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Bayesian Networks:
Independencies and Inference

Scott Davies and Andrew Moore

Note to other teachers and users of these slides. Andrew and Scott would 
be delighted if you found this source material useful in giving your own 
lectures. Feel free to use these slides verbatim, or to modify them to fit 
your own needs. PowerPoint originals are available. If you make use of a 
significant portion of these slides in your own lecture, please include this 
message, or the following link to the source repository of Andrew’s 
tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and 
corrections gratefully received. 

What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a 
probability distribution, the following must be true by 
definition:

Each variable is conditionally independent of all its non-
descendants in the graph given the value of all its parents.

• This implies

• But what else does it imply?
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What Independencies does a Bayes Net Model?

• Example:

Z

Y

X

Given Y, does learning the value of Z tell us
nothing new about X? 

I.e., is P(X|Y, Z) equal to P(X | Y)?

Yes.  Since we know the value of all of X’s 
parents (namely, Y), and Z is not a 
descendant of X, X is conditionally 

independent of Z.

Also, since independence is symmetric, 
P(Z|Y, X) = P(Z|Y).

Quick proof that independence is symmetric

• Assume: P(X|Y, Z) = P(X|Y)
• Then:
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(Bayes’s Rule)

(Chain Rule)

(By Assumption)

(Bayes’s Rule)

)()|(
)()|()|(

YPYXP
ZPYXPZYP

=

)|(
)(

)()|( YZP
YP

ZPZYP
==

What Independencies does a Bayes Net Model?

• Let I<X,Y,Z> represent X and Z being conditionally 
independent given Y.

• I<X,Y,Z>?  Yes, just as in previous example: All X’s 
parents given, and Z is not a descendant.

Y

X Z

What Independencies does a Bayes Net Model?

• I<X,{U},Z>?  No.
• I<X,{U,V},Z>?  Yes.
• Maybe I<X, S, Z> iff S acts a cutset between X and Z 

in an undirected version of the graph…?

Z

VU

X
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Things get a little more confusing

• X has no parents, so we know all its parents’ values 
trivially

• Z is not a descendant of X
• So, I<X,{},Z>, even though there’s a undirected path 

from X to Z through an unknown variable Y.
• What if we do know the value of Y, though?  Or one 

of its descendants?

ZX

Y

The “Burglar Alarm” example

• Your house has a twitchy burglar alarm that is also 
sometimes triggered by earthquakes.

• Earth arguably doesn’t care whether your house is 
currently being burgled

• While you are on vacation, one of your neighbors 
calls and tells you your home’s burglar alarm is 
ringing.  Uh oh!

Burglar Earthquake

Alarm

Phone Call

Things get a lot more confusing

• But now suppose you learn that there was a medium-sized 
earthquake in your neighborhood.  Oh, whew!  Probably not a 
burglar after all.

• Earthquake “explains away” the hypothetical burglar.
• But then it must not be the case that 

I<Burglar,{Phone Call}, Earthquake>, even though
I<Burglar,{}, Earthquake>!

Burglar Earthquake

Alarm

Phone Call

d-separation to the rescue

• Fortunately, there is a relatively simple algorithm for 
determining whether two variables in a Bayesian 
network are conditionally independent: d-separation.

• Definition: X and Z are d-separated by a set of 
evidence variables E iff every undirected path from X
to Z is “blocked”, where a path is “blocked” iff one 
or more of the following conditions is true: ...

A path is “blocked” when...

• There exists a variable V on the path such that
• it is in the evidence set E
• the arcs putting V in the path are “tail-to-tail”

• Or, there exists a variable V on the path such that
• it is in the evidence set E
• the arcs putting V in the path are “tail-to-head”

• Or, ...

V

V

A path is “blocked” when… (the funky case)

• … Or, there exists a variable V on the path such that
• it is NOT in the evidence set E
• neither are any of its descendants
• the arcs putting V on the path are “head-to-head”

V
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d-separation to the rescue, cont’d 

• Theorem [Verma & Pearl, 1998]:
• If a set of evidence variables E d-separates X and 

Z in a Bayesian network’s graph, then I<X, E, Z>.
• d-separation can be computed in linear time using a 

depth-first-search-like algorithm.
• Great!  We now have a fast algorithm for 

automatically inferring whether learning the value of 
one variable might give us any additional hints about 
some other variable, given what we already know. 
• “Might”: Variables may actually be independent when they’re not d-

separated, depending on the actual probabilities involved

d-separation example

A B

C D

E F

G

I

H

J

•I<C, {}, D>?
•I<C, {A}, D>?
•I<C, {A, B}, D>?
•I<C, {A, B, J}, D>?
•I<C, {A, B, E, J}, D>?

Bayesian Network Inference

• Inference: calculating P(X|Y) for some variables or 
sets of variables X and Y.

• Inference in Bayesian networks is #P-hard!

Reduces to

How many satisfying assignments? 

