Bayes Nets for representing and reasoning about uncertainty

schers and users of frew would be delighted source material useful in lectures. Feel free to use stilling, or to modify them eeds. PowerPoint liable. If you make use ortion of these sides in please include this following link to the of Andrew's tutorials:

Andrew W. Moore Associate Professor School of Computer Science Carnegie Mellon University

> www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

Copyright © 2001, Andrew W. Moore

Oct 15th, 2001

What we'll discuss

- Recall the numerous and dramatic benefits of Joint Distributions for describing uncertain worlds
- Reel with terror at the problem with using Joint Distributions
- Discover how Bayes Net methodology allows us to built Joint Distributions in manageable chunks
- Discover there's still a lurking problem...
- · ...Start to solve that problem

Copyright © 2001, Andrew W. Moore

Dougo Motor Clide 1

Why this matters

- In Andrew's opinion, the most important technology in the Machine Learning / Al field to have emerged in the last 10 years.
- A clean, clear, manageable language and methodology for expressing what you're certain and uncertain about
- Already, many practical applications in medicine, factories, helpdesks:

P(this problem | these symptoms) anomalousness of this observation

choosing next diagnostic test | these observations

Copyright © 2001, Andrew W. Moore

Bayes Nets: S

Why this matters

• In Andrew's opinion, the most important technology in the Machine Learning / Al field erged in the last 10 years.

Active Data erged in the Collection ear, manage

ar, manageable language and

tain and uncertain about

A peady, many practical appropriate Anomaly Catio Ano

P(this problem | these symptoms)

choosing next diagnostic test | these observations

Copyright © 2001, Andrew W. Moore

Baves Nets: Slide 4

Why Probability?

- There have been attempts to do different methodologies for uncertainty
 - Fuzzy Logic
 - Three-valued logic
 - Dempster-Shafer
 - · Non-monotonic reasoning
- But the axioms of probability are the only system with this property:

If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

ght © 2001, Andrew W. Moore Bayes N

Definition of Conditional Probability

$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

Corollary: The Chain Rule

 $P(A \land B) = P(A|B) P(B)$

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 6

Bayes Rule

$$P(B|A) = \begin{array}{ccc} P(A \land B) & P(A|B) \ P(B) \\ P(B|A) & P(A) & P(A) \end{array}$$

This is Bayes Rule

Baves, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-**

Copyright © 2001, Andrew W. Moore

More General Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

Copyright © 2001, Andrew W. Moore

More General Forms of Bayes Rule

$$P(A=v_{i}|B) = \frac{P(B|A=v_{i})P(A=v_{i})}{\sum_{k=1}^{n_{A}} P(B|A=v_{k})P(A=v_{k})}$$

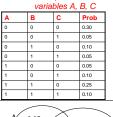
Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 9

The Joint Distribution

Recipe for making a joint distribution of M variables

- 1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2M rows).
- 2. For each combination of values. say how probable it is.
- If you subscribe to the axioms of probability, those numbers must sum to 1.



Example: Boolean

Bayes Nets: Slide 10

Copyright © 2001, Andrew W. Moore

Joint distributions

· Good news

Once you have a joint distribution, you can ask important questions about stuff that involves a lot of uncertainty

Bad news

Impossible to create for more than about ten attributes because there are so many numbers needed when you build the damn thing.

Copyright © 2001, Andrew W. Moore

Using fewer numbers

Suppose there are two events:

- M: Manuela teaches the class (otherwise it's Andrew)
- · S: It is sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we'll have to invent those four numbers. OR WILL WE??

- We don't have to specify with bottom level conjunctive events such as P(~M^S) IF...
- ...instead it may sometimes be more convenient for us to specify things like: P(M), P(S).

But just P(M) and P(S) don't derive the joint distribution. So you can't answer all questions.

Copyright © 2001, Andrew W. Moore

Using fewer numbers

Suppose there are two events:

- M: Manuela teaches the class (otherwise it's Andrew)
- S: It is sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we'll have to invent those four numbers. OR WILL WE??

- · We don't have to specify with bottom level conjunctive events such as P(~M^S) IF...

What extra assumption can you

What extra assumption can you

The provided the point distribution. So you can't answer

What extra assumption can you

The provided the point distribution. So you can't answer

The provided the provided the point distribution. So you can't answer

The provided the pr

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 13

Independence

"The sunshine levels do not depend on and do not influence who is teaching."

