Bayesian Networks: Independencies and Inference

Scott Davies and Andrew Moore

What Independencies does a Bayes Net Model?

· In order for a Bayesian network to model a probability distribution, the following must be true by definition:

Each variable is conditionally independent of all its nondescendants in the graph given the value of all its parents.

This implies

$$P(X_1 ... X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

But what else does it imply?

What Independencies does a Bayes Net Model?

Example:

Given Y, does learning the value of Z tell us nothing new about X?

I.e., is P(X|Y, Z) equal to P(X | Y)?

Yes. Since we know the value of all of X's parents (namely, Y), and Z is not a descendant of X, X is conditionally independent of Z.

Also, since independence is symmetric, P(Z|Y, X) = P(Z|Y).

Quick proof that independence is symmetric

• Assume: P(X/Y, Z) = P(X/Y)

• Then:

$$P(Z \mid X,Y) = \frac{P(X,Y \mid Z)P(Z)}{P(X,Y)}$$
 (Bayes's Rule)

$$= \frac{P(Y \mid Z)P(X \mid Y,Z)P(Z)}{P(X \mid Y)P(Y)}$$
 (Chain Rule)

$$= \frac{P(Y \mid Z)P(X \mid Y)P(Z)}{P(X \mid Y)P(Y)}$$
 (By Assumption)

$$= \frac{P(Y \mid Z)P(Z)}{P(X \mid Y)P(Y)} = P(Z \mid Y)$$
 (Bayes's Rule)

What Independencies does a Bayes Net Model?

• Let *I*<*X*,*Y*,*Z*> represent *X* and *Z* being conditionally independent given Y.

• I<X,Y,Z>? Yes, just as in previous example: All X's parents given, and Z is not a descendant.

What Independencies does a Bayes Net Model?

(Bayes's Rule)

- *I*<*X*,{*U*},*Z*>? No.
- *I*<*X*,{*U*,*V*},*Z*>? Yes.
- Maybe $I \le X$, S, $Z \ge \inf S$ acts a cutset between X and Zin an undirected version of the graph...?

Things get a little more confusing

- X has no parents, so we know all its parents' values trivially
- Z is not a descendant of X
- So, *I*<*X*, {}, ∠>, even though there's a undirected path from *X* to *Z* through an unknown variable *Y*.
- What if we do know the value of Y, though? Or one of its descendants?

The "Burglar Alarm" example

- Your house has a twitchy burglar alarm that is also sometimes triggered by earthquakes.
- Earth arguably doesn't care whether your house is currently being burgled
- While you are on vacation, one of your neighbors calls and tells you your home's burglar alarm is ringing. Uh oh!

Things get a lot more confusing

- But now suppose you learn that there was a medium-sized earthquake in your neighborhood. Oh, whew! Probably not a burglar after all.
- Earthquake "explains away" the hypothetical burglar.
- But then it must not be the case that I<Burglar,{Phone Call}, Earthquake>, even though I<Burglar,{}, Earthquake>!

d-separation to the rescue

- Fortunately, there is a relatively simple algorithm for determining whether two variables in a Bayesian network are conditionally independent: d-separation.
- Definition: *X* and *Z* are *d-separated* by a set of evidence variables *E* iff every undirected path from *X* to *Z* is "blocked", where a path is "blocked" iff one or more of the following conditions is true: ...

A path is "blocked" when...

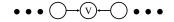
- There exists a variable V on the path such that
 - it is in the evidence set E
 - the arcs putting V in the path are "tail-to-tail"

- Or, there exists a variable V on the path such that
 - it **is** in the evidence set E
 - the arcs putting V in the path are "tail-to-head"

• Or, ...

A path is "blocked" when... (the funky case)

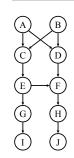
- \cdot ... Or, there exists a variable V on the path such that
 - it is **NOT** in the evidence set E
- · neither are any of its descendants
- the arcs putting V on the path are "head-to-head"



d-separation to the rescue, cont'd

- Theorem [Verma & Pearl, 1998]:
 - If a set of evidence variables *E* d-separates *X* and *Z* in a Bayesian network's graph, then *I*<*X*, *E*, *Z*>.
- *d*-separation can be computed in linear time using a depth-first-search-like algorithm.
- Great! We now have a fast algorithm for automatically inferring whether learning the value of one variable might give us any additional hints about some other variable, given what we already know.
 - "Might": Variables may actually be independent when they're not dseparated, depending on the actual probabilities involved

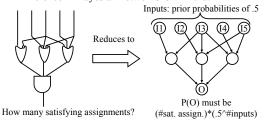
d-separation example



- •I<C, {}, D>?
- •I<C, {A}, D>?
- •I<C, {A, B}, D>?
- •I<C, {A, B, J}, D>?
- •I<C, {A, B, E, J}, D>?

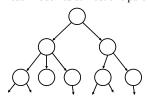
Bayesian Network Inference

- Inference: calculating P(X|Y) for some variables or sets of variables X and Y.
- · Inference in Bayesian networks is #P-hard!



