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What we’ll discuss

» Recall the numerous and dramatic benefits
of Joint Distributions for describing uncertain
worlds

» Reel with terror at the problem with using
Joint Distributions

« Discover how Bayes Net methodology
allows us to built Joint Distributions in
manageable chunks

« Discover there’s still a lurking problem...

« ...Start to solve that problem
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Why this matters

* In Andrew’s opinion, the most important
technology in the Machine Learning / Al field
to have emerged in the last 10 years.

» A clean, clear, manageable language and
methodology for expressing what you're
certain and uncertain about

» Already, many practical applications in
medicine, factories, helpdesks:
P(this problem | these symptoms)
anomalousness of this observation
choosing next diagnostic test | these observations

Copyright © 2001, Andrew W. Moore Bayes Nets: Slide 3

Why this matters

* In Andrew’s opinion, the most important
technology in the Machine Learning / Al field
Active Data _ €rged in the last 10 years.

Collection *ar, manageable language and
mouorogy for exp Infer.ence “at you're
tain and uncertai

eady, many practical apj jcatio Anomaly
dicine, factories, helpdegks: | Petection
P(this problem | these symptoms)
anomalousness of this observatio
choosing next diagnostic test | these observations
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Why Probability?
» There have been attempts to do different
methodologies for uncertainty
* Fuzzy Logic
* Three-valued logic
» Dempster-Shafer
» Non-monotonic reasoning

» But the axioms of probability are the only
system with this property:
If you gamble using them you can’t be unfairly exploited by
an opponent using some other system [di Finetti 1931]
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Definition of Conditional Probability

P(A"B)
SN R —
P(B)

Corollary: The Chain Rule
P(A " B) = P(A|B) P(B)
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Bayes Rule
P(A~B) P(A|B) P(B)
P(B|A) = =
P(A) P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine
of chances. Philosophical Transactions
of the Royal Society of London, 53:370-
418

Copyright @ 2001, Andrew W. Moore Bayes Nets: Slide 7

More General Forms of Bayes Rule

P(AB) = P(BIAP(A
P(B| AP(A)+P(B|~AP(~A)
P(ABAX)= P(B| AAX)P(AAX)
P(BAX)

More General Forms of Bayes Rule

P(B| A=v)P(A=V)

P(A=v,[B)=
ZP(Bl A=V )P(A=V,)
k=L

The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint distribution OA ? ;: :;sb
of M variables: y
0 0 1 0.05
- 0 1 0 0.10
1. Make a truth table listing all o 1 1 0.05
combinations of values of your I o 0 U'Os
variables (if there are M Boolean 5 5 T Ty
variables then the table will have T 1 o 025
a .
2Mrows). 1 1 1 010

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sum to 1.
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Joint distributions

» Good news * Bad news
Once you have a joint Impossible to create
distribution, you can for more than about

ask important ten attributes

questions about because there are

stuff that involves a so many numbers

lot of uncertainty needed when you
build the damn
thing.
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Using fewer numbers

Suppose there are two events:
* M: Manuela teaches the class (otherwise it's Andrew)
e S:ltis sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we’'ll have to invent those
four numbers. OR WILL WE??

* We don'’t have to specify with bottom level conjunctive
events such as P(~M”S) IF...
 ...instead it may sometimes be more convenient for us
to specify things like: P(M), P(S).
But just P(M) and P(S) don't derive the joint distribution. So
you can’t answer all questions.
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Using fewer numbers

Suppose there are two events:
« M: Manuela teaches the class (otherwise it's Andrew)
* S:ltis sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we'll have to invent those
four numbers. OR WILL WE??
« We don't have to specify with bottom level conjunctive
events such as P(~M"S) IF...
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Independence

“The sunshine levels do not depend on and do not
influence who is teaching.”

This can be specified very simply:
P(S | M) =P(S)
This is a powerful statement!

It required extra domain knowledge. A different kind
of knowledge than numerical probabilities. It needed
an understanding of causation.

Copyright © 2001, Andrew W. Moore Bayes Nets: Slide 14

Independence

From P(S | M) = P(S), the rules of probability imply: (can
you prove these?)