This can be specified very simply:

$$P(S \mid M) = P(S)$$

This is a powerful statement!

It required extra domain knowledge. A different kind of knowledge than numerical probabilities. It needed an understanding of causation.

Copyright © 2001, Andrew W. Moore

Independence

From $P(S \mid M) = P(S)$, the rules of probability imply: (can you prove these?)

- P(~S | M) = P(~S)
- P(M | S) = P(M)
- P(M ^ S) = P(M) P(S)
- $P(\sim M \land S) = P(\sim M) P(S), (PM \land \sim S) = P(M)P(\sim S),$ $P(\sim M \sim S) = P(\sim M)P(\sim S)$

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 15

Independence

From $P(S \mid M) = P(S)$, the rules of probability imply: (can you prove these?)

• P(~§ And in general:

 $P(M=u \land S=v) = P(M=u) P(S=v)$

• P(M for each of the four combinations of

u=True/False

v=True/False

• P(~M ~3) = P(~IVI) P(3), (PIVI~3) = P(IVI)P(~3), $P(\sim M \sim S) = P(\sim M)P(\sim S)$

Copyright © 2001, Andrew W. Moore

Independence

We've stated:

$$P(M) = 0.6$$

$$P(S) = 0.3$$

 $P(S \mid M) = P(S)$

From these statements, we can derive the full joint pdf.

	M	S	Prob
Т		Т	
Т		F	
F		Т	
F		F	

And since we now have the joint pdf, we can make any queries we like.

Copyright © 2001, Andrew W. Moore

A more interesting case

- M: Manuela teaches the class
- S: It is sunny
- . L: The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad weather. Andrew is more likely to arrive late than Manuela.

Copyright © 2001, Andrew W. Moore

A more interesting case

- M: Manuela teaches the class
- S: It is sunny
- L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad weather. Andrew is more likely to arrive late than Manuela.

Let's begin with writing down knowledge we're happy about:

 $P(S \mid M) = P(S), P(S) = 0.3, P(M) = 0.6$ Lateness is not independent of the weather and is not independent of the lecturer.

Copyright © 2001, Andrew W. Moore

Davina Matai Clida

A more interesting case

- M: Manuela teaches the class
- S: It is sunny
- L: The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad weather. Andrew is more likely to arrive late than Manuela.

Let's begin with writing down knowledge we're happy about:

P(S | M) = P(S), P(S) = 0.3, P(M) = 0.6
Lateness is not independent of the weather and is not independent of the lecturer.

We already know the Joint of S and M, so all we need now is $P(L \mid S=u, M=v)$

in the 4 cases of u/v = True/False.

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 20

A more interesting case

- M : Manuela teaches the class
- S: It is sunny
- L : The lecturer arrives slightly late.

Assume both lecturers are sometimes delayed by bad weather. Andrew is more likely to arrive late than Manuela.

 $\begin{array}{ll} P(S \mid M) = P(S) & P(L \mid M \land S) = 0.05 \\ P(S) = 0.3 & P(L \mid M \land \neg S) = 0.1 \\ P(M) = 0.6 & P(L \mid \neg M \land S) = 0.1 \\ P(L \mid \neg M \land \neg S) = 0.2 \end{array}$

Now we can derive a full joint p.d.f. with a "mere" six numbers instead of seven*

*Savings are larger for larger numbers of variables.

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 21

A more interesting case

- . M: Manuela teaches the class
- S: It is sunny
- L: The lecturer arrives slightly late.

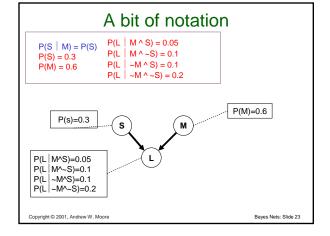
Assume both lecturers are sometimes delayed by bad weather. Andrew is more likely to arrive late than Manuela.

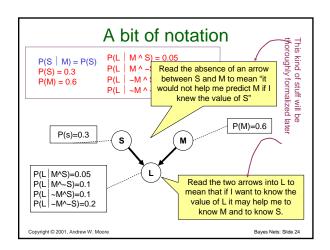
 $\begin{array}{c} \textbf{P(S} \mid \textbf{M}) = \textbf{P(S)} \\ \textbf{P(S)} = 0.3 \\ \textbf{P(M)} = 0.6 \\ \textbf{P(L} \mid \textbf{M} \land \textbf{S}) = 0.1 \\ \textbf{P(L} \mid -\textbf{M} \land \textbf{S}) = 0.1 \\ \textbf{P(L} \mid -\textbf{M} \land \textbf{S}) = 0.2 \\ \textbf{Question: Express} \end{array}$

 $P(L=x \land M=y \land S=z)$ in terms that only need the above expressions, where x,y and z may each be True or False.