Bayesian Network Inference

- But...inference is still tractable in some cases.
- Let's look a special class of networks: *trees / forests* in which each node has at most one parent.



Decomposing the probabilities

- Suppose we want P(X_i | E) where E is some set of evidence variables.
- Let's split *E* into two parts:
 - E_i is the part consisting of assignments to variables in the subtree rooted at X_i
 - E_i^+ is the rest of it

Decomposing the probabilities, cont'd

$$P(X_i | E) = P(X_i | E_i^-, E_i^+)$$

Decomposing the probabilities, cont'd

$$\begin{split} &P(X_i \mid E) = P(X_i \mid E_i^-, E_i^+) \\ &= \frac{P(E_i^- \mid X, E_i^+) P(X \mid E_i^+)}{P(E_i^- \mid E_i^+)} \end{split}$$

Decomposing the probabilities, cont'd

$$\begin{split} &P(X_{i} \mid E) = P(X_{i} \mid E_{i}^{-}, E_{i}^{+}) \\ &= \frac{P(E_{i}^{-} \mid X, E_{i}^{+}) P(X \mid E_{i}^{+})}{P(E_{i}^{-} \mid E_{i}^{+})} \\ &= \frac{P(E_{i}^{-} \mid X) P(X \mid E_{i}^{+})}{P(E_{i}^{-} \mid E_{i}^{+})} \end{split}$$

Decomposing the probabilities, cont'd

$$P(X_{i} | E) = P(X_{i} | E_{i}^{-}, E_{i}^{+})$$

$$= \frac{P(E_{i}^{-} | X, E_{i}^{+}) P(X | E_{i}^{+})}{P(E_{i}^{-} | E_{i}^{+})}$$

$$= \frac{P(E_{i}^{-} | X) P(X | E_{i}^{+})}{P(E_{i}^{-} | E_{i}^{+})}$$

$$= \alpha \pi(Y_{i}) Y(Y_{i}) \qquad \text{and} \qquad (X_{i}^{+}) = \alpha \pi(Y_{i}^{-}) Y(Y_{i}^{+}) \qquad \text{and} \qquad (X_{i}^{+}) Y(Y_{i}^{-}) Y(Y_{i}^{-}) Y(Y_{i}^{-}) \qquad (X_{i}^{+}) Y(Y_{i}^{-}) Y(Y_{i}^{-}) Y(Y_{i}^{-}) \qquad (X_{i}^{+}) Y(Y_{i}^{-}) Y(Y_{i}^{-}) Y(Y_{i}^{-}) Y(Y_{i}^{-}) \qquad (X_{i}^{+}) Y(Y_{i}^{-}) Y(Y_{i}^{-})$$

- $= \alpha \pi(X_i) \lambda(X_i)$ Where:
 - α is a constant independent of X_i
 - $\pi(X_i) = P(X_i | E_i^+)$
 - $\lambda(X_i) = P(E_i \mid X_i)$

Using the decomposition for inference

- We can use this decomposition to do inference as follows. First, compute λ(X_i) = P(E_i | X_i) for all X_i recursively, using the leaves of the tree as the base case.
- If X_i is a leaf:
 - If X_i is in E: $\lambda(X_i) = 1$ if X_i matches E, 0 otherwise
 - If X_i is not in E: E_i is the null set, so $P(E_i | X_i) = 1$ (constant)

Quick aside: "Virtual evidence"

- For theoretical simplicity, but without loss of generality, let's assume that all variables in E (the evidence set) are leaves in the tree.
- Why can we do this WLOG:

Where $P(X_i'/X_i) = 1$ if $X_i' = X_i$, 0 otherwise

Calculating $\lambda(X_i)$ for non-leaves

Suppose X_i has one child, X_c.

• Then:

$$\lambda(X_i) = P(E_i^- \mid X_i) =$$

Calculating $\lambda(X_i)$ for non-leaves

• Suppose X_i has one child, X_c .

• Then:

$$\lambda(X_i) = P(E_i^- | X_i) = \sum_j P(E_i^-, X_C = j | X_i)$$

Calculating $\lambda(X_i)$ for non-leaves

Suppose X_i has one child, X_c.

Then:

$$\lambda(X_{i}) = P(E_{i}^{-} | X_{i}) = \sum_{j} P(E_{i}^{-}, X_{c} = j | X_{i})$$

$$= \sum_{j} P(X_{c} = j | X_{i}) P(E_{i}^{-} | X_{i}, X_{c} = j)$$

Calculating $\lambda(X_i)$ for non-leaves

• Suppose X_i has one child, X_c .