« P(-S | M)=P(-9)
« PM | S)=P(M)
+ P(M~S)=P(M)P(S)

« P(~M A S) = P(~M) P(S), (PMA~S) = P(M)P(~S),
P(~M"~S) = P(~M)P(~S)
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Independence

From P(S | M) = P(S), the rules of probability imply: (can
you prove these?)

And in general:
P(M=u ” S=v) = P(M=u) P(S=v)

for each of the four combinations of

.« P(~S
. P(M

. P(M u=True/False

v=True/False
e P-M——Sy=r vy Fio), (FVr~S) = FIVjF (ST,

P(~M"~S) = P(~M)P(~S)
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Independence
We've stated:
P(M) = 0.6
P(S) = 0.3 From these statements, we can
P(S | M) = P(S) derive the full joint pdf.

M S Prob

mim{H|4
HEIEIE

And since we now have the joint pdf, we can make
any queries we like.
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A more interesting case

* M : Manuela teaches the class

e S:ltissunny

» L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.
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A more interesting case

¢ M: Manuela teaches the class

¢ S:ltis sunny

¢ L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.

Let’s begin with writing down knowledge we're happy about:
P(S | M)=P(S), P(S)=0.3, P(M)=0.6
Lateness is not independent of the weather and is not
independent of the lecturer.
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A more interesting case

* M : Manuela teaches the class

e S:ltissunny

e L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.

Let’s begin with writing down knowledge we’re happy about:
P(S | M)=P(S), P(S)=0.3, P(M)=0.6
Lateness is not independent of the weather and is not
independent of the lecturer.

We already know the Joint of S and M, so all we need now is
P(L | S=u, M=v
in the 4 cases of u/v = True/False.
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A more interesting case

* M : Manuela teaches the class

¢ S:ltis sunny

* L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.

P(L | M"S)=0.05

P | M) =P(S)
P(S)=03 PL|M~r~s)=01
P(M) = 0.6 PL|~M"S)=0.1

P(L | ~MA~S)=0.2

Now we can derive a full joint
p.d.f. with a “mere” six numbers
instead of seven*

*Savings are larger for larger numbers of variables.
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A more interesting case

* M: Manuela teaches the class

e S:ltis sunny

e L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.

P | M=ps) PL [ M~s)=0.05

P(S)=0.3 P(L | Mr~s)=0.1

P(M) = 0.6 PL|~Mrs)=01

P(Ll~M"~S)=0.2
Question: Express
P(L=x * M=y " S=z)
in terms that only need the above
expressions, where x,y and z may
each be True or False.
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A bit of notation

P(L | M"S)=0.05

P(S | M)=P(S)
P(S) = 0.3 P(L|M~A~S)=0.1
P(M) = 0.6 PL | ~M~rS)=0.1

P(L|~M~~5)=02

P(L|M"S)=0.05
P(L|MA~S)=0.1
P(L|~M"S)=0.1
P(L|~M"~S)=0.2
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A bit of notation

= -
o =
. /g
P | My=p) PLIM"S)=005 &5
P(S) =03 P(L | M~~ Read the absence of an arrow | = &
P(M) = 0.6 P(L | ~M~{ between S and M to mean ‘it = %
P(L | ~M~{ would not help me predict M ifl | 5 £
knew the value of S” =) 2
N =.
g =
Qo
o @
T

P(L|M"S)=0.05 v
P(L|MA~S)=0.1 Read the two arrows into L to
P(L|~MrS)=0.1 mean that if | want to know the
P(L | ~M7~S)=0.2 value of L it may help me to
know M and to know S.
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An even cuter trick

Suppose we have these three events:

¢ M Lecture taught by Manuela

e L: Lecturer arrives late

* R Lecture concerns robots

Suppose:

¢ Andrew has a higher chance of being late than Manuela.
¢ Andrew has a higher chance of giving robotics lectures.
What kind of independence can we find?

How about:
PL | M=PL)?
PR | M)=P(R) ?
«P(L | R =P(L)?
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Conditional independence

Once you know who the lecturer is, then whether
they arrive late doesn’t affect whether the lecture
concerns robots.

