Bayesian Networks:
Independencies and Inference
|

Scott Davies and Andrew Moore

What Independencies does a Bayes Net Model?
[|

* Example:
Given Y, does learning the value of Z tell us
nothing new about X?

Le., is P(X]Y, Z) equal to P(X | Y)?

Yes. Since we know the value of all of X’s
parents (namely, Y), and Z is not a
descendant of X, X is conditionally

independent of Z.

Also, since independence is symmetric,
P(z|Y, X) = P(Z|Y).

What Independencies does a Bayes Net Model?
| —— |

» Let I<X,Y,Z> represent X and Z being conditionally
independent given Y.

° I<X)Y,Z>? Yes, just as in previous example: All X’s
parents given, and Z is not a descendant.

What Independencies does a Bayes Net Model?
[|

« In order for a Bayesian network to model a
probability distribution, the following must be true by
definition:

Each variable is conditionally independent of all its non-
descendants in the graph given the value of all its parents.

 This implies
P(X,...X,) =] P(X; | parents(X,))
i=l

+ But what else does it imply?

Quick proof that independence is symmetric
[|

* Assume: P(X|Y, Z) = P(X|Y)

* Then:
PZ|X.Y) =% (Bayes’s Rulc)
_POIDP(X]Y.Z2)P(EZ) 4
P(X |Y)P(Y) (Chain Rule)
PV [Z)P(XY)P(Z))
= W (By Assumption)
P Z2)P(Z)
= TRY) =P(@1Y) (Bayes’s Rule)

What Independencies does a Bayes Net Model?

()
oo
®)
« 1<X,{U},Z>? No.

o 1<X,{UNV},Z>? Yes.

* Maybe I<X, S, Z> iff S acts a cutset between X and Z
in an undirected version of the graph...?

Things get a little more confusing
[|

» X has no parents, so we know all its parents’ values
trivially

* Zis not a descendant of X

* So, I<X,{},Z>, even though there’s a undirected path
from X to Z through an unknown variable Y.

* What if we do know the value of Y, though? Or one
of its descendants?

Things get a lot more confusing
[|

CBurglar> Tarthquakd
CAlarm D

* But now suppose you learn that there was a medium-sized

earthquake in your neighborhood. Oh, whew! Probably not a
burglar after all.

» Earthquake “explains away” the hypothetical burglar.
* But then it must not be the case that
I<Burglar, {Phone Call}, Earthquake>, even though
I<Burglar,{}, Earthquake>!

A path is “blocked” when...

 There exists a variable V on the path such that
* itis in the evidence set E
« the arcs putting V in the path are “tail-to-tail”

...O‘—®—‘O...

* Or, there exists a variable V on the path such that
* itis in the evidence set E
« the arcs putting V in the path are “tail-to-head”

...O—‘@—‘O...

e Or, ...

The “Burglar Alarm” example
[|

CBurglar > Carthquakd
CAlarm >

* Your house has a twitchy burglar alarm that is also
sometimes triggered by earthquakes.

+ Earth arguably doesn’t care whether your house is
currently being burgled

» While you are on vacation, one of your neighbors
calls and tells you your home’s burglar alarm is
ringing. Uh oh!

d-separation to the rescue
[|
* Fortunately, there is a relatively simple algorithm for

determining whether two variables in a Bayesian
network are conditionally independent: d-separation.

Definition: X and Z are d-separated by a set of
evidence variables E iff every undirected path from X
to Z is “blocked”, where a path is “blocked” iff one
or more of the following conditions is true: ...

A path is “blocked” when... (the funky case)

* ... Or, there exists a variable V on the path such that
* it is NOT in the evidence set E
« neither are any of its descendants
« the arcs putting V on the path are “head-to-head”

O..O—‘®‘—O..O

d-separation to the rescue, cont’d
[|

* Theorem [Verma & Pearl, 1998]:
« If a set of evidence variables E d-separates X and
Z in a Bayesian network’s graph, then <X, E, Z>.
« d-separation can be computed in linear time using a
depth-first-search-like algorithm.

» Great! We now have a fast algorithm for
automatically inferring whether learning the value of
one variable might give us any additional hints about
some other variable, given what we already know.

* “Might”: Variables may actually be independent when they’re not d-
separated, depending on the actual probabilities involved

Bayesian Network Inference

« Inference: calculating P(X|Y) for some variables or
sets of variables X and Y.

« Inference in Bayesian networks is #P-hard!
Inputs: prior probabilities of .5

Reduces to

P(O) must be
How many satisfying assignments? (#sat. assign.)*(.5" #inputs)

Decomposing the probabilities
[
» Suppose we want P(X; | E) where E is some set of
evidence variables.
» Let’s split E into two parts:

* Ejis the part consisting of assignments to variables in the
subtree rooted at X;

+ E;"is the rest of it

d-separation example

A ®
[<] JI<C, {}, D>?

© JI<C, {A}, D>?
JI<C, {A, B}, D>?
® JI<C, {A, B, I}, D>?

0O,

®
© @ ‘I<C, {A, B, E,]}, D>?
O O

Bayesian Network Inference
EE— T
» But...inference is still tractable in some cases.

* Let’s look a special class of networks: trees / forests
in which each node has at most one parent.