Then

$$\lambda(X_{i}) = P(E_{i}^{-} | X_{i}) = \sum_{j} P(E_{i}^{-}, X_{c} = j | X_{i})$$

$$= \sum_{j} P(X_{c} = j | X_{i}) P(E_{i}^{-} | X_{i}, X_{c} = j)$$

$$= \sum_{j} P(X_{c} = j | X_{i}) P(E_{i}^{-} | X_{c} = j)$$

$$= \sum_{j} P(X_{c} = j | X_{i}) \lambda(X_{c} = j)$$

Calculating $\lambda(X_i)$ for non-leaves

- Now, suppose X_i has a set of children, C.
- Since X_i *d-separates* each of its subtrees, the contribution of each subtree to $\lambda(X_i)$ is independent:

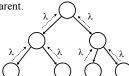
$$\lambda(X_i) = P(E_i^- \mid X_i) = \prod_{X_j \in C} \lambda_j(X_i)$$

$$= \prod_{X_j \in C} \left[\sum_{X_j} P(X_j \mid X_i) \lambda(X_j) \right]$$

where $\lambda_j(X_i)$ is the contribution to $P(E_i | X_i)$ of the part of the evidence lying in the subtree rooted at one of X_i 's children X_i .

We are now λ -happy

- So now we have a way to recursively compute all the λ(X_i)'s, starting from the root and using the leaves as the base case.
- If we want, we can think of each node in the network as an autonomous processor that passes a little "λ message" to its parent.



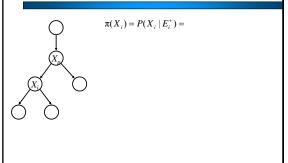
The other half of the problem

• Remember, $P(X_i|E) = \alpha \pi(X_i)\lambda(X_i)$. Now that we have all the $\lambda(X_i)$'s, what about the $\pi(X_i)$'s?

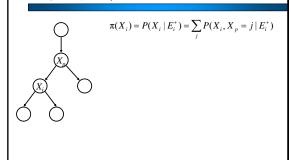
$$\pi(X_i) = P(X_i | E_i^+).$$

- What about the root of the tree, X_r ? In that case, E_r^+ is the null set, so $\pi(X_r) = P(X_r)$. No sweat. Since we also know $\lambda(X_r)$, we can compute the final $P(X_r)$.
- So for an arbitrary X_i with parent X_p , let's inductively assume we know $\pi(X_p)$ and/or $P(X_p/E)$. How do we get $\pi(X_i)$?

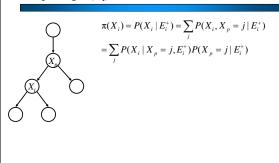
Computing $\pi(X_i)$



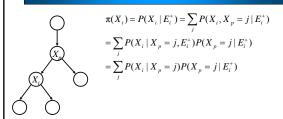
Computing $\pi(X_i)$



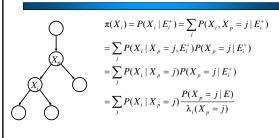
Computing $\pi(X_i)$



Computing $\pi(X_i)$



Computing $\pi(X_i)$



Computing $\pi(X_i)$

$$\pi(X_{i}) = P(X_{i} | E_{i}^{+}) = \sum_{j} P(X_{i}, X_{p} = j | E_{i}^{+})$$

$$= \sum_{j} P(X_{i} | X_{p} = j, E_{i}^{+}) P(X_{p} = j | E_{i}^{+})$$

$$= \sum_{j} P(X_{i} | X_{p} = j) P(X_{p} = j | E_{i}^{+})$$

$$= \sum_{j} P(X_{i} | X_{p} = j) \frac{P(X_{p} = j | E)}{\lambda_{i}(X_{p} = j)}$$

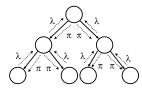
$$= \sum_{j} P(X_{i} | X_{p} = j) \pi_{i}(X_{p} = j)$$

$$= \sum_{j} P(X_{i} | X_{p} = j) \pi_{i}(X_{p} = j)$$

Where $\pi_i(X_p)$ is defined as $\frac{P(X_p \mid E)}{\lambda_i(X_p)}$

We're done. Yay!

- Thus we can compute all the π(X_i)'s, and, in turn, all the P(X_i|E)'s.
- Can think of nodes as autonomous processors passing λ and π messages to their neighbors

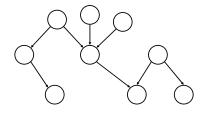


Conjunctive queries

- What if we want, e.g., P(A, B | C) instead of just marginal distributions P(A | C) and P(B | C)?
- · Just use chain rule:
 - P(A, B | C) = P(A | C) P(B | A, C)
 - Each of the latter probabilities can be computed using the technique just discussed.

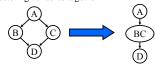
Polytrees

 Technique can be generalized to polytrees: undirected versions of the graphs are still trees, but nodes can have more than one parent

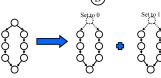


Dealing with cycles

- · Can deal with undirected cycles in graph by
 - · clustering variables together

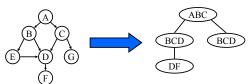


• Conditioning



Join trees

 Arbitrary Bayesian network can be transformed via some evil graph-theoretic magic into a *join tree* in which a similar method can be employed.



In the worst case the join tree nodes must take on exponentially many combinations of values, but often works well in practice