PR | ML) =PR | M) and
PR | ~ML=PR | ~M)
We express this in the following way:

“R and L are conditionally independent given M”

..which is also m

Conditional Independence formalized

R and L are conditionally independent given M if
for all x,y,z in {T,F}:
P(R=x | M=y ~ L=z) = P(R=x | M=y)

More generally:
Let S1 and S2 and S3 be sets of variables.

Set-of-variables S1 and set-of-variables S2 are
conditionally independent given S3 if for all
assignments of values to the variables in the sets,

P(S,’s assignments \ S,’s assignments & S;'s assignments)=
P(S1's assignments | s3's assignments)

Given knowledge of M,
notated by the G e knowing anything else in
following diagram. the diagram won't help

us with L, etc.
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Example:
P “Shoe-size is conditionally independent of Glove-size given
height weight and age”
R and L arg J 5 d
means
for all x,y,z forall s,g,h,w,a
P(R P(ShoeSize=s|Height=h,Weight=w,Age=a)

More gene P(ShoeSize=s|Height=h,Weight=w,Age=a,GloveSize=g)

Let WW
Set-of-variables S1 and set-of-variables S2 are

conditionally independent given S3 if for all
assignments of values to the variables in the sets,

P(S,’s assignments | S,’s assignments & Sj's assignments)=
P(S1’s assignments | S3's assignments)
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Example:
P “Shoe-size is conditionally independent of Glove-size given
height weight and age”
R and L arg g - 4
does not mean
for all x,y,z forall s,g,h
P(R P(ShoeSize=s|Height=h)
More gene P(ShoeSize=s|Height=h, GloveSize=g)

Let W
Set-of-variables S1 and set-of-variables S2 are

conditionally independent given S3 if for all
assignments of values to the variables in the sets,

P(S,’s assignments \ S,’s assignments & S;'s assignments)=
P(S1's assignments | s3's assignments)
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Conditional “
independence ‘ °

We can write down P(M). And then, since we know
L is only directly influenced by M, we can write
down the values of P(L | M) and P(L | ~M) and know
we've fully specified L's behavior. Ditto for R.

P(M) =0.6

P(L | M)=0.085

P(L | ~M)=0.17

‘R and L conditionally
independent given M’

PR | M)=0.3
PR | ~M)=0.6
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Conditional independence

(m)
P(M) = 0.6 O e

P(L | M) = 0.085 Conditional Independence:
PL | ~M)=0.17 P(RIM.L) = PRIM),
PR | M)=03 PR|~M,L) = P(R|~M)
PR | ~M)=0.6

Again, we can obtain any member of the Joint

prob dist that we desire:
P(L=x " R=y " M=z) =

Copyright @ 2001, Andrew W. Moore
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Assume five variables

T: The lecture started by 10:35
L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: Itis sunny
e T only directly influenced by L (i.e. T is
conditionally independent of R,M,S given L)
L only directly influenced by M and S (i.e. L is
conditionally independent of R given M & S)
e R only directly influenced by M (i.e. R is
conditionally independent of L,S, given M)
e« Mand S are independent

Copyright © 2001, Andrew W. Moore
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. T: The lecture started by 10:35
M akl ng a Bayes net L: The lecturer arrives late

R: The lecture concerns robots
M: The lecturer is Manuela

S: Itis sunny

® o
©

@

Step One: add variables.

« Just choose the variables you'd like to be included in the
net.

®
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T: The lecture started by 10:35

M akl n g a B ayeS n et L: The lecturer arrives late

R: The lecture concerns robots
M: The lecturer is Manuela
S: Itis sunny

Step Two: add links.

* The link structure must be acyclic.

 If node X is given parents Q,,Q,,..Q, you are promising
that any variable that's a non-descendent of X is
conditionally independent of X given {Q,,Q,,..Q.}

Copyright © 2001, Andrew W. Moore
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T: The lecture started by 10:35
L: The lecturer arrives late

R: The lecture concerns robots
M: The lecturer is Manuela

S: Itis sunny

Making a Bayes net

P(R|M)=0.3

P(L|M"S)=0.05

T: The lecture started by 10:35
L: The lecturer arrives late

R: The lecture concerns robots
M: The lecturer is Manuela

S: Itis sunny

P(R|M)=0.3

Making a Bayes net

P(R|~M)=0.6

P(L|MA~S)=0.1 -
P(L|~MAS)=0.1 P(T|L)=0.3
P(L|-M"-9)=0.2 P(Tl-=08

Step Three: add a probability table for each node.