Decomposing the probabilities, cont’d
| —— |

P(X;i |E)=P(X;|E,E)

Decomposing the probabilities, cont’d

P(Xi ‘ E): P(Xi | EfaEf)

_ P(E[| X,E"P(X|E))
- P(E; |E)

Decomposing the probabilities, cont’d
[|

P(X;|E)=P(X,|E ,E")
_PEX.ENPX|E)
- PEIED
_PEX)PXIE)
- PEIE)
= an(X;A(X;) Where:
* o is a constant independent of X;
(X)) = P(X; [E")
* X)) = P(E;] X))

Quick aside: “Virtual evidence”

* For theoretical simplicity, but without loss of
generality, let’s assume that all variables in E (the
evidence set) are leaves in the tree.

* Why can we do this WLOG:

@ Equivalent to @

-

Observe X; @ Observe X;’

Where P(X;’| X;) =1 if X;"=X;, 0 otherwise

Decomposing the probabilities, cont’d

P(Xi | E): P(xi | Eii’EiJr)
_P(EIX,EDHP(X|E)
- P(E|E)

_PEXOPXIE) O O

P(E IED)

Using the decomposition for inference
[|
* We can use this decomposition to do inference as
follows. First, compute A(X;) = P(E;| X;) for all X;
recursively, using the leaves of the tree as the base
case.

 IfX;is aleaf:
« If X is in E: A(X;) = 1 if X; matches E, 0 otherwise
« If X; is not in E: E; is the null set, so
P(E;| X;) = 1 (constant)

Calculating A(X;) for non-leaves

* Suppose X; has one child, X_. @

e Then:
MX)=P(E7 | X)) =

Calculating A(X;) for non-leaves

 Suppose X; has one child, X_. e

AMX)=P(E [X)) =2 P(E/,Xc = jIX)
]

e Then:

Calculating A(X;) for non-leaves

* Suppose X; has one child, X_. °

M(Xy) = P(Ei7|xi)=z P(ET, X = jlxi)
i

e Then:

:ZP(XC = j|xi)P(Ei7‘xi’Xc =]
i

Calculating A(X;) for non-leaves

» Suppose X; has one child, X.. @

M(Xi) = P(E [X)) =2 P(E/, Xc = jIX))

e Then:

:Z P(Xe=JIX)PET X, X =1])
]

:Z P(Xc=JIX)P(E] [Xe=1)
]

:Z P(X¢ = j\Xi)X(XC =)
i

We are now A-happy
[|

* So now we have a way to recursively compute all the
MXj)’s, starting from the root and using the leaves as
the base case.

< If we want, we can think of each node in the network
as an autonomous processor that passes a little “A
message” to its parent.

Calculating A(X;) for non-leaves
| |
» Now, suppose X; has a set of children, C.

+ Since X; d-separates each of its subtrees, the
contribution of each subtree to A(X;) is independent:

MX)=PE X)) = [Tr(X)

X;<C
= H{Z P(X; | Xi);\‘(xj):|
X;eC| X;

where 2(X) is the contribution to P(E;| X;) of the part of
the evidence lying in the subtree rooted at one of X;’s
children X;.

The other half of the problem
[|
* Remember, P(X|E) = an(X)A(X;). Now that we have
all the A(X;)’s, what about the m(X;)’s?
(X)) = PCX; [E).

» What about the root of the tree, X,? In that case, E,*
is the null set, so m(X;) = P(X,). No sweat. Since we
also know A(X,), we can compute the final P(X,).

* So for an arbitrary X; with parent X, let’s inductively

assume we know n(X,) and/or P(X,|E). How do we
get m(X;)?

Computing nt(X;)
[|
T(X)=P(X |E))=

Computing n(X;)
[|
(X)) =P(X; | E) =2 P(X;, X, = J | E)

J

=2 P(% X, = LEDHP(X, =]| E)
i

Computing n(X;)
| —— |
(X)) =P(X, |E) =Y P(X, X, = | [E)
I
=D P(X; 1 X, = LEDP(X, = || E)
i
=Y PX, X, = DP(X, = j | E)
i
P(X,=JlE)

=Y P(X;| X, =]
2P =0T 0=

Computing n(X;)
[— |
n(X;)=P(X;| Ei+):ZP(Xi9Xp =jlE")

i

Computing n(X;)
[|
(X)) = PO | EN) =D P(X;, X, = § | E)

J

=2 P(X; X, = LEDP(X, = I E)
J

=2 P(X; | X, = DP(X, = | E)
i

Computing nt(X;)
[|
(X)) =P(X; [E") =Y P(X;, X, = | E)
J
=2 PO I1X, = LEDP(X, = || E)
J
=2 POX X, = DP(X, = §1EN)
J

L PX=1E)
=Y P(X,|X, =)—r 1=
; X[X, =1 REE)

=3P X, = (X, =)
J

P(X, |E)

(X.) is defi
Where m(X,) is defined as T(X,)

We’re done. Yay!
| |
» Thus we can compute all the n(X;)’s, and, in turn, all
the P(X|E)’s.
* Can think of nodes as autonomous processors passing
A and 7 messages to their neighbors

Polytrees
[|
» Technique can be generalized to polytrees:

undirected versions of the graphs are still trees, but
nodes can have more than one parent

Join trees

* Arbitrary Bayesian network can be transformed via
some evil graph-theoretic magic into a join tree in
which a similar method can be employed.

GQG N
Lot = P =
®

In the worst case the join tree nodes must take on exponentially
many combinations of values, but often works well in practice

Conjunctive queries
[
* What if we want, e.g., P(A, B | C) instead of just
marginal distributions P(A | C) and P(B | C)?
* Just use chain rule:
* P(A,B|C)=P(A|C)P(B| A, C)
* Each of the latter probabilities can be computed
using the technique just discussed.

Dealing with cycles

» Can deal with undirected cycles in graph by
« clustering variables together

i

« Conditioning [i

—»;ﬁ%-%