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 22





An even cuter trick

Suppose we have these three events:

- M: Lecture taught by Manuela
- . L: Lecturer arrives late
- R : Lecture concerns robots

Suppose:

- Andrew has a higher chance of being late than Manuela.
- Andrew has a higher chance of giving robotics lectures.

What kind of independence can we find?

How about:

- P(L | M) = P(L) ?
- $P(R \mid M) = P(R)$?
- P(L | R) = P(L) ?

Copyright © 2001, Andrew W. Moore

ouna Natas Clida

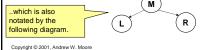
Conditional independence

Once you know who the lecturer is, then whether they arrive late doesn't affect whether the lecture concerns robots.

$$P(R \mid M,L) = P(R \mid M)$$
 and $P(R \mid \sim M,L) = P(R \mid \sim M)$

We express this in the following way:

"R and L are conditionally independent given M"



Given knowledge of M, knowing anything else in the diagram won't help us with L, etc.

Rayes Note: Slide 26

Conditional Independence formalized

R and L are conditionally independent given M if for all x,y,z in $\{T,F\}$:

 $P(R=x \mid M=y \land L=z) = P(R=x \mid M=y)$

More generally:

Let S1 and S2 and S3 be sets of variables.

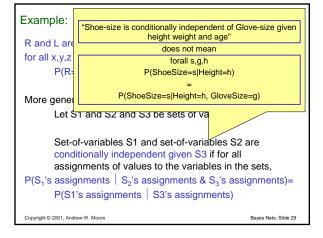
Set-of-variables S1 and set-of-variables S2 are conditionally independent given S3 if for all assignments of values to the variables in the sets,

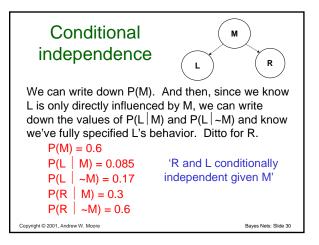
P(S₁'s assignments | S₂'s assignments & S₃'s assignments)= P(S1's assignments | S3's assignments)

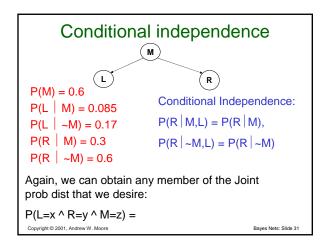
Copyright © 2001, Andrew W. Moore

ayes Nets: Slid

Example: "Shoe-size is conditionally independent of Glove-size given height weight and age" R and L ar means for all x,y,z forall s,g,h,w,a P(R P(ShoeSize=s|Height=h,Weight=w,Age=a) P(ShoeSize=s|Height=h,Weight=w,Age=a,GloveSize=g) More gener Let \$1 and \$2 and \$3 be sets of va Set-of-variables S1 and set-of-variables S2 are conditionally independent given S3 if for all assignments of values to the variables in the sets, $P(S_1's assignments | S_2's assignments & S_3's assignments)=$ P(S1's assignments | S3's assignments) Copyright © 2001, Andrew W. Moore





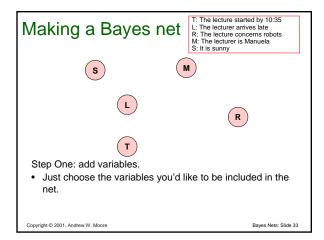


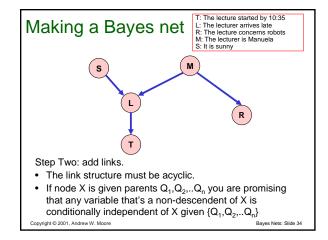
Assume five variables

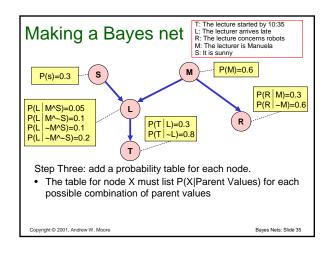
- T: The lecture started by 10:35
- L: The lecturer arrives late
- R: The lecture concerns robots
- M: The lecturer is Manuela
- S: It is sunny
- T only directly influenced by L (i.e. T is conditionally independent of R,M,S given L)
- L only directly influenced by M and S (i.e. L is conditionally independent of R given M & S)
- R only directly influenced by M (i.e. R is conditionally independent of L,S, given M)
- M and S are independent