* The table for node X must list P(X|Parent Values) for each
possible combination of parent values
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P(L|M"S)=0.05

P(R|~M)=0.6

P(L|MA~S)=0.1
P(L|-M"S)=0.1 P(T|L)=0.3
P(L|~M"~5)=0.2 P(T-L)=0.8

* Two unconnected variables may still be correlated

» Each node is conditionally independent of all non-
descendants in the tree, given its parents.

* You can deduce many other conditional independence
relations from a Bayes net. See the next lecture.
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Bayes Nets Formalized

A Bayes net (also called a belief network) is an
augmented directed acyclic graph, represented by
the pair V , E where:

* Vis a set of vertices.

» E is a set of directed edges joining vertices. No
loops of any length are allowed.

Each vertex in V contains the following information:
* The name of a random variable

« A probability distribution table indicating how the
probability of this variable’s values depends on
all possible combinations of parental values.
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Building a Bayes Net

1. Choose a set of relevant variables.

Choose an ordering for them

3. Assume they're called X; .. X, (where X, is the
first in the ordering, X; is the second, etc)

4. Fori=1tom:
1. Add the X; node to the network

2. Set Parents(X;) to be a minimal subset of
{X;...X.1} such that we have conditional
independence of X; and all other members of
{X;...X..} given Parents(X;)

3. Define the probability table of
P(X; =k | Assignments of Parents(X; ) ).

n
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Example Bayes Net Building

Suppose we're building a nuclear power station.
There are the following random variables:

GRL : Gauge Reads Low.

CTL : Core temperature is low.

FG : Gauge is faulty.

FA : Alarm is faulty

AS : Alarm sounds

« |f alarm working properly, the alarm is meant to
sound if the gauge stops reading a low temp.

« |If gauge working properly, the gauge is meant to
read the temp of the core.
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Computing a Joint Entry

How to compute an entry in a joint distribution?
E.G: WhatisP(SA~M AL ~R " T)?

P(L| Mrs)=0.05
P(L|MA~S)=0.1

P(L|~M7S)=0.1
P(L|~MA~5)=0.2
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Computing with Bayes Net

B

P(L[MS)=0.05 PR
P(L|MA~8)=0.1
e E

P(TA~RALA~MAS) =

P(T | ~RALA~MAS)*P(~RALA~MAS) =

P(T| L)* P-RALA-MAS) =

PT | L)* P(=R | LA~M A S)* P(LA~MAS) =

P(T | U* PR | ~M) * P(LA~M7S) =

P(T | L)* P(=R | ~M) * P(L|~MAS)*P(~MS) =

P(T | L)* PR | ~M) * P(L|~MAS)*P(~M | S)*P(S) =

P(T | L)* P(~R | ~M) * P(L| ~MAS)*P(~M)*P(S).
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The general case

PN XX N e XXy ™ X =X) =

POGEX N XX g N o X=X Xy=xg) =

PO | X 1™X1 ™ s XX A Xy=X) ¥ P (K11 M XX XyZXy) =
POy | X 1™Xa ™ e XX N Xy =) % P(X 1™ | X222 Xym0)
PG ™% Mo X=X N Xy =y) =

P((Xi =X X((X\A = Xifl)/\" '(Xl = xl)))

ll[F‘((Xi = x| Assignment of Parent{X;))
i=1

So any entry in joint pdf table can be computed. And so any
conditional probability can be computed.
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Where are we now?

« We have a methodology for building Bayes nets.

« We don't require exponential storage to hold our probability
table. Only exponential in the maximum number of parents
of any node.

* We can compute probabilities of any given assignment of

truth values to the variables. And we can do it in time
linear with the number of nodes.

» So we can also compute answers to any questions.

