
1

Bayesian Networks:
Independencies and Inference

Scott Davies and Andrew Moore

Note to other teachers and users of these slides. Andrew and Scott would
be delighted if you found this source material useful in giving your own
lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a
significant portion of these slides in your own lecture, please include this
message, or the following link to the source repository of Andrew’s
tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and
corrections gratefully received.

What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a
probability distribution, the following must be true by
definition:

Each variable is conditionally independent of all its non-
descendants in the graph given the value of all its parents.

• This implies

• But what else does it imply?

∏
=

=
n

i
iin XparentsXPXXP

1
1))(|()(K

What Independencies does a Bayes Net Model?

• Example:

Z

Y

X

Given Y, does learning the value of Z tell us
nothing new about X?

I.e., is P(X|Y, Z) equal to P(X | Y)?

Yes. Since we know the value of all of X’s
parents (namely, Y), and Z is not a
descendant of X, X is conditionally

independent of Z.

Also, since independence is symmetric,
P(Z|Y, X) = P(Z|Y).

Quick proof that independence is symmetric

• Assume: P(X|Y, Z) = P(X|Y)
• Then:

),(
)()|,(),|(

YXP
ZPZYXPYXZP =

)()|(
)(),|()|(

YPYXP
ZPZYXPZYP

=

(Bayes’s Rule)

(Chain Rule)

(By Assumption)

(Bayes’s Rule)

)()|(
)()|()|(

YPYXP
ZPYXPZYP

=

)|(
)(

)()|(YZP
YP

ZPZYP
==

What Independencies does a Bayes Net Model?

• Let I<X,Y,Z> represent X and Z being conditionally
independent given Y.

• I<X,Y,Z>? Yes, just as in previous example: All X’s
parents given, and Z is not a descendant.

Y

X Z

What Independencies does a Bayes Net Model?

• I<X,{U},Z>? No.
• I<X,{U,V},Z>? Yes.
• Maybe I<X, S, Z> iff S acts a cutset between X and Z

in an undirected version of the graph…?

Z

VU

X

2

Things get a little more confusing

• X has no parents, so we know all its parents’ values
trivially

• Z is not a descendant of X
• So, I<X,{},Z>, even though there’s a undirected path

from X to Z through an unknown variable Y.
• What if we do know the value of Y, though? Or one

of its descendants?

ZX

Y

The “Burglar Alarm” example

• Your house has a twitchy burglar alarm that is also
sometimes triggered by earthquakes.

• Earth arguably doesn’t care whether your house is
currently being burgled

• While you are on vacation, one of your neighbors
calls and tells you your home’s burglar alarm is
ringing. Uh oh!

Burglar Earthquake

Alarm

Phone Call

Things get a lot more confusing

• But now suppose you learn that there was a medium-sized
earthquake in your neighborhood. Oh, whew! Probably not a
burglar after all.

• Earthquake “explains away” the hypothetical burglar.
• But then it must not be the case that

I<Burglar,{Phone Call}, Earthquake>, even though
I<Burglar,{}, Earthquake>!

Burglar Earthquake

Alarm

Phone Call

d-separation to the rescue

• Fortunately, there is a relatively simple algorithm for
determining whether two variables in a Bayesian
network are conditionally independent: d-separation.

• Definition: X and Z are d-separated by a set of
evidence variables E iff every undirected path from X
to Z is “blocked”, where a path is “blocked” iff one
or more of the following conditions is true: ...

A path is “blocked” when...

• There exists a variable V on the path such that
• it is in the evidence set E
• the arcs putting V in the path are “tail-to-tail”

• Or, there exists a variable V on the path such that
• it is in the evidence set E
• the arcs putting V in the path are “tail-to-head”

• Or, ...