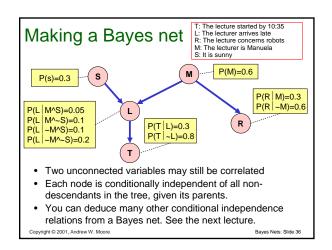
Copyright © 2001, Andrew W. Moore

Davisa Nata Clida









Bayes Nets Formalized

A Bayes net (also called a belief network) is an augmented directed acyclic graph, represented by the pair V, E where:

- · V is a set of vertices.
- E is a set of directed edges joining vertices. No loops of any length are allowed.

Each vertex in V contains the following information:

- The name of a random variable
- A probability distribution table indicating how the probability of this variable's values depends on all possible combinations of parental values.

Copyright © 2001, Andrew W. Moore

ouna Natas Clida

Building a Bayes Net

- 1. Choose a set of relevant variables.
- 2. Choose an ordering for them
- 3. Assume they're called $X_1 ... X_m$ (where X_1 is the first in the ordering, X_1 is the second, etc)
- 4. For i = 1 to m:
 - 1. Add the X_i node to the network
 - Set Parents(X_i) to be a minimal subset of {X₁...X_{i-1}} such that we have conditional independence of X_i and all other members of {X₁...X_{i-1}} given Parents(X_i)
 - 3. Define the probability table of $P(X_i = k \mid Assignments of Parents(X_i))$.

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 38

Example Bayes Net Building

Suppose we're building a nuclear power station. There are the following random variables:

GRL : Gauge Reads Low.

CTL: Core temperature is low.

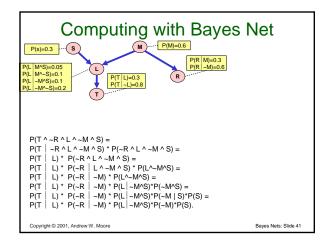
FG : Gauge is faulty. FA : Alarm is faulty AS : Alarm sounds

- If alarm working properly, the alarm is meant to sound if the gauge stops reading a low temp.
- If gauge working properly, the gauge is meant to read the temp of the core.

Copyright © 2001, Andrew W. Moore

ayes Nets: Slide

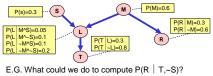
Computing a Joint Entry How to compute an entry in a joint distribution? E.G: What is P(S ^ ~M ^ L ~R ^ T)? P(S)=0.3 P(L | M^S)=0.05 P(L | M^S)=0.1 P(L | -M/S)=0.1 P(L | -M/S)=0.2 T Copyright © 2001, Andrew W. Moore

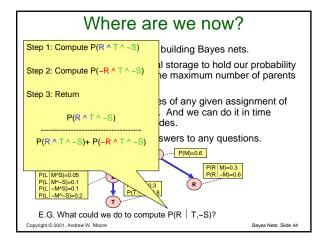


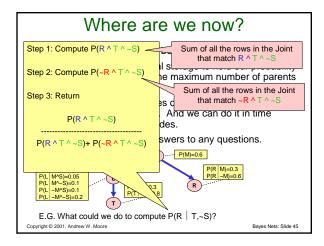
```
The general case P(X_{i}^{-}x_{i} \wedge X_{z} = x_{2} \wedge ... \times X_{p,i} = x_{p,i} \wedge X_{p} = x_{p}) = P(X_{n} = x_{n} \wedge X_{n,i} = x_{n+1} \wedge ... \times 2 = x_{2} \wedge X_{i} = x_{i}) = P(X_{n} = x_{n} \wedge X_{n,i} = x_{n+1} \wedge ... \times 2 = x_{2} \wedge X_{i} = x_{i}) = P(X_{n} = x_{n} \mid X_{n,i} = x_{n+1} \wedge ... \times 2 = x_{2} \wedge X_{i} = x_{i}) * P(X_{p,i} = x_{p,i} \mid X_{p} = x_{p} \wedge X_{i} = x_{i}) = P(X_{n} = x_{n} \mid X_{p} = x_{n} \wedge ... \times 2 = x_{2} \wedge X_{i} = x_{i}) = P(X_{n} = x_{n} \mid X_{p} = x_{n} \wedge ... \times 2 = x_{p} \wedge X_{i} = x_{i}) = P(X_{n} = x_{n} \mid X_{p} = x_{n} \wedge ... \times 2 = x_{p} \wedge X_{i} = x_{i}) = P(X_{n} = x_{i}) ((X_{i} = x_{i})) ((X_{i-1} = x_{i-1}) \wedge ... (X_{i} = x_{i})))
= \prod_{i=1}^{n} P((X_{i} = x_{i}) \mid X_{p} = x_{i} \wedge ... \times 2 = x_{p} \wedge x_{i} = x_{i}) = P(X_{p} = x_{p} \wedge x_{i} = x_{p} \wedge x_{p} \wedge x_{p} = x_{p} \wedge x_{p} \wedge x_{p} \wedge x_{p} = x_{p} \wedge x_{p} \wedge x_{p} \wedge x_{p} \wedge x_{p} = x_{p} \wedge x_{p} \wedge x_{p} \wedge x_{p} \wedge x_{p} \wedge x_{p} = x_{p} \wedge x_{
```