P(L[M"S)=0.05
P(L|MA~5)=0.1
P(L|~MS)=0.1
P(L|-M"-5)=0.2

E.G. What could we do to compute P(R | T,~S)?
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Where are we now?

Step 1: Compute P(R* T " ~S) building Bayes nets.

. - | storage to hold our probability
Step 2: Compute PR T ~5) o maximum number of parents

Step 3: Return ) )
ps of any given assignment of

And we can do it in time

PRAT"~S) des.

P(RATA-S)+P(-RATA-5) BWers to any questions.

M"S)=0.05
MA~S)=0.1
~M7S)=0.1
~M-5)=0.2

E.G. What could we do to compute P(R \ T,~S)?
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Where are we now?

4 joint computes

Where are we now?ﬁ

Step 1: Compute P(RA T " ~S) %’A Sum of all the rows in the Joint
| thatmatch R T " ~S
S|

. LR AT R g . .
Step 2: Compute PR T =5)  ho mayimum number of parents

Step 3: Return Sum of all the rows in the Joint

bS that match ~R~ T " -5
PRATA-S) deAsnd we can do it time

P(RAT/-S)+ P(-RATA-5) SWers to any questions.

PR|
P(L[MAS)=0.05 P
P(L|MA~8)=0.1
P(L|~Mr$)=0.1
P(L|~Mr~8)=0.2

E.G. What could we do to compute P(R | T,~S)?
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Step 1: Compute P(R" T " ~S) %’A Sum of all the rows it the Joint
thatmatchR~ T " ~S

Isl—4 . ,
ne maxi)ﬂ.um number of parents

um of all the rows in the Joint
that match ~R "~ T ~S

ES
R And we can I8
I

\:
Each of fhese obtained by
A~ N A~ swel

ARP T = FERP T =5 the “computing a joint

~1 probability entry” method of
the earlier slides

Step 2: Compute P(~-R " T " ~S)

Step 3: Return

P(L[M"S)=0.05 PRI-M)=06
P(L| MA-8)=0.1 5 Z i)
P(L|~Mr8)=0.1 ‘%

P(L|-M-8)=0.2

E.G. What could we do to compute P(R \ T,~S)?
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The good news

We can do inference. We can compute any
conditional probability:

P( Some variable | Some other variable values )

P(joint entry)
P(E | E ): P(El A Ez) _ joimemriesm%ing E;and E,
v P(E,) > P(joint entry)

joint entries matching E,
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The good news

We can do inference. We can compute any
conditional probability:

P( Some variable | Some other variable values )

P(joint entry)
P(E | E ) _ P(E1 A Ez) _ jointemriesm%ﬂng E;and E,
v P(E,) > P(joint entry)

joint entries matching E,

Suppose you have m binary-valued variables in your Bayes
Net and expression E, mentions k variables.

How much work is the above computation?
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The sad, bad news

Conditional probabilities by enumerating all matching entries
in the joint are expensive:

Exponential in the number of variables.
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The sad, bad news

Conditional probabilities by enumerating all matching entries
in the joint are expensive:

Exponential in the number of variables.

But perhaps there are faster ways of querying Bayes nets?

« In fact, if | ever ask you to manually do a Bayes Net
inference, you'll find there are often many tricks to save you
time.

« So we've just got to program our computer to do those tricks
too, right?
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The sad, bad news

Conditional probabilities by enumerating all matching entries
in the joint are expensive:

Exponential in the number of variables.

But perhaps there are faster ways of querying Bayes nets?

« In fact, if | ever ask you to manually do a Bayes Net
inference, you'll find there are often many tricks to save you
time.

* So we've just got to program our computer to do those tricks
too, right?

Sadder and worse news:
General querying of Bayes nets is NP-complete.
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Bayes nets inference algorithms

A poly-tree is a directed acyclic graph in which no two nodes have more than one
path between them.

A poly tree Not a poly tree
(but still a legal Bayes net)

« |If netis a poly-tree, there is a linear-time algorithm (see a later
Andrew lecture).

* The best general-case algorithms convert a general net to a poly-
tree (often at huge expense) and calls the poly-tree algorithm.