V

V

A path is “blocked” when… (the funky case)

• … Or, there exists a variable V on the path such that
• it is NOT in the evidence set E
• neither are any of its descendants
• the arcs putting V on the path are “head-to-head”

V

3

d-separation to the rescue, cont’d

• Theorem [Verma & Pearl, 1998]:
• If a set of evidence variables E d-separates X and

Z in a Bayesian network’s graph, then I<X, E, Z>.
• d-separation can be computed in linear time using a

depth-first-search-like algorithm.
• Great! We now have a fast algorithm for

automatically inferring whether learning the value of
one variable might give us any additional hints about
some other variable, given what we already know.
• “Might”: Variables may actually be independent when they’re not d-

separated, depending on the actual probabilities involved

d-separation example

A B

C D

E F

G

I

H

J

•I<C, {}, D>?
•I<C, {A}, D>?
•I<C, {A, B}, D>?
•I<C, {A, B, J}, D>?
•I<C, {A, B, E, J}, D>?

Bayesian Network Inference

• Inference: calculating P(X|Y) for some variables or
sets of variables X and Y.

• Inference in Bayesian networks is #P-hard!

Reduces to

How many satisfying assignments?

I1 I2 I3 I4 I5

O

Inputs: prior probabilities of .5

P(O) must be
(#sat. assign.)*(.5^#inputs)

Bayesian Network Inference

• But…inference is still tractable in some cases.
• Let’s look a special class of networks: trees / forests

in which each node has at most one parent.

Decomposing the probabilities

• Suppose we want P(Xi | E) where E is some set of
evidence variables.

• Let’s split E into two parts:
• Ei

- is the part consisting of assignments to variables in the
subtree rooted at Xi

• Ei
+ is the rest of it

Xi

Decomposing the probabilities, cont’d

),|()|(+−= iiii EEXPEXP

Xi

4

Decomposing the probabilities, cont’d

)|(
)|(),|(

),|()|(

+−

++−

+−

=

=

ii

iii

iiii

EEP
EXPEXEP

EEXPEXP

Xi

Decomposing the probabilities, cont’d

)|(
)|()|(

)|(
)|(),|(

),|()|(

+−

+−

+−

++−

+−

=

=

=

ii

ii

ii

iii

iiii

EEP
EXPXEP

EEP
EXPEXEP

EEXPEXP

Xi

Decomposing the probabilities, cont’d

)(λ)(απ
)|(

)|()|(

)|(
)|(),|(

),|()|(

ii

ii

ii

ii

iii

iiii

XX
EEP

EXPXEP

EEP
EXPEXEP

EEXPEXP

=

=

=

=

+−

+−

+−

++−

+−

Xi

Where:
• α is a constant independent of Xi
• π(Xi) = P(Xi |Ei

+)
• λ(Xi) = P(Ei

-| Xi)

Using the decomposition for inference

• We can use this decomposition to do inference as
follows. First, compute λ(Xi) = P(Ei

-| Xi) for all Xi
recursively, using the leaves of the tree as the base
case.

• If Xi is a leaf:
• If Xi is in E: λ(Xi) = 1 if Xi matches E, 0 otherwise
• If Xi is not in E: Ei

- is the null set, so
P(Ei

-| Xi) = 1 (constant)

Quick aside: “Virtual evidence”

• For theoretical simplicity, but without loss of
generality, let’s assume that all variables in E (the
evidence set) are leaves in the tree.

• Why can we do this WLOG:

Xi
Xi

Xi’
Observe Xi

Equivalent to

Observe Xi’

Where P(Xi’| Xi) =1 if Xi’=Xi, 0 otherwise

Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc.

• Then:

Xi

Xc

== −)|()(λ iii XEPX

5

Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc.

• Then:

Xi

Xc

∑ === −−

j
iCiiii XjXEPXEPX)|,()|()(λ

Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc.

• Then:

Xi

Xc

∑

∑
===

===

−

−−

j
CiiiC

j
iCiiii

jXXEPXjXP

XjXEPXEPX

),|()|(

)|,()|()(λ

Calculating λ(Xi) for non-leaves

• Suppose Xi has one child, Xc.