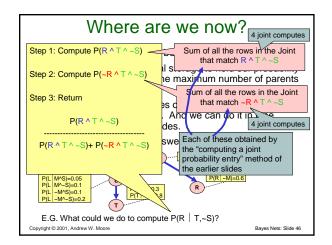
Where are we now?

- · We have a methodology for building Bayes nets.
- We don't require exponential storage to hold our probability table. Only exponential in the maximum number of parents
- We can compute probabilities of any given assignment of truth values to the variables. And we can do it in time linear with the number of nodes.
- So we can also compute answers to any questions.









The good news

We can do inference. We can compute any conditional probability:

P(Some variable | Some other variable values)

$$P(E_1 \mid E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum\limits_{\text{joint entries matching } E_1 \text{ and } E_2}}{\sum\limits_{\text{joint entries matching } E_2}} P(\text{joint entry})$$

Copyright © 2001, Andrew W. Moore

The good news

We can do inference. We can compute any conditional probability:

P(Some variable | Some other variable values)

$$P(E_1 \mid E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\displaystyle\sum_{\text{joint entries matching } E_1 \text{ and } E_2}}{\displaystyle\sum_{\text{joint entries matching } E_2}} P(\text{joint entry})$$

Suppose you have m binary-valued variables in your Bayes Net and expression E_2 mentions k variables.

How much work is the above computation?

Copyright @ 2001, Andrew W. Moore

The sad, bad news

Conditional probabilities by enumerating all matching entries in the joint are expensive:

Exponential in the number of variables.

Copyright © 2001, Andrew W. Moore

Zarna Natar Clida 4

The sad, bad news

Conditional probabilities by enumerating all matching entries in the joint are expensive:

Exponential in the number of variables.

But perhaps there are faster ways of querying Bayes nets?

- In fact, if I ever ask you to manually do a Bayes Net inference, you'll find there are often many tricks to save you time.
- So we've just got to program our computer to do those tricks too, right?

Copyright © 2001, Andrew W. Moore

Davisa Nata Clida EC

The sad, bad news

Conditional probabilities by enumerating all matching entries in the joint are expensive:

Exponential in the number of variables.

But perhaps there are faster ways of querying Bayes nets?

- In fact, if I ever ask you to manually do a Bayes Net inference, you'll find there are often many tricks to save you time.
- So we've just got to program our computer to do those tricks too, right?

Sadder and worse news:

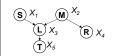
General querying of Bayes nets is NP-complete.

Copyright © 2001, Andrew W. Moore

ayes Nets: Slide 51

Bayes nets inference algorithms

A poly-tree is a directed acyclic graph in which no two nodes have more than one path between them.



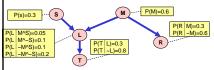
Not a poly tree (but still a legal Bayes net)

- If net is a poly-tree, there is a linear-time algorithm (see a later Andrew lecture).
- The best general-case algorithms convert a general net to a polytree (often at huge expense) and calls the poly-tree algorithm.
- Another popular, practical approach (doesn't assume poly-tree): Stochastic Simulation.

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 52

Sampling from the Joint Distribution



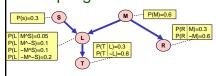
It's pretty easy to generate a set of variable-assignments at random with the same probability as the underlying joint distribution.