« Another popular, practical approach (doesn’'t assume poly-tree):
Stochastic Simulation.
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Sampling from the Joint Distribution

M"S)=0.05
MA-S)=0.1
~MS)=0.1
~M~5)=0.2

It's pretty easy to generate a set of variable-assignments at random with
the same probability as the underlying joint distribution.

How?
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Sampling from the Joint Distribution

P(L[M"S)=0.05
P(L|MA~5)=0.1
P(L|~M"S)=0.1
P(L|~Mr~5)=0.2

1. Randomly choose S. S = True with prob 0.3
2. Randomly choose M. M = True with prob 0.6

3. Randomly choose L. The probability that L is true
depends on the assignments of S and M. E.G. if steps
1 and 2 had produced S=True, M=False, then
probability that L is true is 0.1

4. Randomly choose R. Probability depends on M.
5. Randomly choose T. Probability depends on L
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A general sampling algorithm

Let's generalize the example on the previous slide to a general Bayes Net.

As in Slides 16-17, call the variables X; .. X,, where Parents(X)) must be a
subset of {X, .. X.;}.

Fori=1ton:
1. Find parents, if any, of X;. Assume n(i) parents. Call them X 1), X2,
-+ Ap(in()”
2. Recall the values that those parents were randomly given: X, 1y, X2,
< Xogini):
3. Lookupin The lookup-table for:
PX=True | Xp4)=X5.1y X627 Xp(1.2 Xptint) o))

4. Randomly set x=True according to this probability

X1, X,,...X, @re now a sample from the joint distribution of X, X,,...X,.
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Stochastic Simulation Example

Someone wants to know P(R = True | T=True"S=False )

We’'ll do lots of random samplings and count the number of
occurrences of the following:

* N, : Num. samples in which T=True and S=False.
* Ng: Num. samples in which R=True, T=True and S=False.
¢ N : Number of random samplings
Now if N is big enough:
N, /N is a good estimate of P(T=True and S=False).
Ng /N is a good estimate of P(R=True ,T=True , S=False).
P(R \ T7~S) = P(RAM"~S)/P(T"~S), so Ng / N, can be a good
estimate of P(R | TA~S).
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General Stochastic Simulation

Someone wants to know P(E; | E))

We'll do lots of random samplings and count the number of
occurrences of the following:

¢ N¢: Num. samples in which E,
* N : Num. samples in which E, and E,
¢ N : Number of random samplings
Now if N is big enough:
N, /N is a good estimate of P(E.).
Ng /N is a good estimate of P(E, , E,).
P(E, \ E,) = P(E," E,)IP(E,), so Ng/ N, can be a good estimate
of P(E, | E,).
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Likelihood weighting

Problem with Stochastic Sampling:

With lots of constraints in E, or unlikely events in E, then most of the
simulations will be thrown away, (they’ll have no effect on Nc, or Ns).

Imagine we're part way through our simulation.
In E2 we have the constraint Xi = v

We're just about to generate a value for Xi at random. Given the values
assigned to the parents, we see that P(Xi = v | parents) =p .

Now we know that with stochastic sampling:
« we'll generate “Xi = v" proportion p of the time, and proceed.

« And we'll generate a different value proportion 1-p of the time, and the
simulation will be wasted.

Instead, always generate Xi = v, but weight the answer by weight “p” to
compensate.
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Likelihood weighting

Set N, :=0, N, :=0

1. Generate a random assignment of all variables that
matches E,. This process returns a weight w.

2. Define w to be the probability that this assignment would
have been generated instead of an unmatching
assignment during its generation in the original
algorithm.Fact: w is a product of all likelihood factors
involved in the generation.

3. Ng=N.+w

4. If our sample matches E, then Ng := Ng + w

5. Gotol

Again, Ng / N, estimates P(E, | E,)
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What you should know

» The meanings and importance of independence
and conditional independence.

» The definition of a Bayes net.

» Computing probabilities of assignments of
variables (i.e. members of the joint p.d.f.) with a
Bayes net.

» The slow (exponential) method for computing
arbitrary, conditional probabilities.

» The stochastic simulation method and likelihood
weighting.

Copyright © 2001, Andrew W. Moore Bayes Nets: Slide 60

10



