.  The probability that L is true 

depends on the assignments of S and M.  E.G. if steps 
1 and 2 had produced S=True, M=False, then 
probability that L is true is 0.1

4.  Randomly choose R.  Probability depends on M.
5.  Randomly choose T.  Probability depends on L

S M

R
L

T

P(s)=0.3 P(M)=0.6

P(R⏐M)=0.3
P(R⏐~M)=0.6

P(T⏐L)=0.3
P(T⏐~L)=0.8

P(L⏐M^S)=0.05
P(L⏐M^~S)=0.1
P(L⏐~M^S)=0.1
P(L⏐~M^~S)=0.2
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A general sampling algorithm
Let’s generalize the example on the previous slide to a general Bayes Net.

As in Slides 16-17 , call the variables X1 .. Xn, where Parents(Xi) must be a 
subset of {X1 .. Xi-1}.

For i=1 to n:
1. Find parents, if any, of Xi.  Assume n(i) parents.  Call them Xp(i,1), Xp(i,2), 

…Xp(i,n(i)).
2. Recall the values that those parents were randomly given: xp(i,1), xp(i,2), 

…xp(i,n(i)).
3. Look up in the lookup-table for:                                     

P(Xi=True ⏐ Xp(i,1)=xp(i,1),Xp(i,2)=xp(i,2)…Xp(i,n(i))=xp(i,n(i)))
4. Randomly set xi=True according to this probability

x1, x2,…xn are now a sample from the joint distribution of X1, X2,…Xn.
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Stochastic Simulation Example
Someone wants to know P(R = True ⏐ T = True ^ S = False )

We’ll do lots of random samplings and count the number of 
occurrences of the following:

• Nc : Num. samples in which T=True and S=False.
• Ns : Num. samples in which R=True, T=True and S=False.
• N : Number of random samplings

Now if N is big enough:
Nc /N is a good estimate of P(T=True and S=False).
Ns /N is a good estimate of P(R=True ,T=True , S=False).
P(R⏐T^~S) = P(R^T^~S)/P(T^~S), so Ns / Nc can be a good 
estimate of P(R⏐T^~S).
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General Stochastic Simulation
Someone wants to know P(E1 ⏐ E2 )

We’ll do lots of random samplings and count the number of 
occurrences of the following:

• Nc : Num. samples in which E2

• Ns : Num. samples in which E1 and E2

• N : Number of random samplings
Now if N is big enough:
Nc /N is a good estimate of P(E2).
Ns /N is a good estimate of P(E1 , E2).
P(E1 ⏐ E2) = P(E1^ E2)/P(E2), so Ns / Nc can be a good estimate 
of P(E1⏐ E2).
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Likelihood weighting

Problem with Stochastic Sampling:
With lots of constraints in E, or unlikely events in E, then most of the 
simulations will be thrown away, (they’ll have no effect on Nc, or Ns). 

Imagine we’re part way through our simulation.
In E2 we have the constraint Xi = v

We’re just about to generate a value for Xi at random.  Given the values 
assigned to the parents, we see that P(Xi = v ⏐ parents) = p .

Now we know that with stochastic sampling:

• we’ll generate “Xi = v” proportion p of the time, and proceed.

• And we’ll generate a different value proportion 1-p of the time, and the 
simulation will be wasted.

Instead, always generate Xi = v, but weight the answer by weight “p” to 
compensate. 
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Likelihood weighting
Set Nc :=0, Ns :=0
1. Generate a random assignment of all variables that 

matches E2.  This process returns a weight w.
2. Define w to be the probability that this assignment would 

have been generated instead of an unmatching 
assignment during its generation in the original 
algorithm.Fact: w is a product of all likelihood factors 
involved in the generation.

3. Nc := Nc + w
4. If our sample matches E1 then Ns := Ns + w
5. Go to 1
Again, Ns / Nc estimates P(E1 ⏐ E2 )
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What you should know
• The meanings and importance of independence 

and conditional independence.
• The definition of a Bayes net.
• Computing probabilities of assignments of 

variables (i.e. members of the joint p.d.f.) with a 
Bayes net.

• The slow (exponential) method for computing 
arbitrary, conditional probabilities.

• The stochastic simulation method and likelihood 
weighting.