• Then:

Xi

Xc

∑

∑

∑

∑

===

===

===

===

−

−

−−

j
CiC

j
CiiC

j
CiiiC

j
iCiiii

jXXjXP

jXEPXjXP

jXXEPXjXP

XjXEPXEPX

)(λ)|(

)|()|(

),|()|(

)|,()|()(λ

Calculating λ(Xi) for non-leaves

• Now, suppose Xi has a set of children, C.
• Since Xi d-separates each of its subtrees, the

contribution of each subtree to λ(Xi) is independent:

∏ ∑

∏

∈

∈

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

==

CX X
jij

CX
ijiii

j j

j

XXXP

XXEPX

)λ()|(

)(λ)|()(λ

where λj(Xi) is the contribution to P(Ei
-| Xi) of the part of

the evidence lying in the subtree rooted at one of Xi’s
children Xj.

We are now λ-happy

• So now we have a way to recursively compute all the
λ(Xi)’s, starting from the root and using the leaves as
the base case.

• If we want, we can think of each node in the network
as an autonomous processor that passes a little “λ
message” to its parent.

λ λ λ λ

λλ

The other half of the problem

• Remember, P(Xi|E) = απ(Xi)λ(Xi). Now that we have
all the λ(Xi)’s, what about the π(Xi)’s?

π(Xi) = P(Xi |Ei
+).

• What about the root of the tree, Xr? In that case, Er
+

is the null set, so π(Xr) = P(Xr). No sweat. Since we
also know λ(Xr), we can compute the final P(Xr).

• So for an arbitrary Xi with parent Xp, let’s inductively
assume we know π(Xp) and/or P(Xp|E). How do we
get π(Xi)?

6

Computing π(Xi)

Xp

Xi

== +)|()(π iii EXPX

Computing π(Xi)

Xp

Xi

∑ ++ ===
j

ipiiii EjXXPEXPX)|,()|()(π

Computing π(Xi)

Xp

Xi

∑

∑
++

++

===

===

j
ipipi

j
ipiiii

EjXPEjXXP

EjXXPEXPX

)|(),|(

)|,()|()(π

Computing π(Xi)

Xp

Xi

∑

∑

∑

+

++

++

===

===

===

j
ippi

j
ipipi

j
ipiiii

EjXPjXXP

EjXPEjXXP

EjXXPEXPX

)|()|(

)|(),|(

)|,()|()(π

Computing π(Xi)

Xp

Xi

∑

∑

∑

∑

=
=

==

===

===

===

+

++

++

j pi

p
pi

j
ippi

j
ipipi

j
ipiiii

jX
EjXP

jXXP

EjXPjXXP

EjXPEjXXP

EjXXPEXPX

)(λ
)|(

)|(

)|()|(

)|(),|(

)|,()|()(π

Computing π(Xi)

Xp

Xi

Where πi(Xp) is defined as

∑

∑

∑

∑

∑

===

=

=
==

===

===

===

+

++

++

j
pipi

j pi

p
pi

j
ippi

j
ipipi

j
ipiiii

jXjXXP

jX
EjXP

jXXP

EjXPjXXP

EjXPEjXXP

EjXXPEXPX

)(π)|(

)(λ
)|(

)|(

)|()|(

)|(),|(

)|,()|()(π

)(λ
)|(

pi

p

X
EXP

7

We’re done. Yay!

• Thus we can compute all the π(Xi)’s, and, in turn, all
the P(Xi|E)’s.

• Can think of nodes as autonomous processors passing
λ and π messages to their neighbors

λ λ λ λ

λλ
π π

π π π π

Conjunctive queries

• What if we want, e.g., P(A, B | C) instead of just
marginal distributions P(A | C) and P(B | C)?

• Just use chain rule:
• P(A, B | C) = P(A | C) P(B | A, C)
• Each of the latter probabilities can be computed

using the technique just discussed.

Polytrees

• Technique can be generalized to polytrees:
undirected versions of the graphs are still trees, but
nodes can have more than one parent

Dealing with cycles

• Can deal with undirected cycles in graph by
• clustering variables together

• Conditioning

A

B C

D

A

D

BC

Set to 0 Set to 1

Join trees

• Arbitrary Bayesian network can be transformed via
some evil graph-theoretic magic into a join tree in
which a similar method can be employed.

A

B

E D

F

C

G

ABC

BCD BCD

DF

In the worst case the join tree nodes must take on exponentially
many combinations of values, but often works well in practice