How?

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 53

Sampling from the Joint Distribution



- 1. Randomly choose S. S = True with prob 0.3
- 2. Randomly choose M. M = True with prob 0.6
- Randomly choose L. The probability that L is true depends on the assignments of S and M. E.G. if steps 1 and 2 had produced S=True, M=False, then probability that L is true is 0.1
- 4. Randomly choose R. Probability depends on M.
- 5. Randomly choose T. Probability depends on L

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 54

A general sampling algorithm

Let's generalize the example on the previous slide to a general Bayes Net.

As in Slides 16-17 , call the variables $X_1 \dots X_n$, where $Parents(X_i)$ must be a subset of $\{X_1 \dots X_{i-1}\}$.

For i=1 to n:

- 1. Find parents, if any, of X_i . Assume n(i) parents. Call them $X_{p(i,1)}$, $X_{p(i,2)}$,
- $\cdots \land_{p(i,n(i))}$.

 2. Recall the values that those parents were randomly given: $x_{p(i,1)}, x_{p(i,2)}$. $X_{p(i,n(i))}$.
- Look up in the lookup-table for: P(X;=True | X_{p(i,1)}=X_{p(i,1)},X_{p(i,2)}=x_{p(i,2)}...X_{p(i,n(i))}=x_{p(i,n(i))}
 Randomly set x;=True according to this probability

 $X_1, X_2, ... X_n$ are now a sample from the joint distribution of $X_1, X_2, ... X_n$

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 55

Stochastic Simulation Example

Someone wants to know $P(R = True \mid T = True \land S = False)$

We'll do lots of random samplings and count the number of occurrences of the following:

- N_c: Num. samples in which T=True and S=False.
- N_s: Num. samples in which R=True, T=True and S=False.
- N: Number of random samplings

Now if N is big enough:

 N_c/N is a good estimate of $P(T=True \ and \ S=False)$. N_s /N is a good estimate of P(R=True, T=True, S=False). $P(R \mid T^-S) = P(R^T^-S)/P(T^-S)$, so N_s / N_c can be a good estimate of P(R T^-S).

Copyright © 2001, Andrew W. Moore

General Stochastic Simulation

Someone wants to know $P(E_1 \mid E_2)$

We'll do lots of random samplings and count the number of occurrences of the following:

- N_c: Num. samples in which E₂
- N_s: Num. samples in which E₁ and E₂
- N: Number of random samplings

Now if N is big enough:

 N_c/N is a good estimate of $P(E_2)$.

 N_s/N is a good estimate of $P(E_1, E_2)$.

 $P(E_1 \mid E_2) = P(E_1^{\land} E_2)/P(E_2)$, so N_s / N_c can be a good estimate of $P(E_1 \mid E_2)$.

Copyright © 2001, Andrew W. Moore

Bayes Nets: Slide 57

Likelihood weighting

Problem with Stochastic Sampling:

With lots of constraints in E, or unlikely events in E, then most of the simulations will be thrown away, (they'll have no effect on Nc, or Ns).

Imagine we're part way through our simulation.

In E2 we have the constraint Xi = v

We're just about to generate a value for Xi at random. Given the values assigned to the parents, we see that P(Xi = v \mid parents) = p .

Now we know that with stochastic sampling:

- we'll generate "Xi = v" proportion p of the time, and proceed
- · And we'll generate a different value proportion 1-p of the time, and the

Instead, always generate Xi = v, but weight the answer by weight "p" to

Copyright © 2001, Andrew W. Moore

Likelihood weighting

Set $N_c := 0$, $N_s := 0$

- 1. Generate a random assignment of all variables that matches E_2 . This process returns a weight w.
- 2. Define w to be the probability that this assignment would have been generated instead of an unmatching assignment during its generation in the original algorithm. Fact: w is a product of all likelihood factors involved in the generation.
- 3. $N_c := N_c + w$
- 4. If our sample matches E_1 then $N_s := N_s + w$

Again, N_s / N_c estimates $P(E_1 \mid E_2)$

Copyright © 2001, Andrew W. Moore

What you should know

- The meanings and importance of independence and conditional independence.
- The definition of a Bayes net.
- Computing probabilities of assignments of variables (i.e. members of the joint p.d.f.) with a Bayes net.
- The slow (exponential) method for computing arbitrary, conditional probabilities.
- The stochastic simulation method and likelihood weighting.

Copyright © 2001, Andrew W. Moore