I1 I2 I3 I4 I5

O

Inputs: prior probabilities of .5

P(O) must be
(#sat. assign.)*(.5^#inputs)

Bayesian Network Inference

• But…inference is still tractable in some cases.
• Let’s look a special class of networks: trees / forests

in which each node has at most one parent.

Decomposing the probabilities

• Suppose we want P(Xi | E) where E is some set of 
evidence variables.

• Let’s split E into two parts:
• Ei

- is the part consisting of assignments to variables in the 
subtree rooted at Xi

• Ei
+ is the rest of it

Xi

Decomposing the probabilities, cont’d
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Decomposing the probabilities, cont’d

)|(
)|(),|(

),|()|(

+−

++−

+−

=

=

ii

iii

iiii

EEP
EXPEXEP

EEXPEXP

Xi

Decomposing the probabilities, cont’d
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Decomposing the probabilities, cont’d
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Where:
• α is a constant independent of Xi
• π(Xi) = P(Xi |Ei

+)
• λ(Xi) = P(Ei

-| Xi)

Using the decomposition for inference

• We can use this decomposition to do inference as 
follows.  First, compute λ(Xi) = P(Ei

-| Xi) for all Xi
recursively, using the leaves of the tree as the base 
case.

• If Xi is a leaf:
• If Xi is in E: λ(Xi) = 1 if Xi matches E, 0 otherwise
• If Xi is not in E: Ei

- is the null set, so 
P(Ei

-| Xi) = 1 (constant)

Quick aside: “Virtual evidence”

• For theoretical simplicity, but without loss of 
generality, let’s assume that all variables in E (the 
evidence set) are leaves in the tree.

• Why can we do this WLOG:

Xi
Xi

Xi’
Observe Xi

Equivalent to

Observe Xi’

Where P(Xi’| Xi) =1 if Xi’=Xi, 0 otherwise 

Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc. 

• Then:

Xi

Xc

== − )|()(λ iii XEPX
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Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc. 

• Then:

Xi

Xc
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Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc. 

• Then:

Xi

Xc
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Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc. 

• Then:

Xi

Xc
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Calculating λ(Xi) for non-leaves

• Now, suppose Xi has a set of children, C.
• Since Xi d-separates each of its subtrees, the 

contribution of each subtree to λ(Xi) is independent:
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where λj(Xi) is the contribution to P(Ei
-| Xi) of the part of 

the evidence lying in the subtree rooted at one of Xi’s
children Xj.

We are now λ-happy

• So now we have a way to recursively compute all the 
λ(Xi)’s, starting from the root and using the leaves as 
the base case.

• If we want, we can think of each node in the network 
as an autonomous processor that passes a little “λ
message” to its parent.

λ λ λ λ

λλ

The other half of the problem

• Remember, P(Xi|E) = απ(Xi)λ(Xi).  Now that we have 
all the λ(Xi)’s, what about the π(Xi)’s?

π(Xi) = P(Xi |Ei
+).

• What about the root of the tree, Xr?  In that case, Er
+ 

is the null set, so π(Xr) = P(Xr).  No sweat.  Since we 
also know λ(Xr), we can compute the final P(Xr).

• So for an arbitrary Xi with parent Xp, let’s inductively 
assume we know π(Xp) and/or P(Xp|E).  How do we 
get π(Xi)?
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Computing π(Xi)

Xp

Xi
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Computing π(Xi)

Xp

Xi

∑ ++ ===
j

ipiiii EjXXPEXPX )|,()|()(π

Computing π(Xi)
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Computing π(Xi)
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Computing π(Xi)

Xp

Xi

∑

∑

∑

∑

=
=

==

===

===

===

+

++

++

j pi

p
pi

j
ippi

j
ipipi

j
ipiiii

jX
EjXP

jXXP

EjXPjXXP

EjXPEjXXP

EjXXPEXPX

)(λ
)|(

)|(

)|()|(

)|(),|(

)|,()|()(π

Computing π(Xi)

Xp

Xi

Where πi(Xp) is defined as 
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We’re done.  Yay!  

• Thus we can compute all the π(Xi)’s, and, in turn, all 
the P(Xi|E)’s.

• Can think of nodes as autonomous processors passing 
λ and π messages to their neighbors

λ λ λ λ

λλ
π π

π π π π

Conjunctive queries

• What if we want, e.g., P(A, B | C) instead of just 
marginal distributions P(A | C) and P(B | C)?

• Just use chain rule:
• P(A, B | C) = P(A | C) P(B | A, C)
• Each of the latter probabilities can be computed 

using the technique just discussed.

Polytrees

• Technique can be generalized to polytrees: 
undirected versions of the graphs are still trees, but 
nodes can have more than one parent 

Dealing with cycles

• Can deal with undirected cycles in graph by
• clustering variables together

• Conditioning

A

B C

D

A

D

BC

Set to 0 Set to 1

Join trees

• Arbitrary Bayesian network can be transformed via 
some evil graph-theoretic magic into a join tree in 
which a similar method can be employed.

A

B

E D

F

C

G

ABC

BCD BCD

DF

In the worst case the join tree nodes must take on exponentially
many combinations of values, but often works well in practice


