
1

Sep 25th, 2001Copyright © 2001, 2003, Andrew W. Moore

This part of the lecture is
derived from:

Regression and
Classification with
Neural Networks

Andrew W. Moore

Note to other teachers and users of
these slides. Andrew would be delighted
if you found this source material useful in
giving your own lectures. Feel free to use
these slides verbatim, or to modify them
to fit your own needs. PowerPoint
originals are available. If you make use
of a significant portion of these slides in
your own lecture, please include this
message, or the following link to the
source repository of Andrew’s tutorials:
http://www.cs.cmu.edu/~awm/tutorials .
Comments and corrections gratefully
received.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 2

Linear Regression

Empirical view: Hmm, looks like the data can be fit by a line going
through the origin: y = wx. (w is a “weight”)

Score = Σerror2 = Σ(y-wx)2

(Why square the error? Minimizing score, want to penalize
positive and negative errors)

y5 = 3.1x5 = 4

y4 = 1.9x4 = 1.5

y3 = 2x3 = 2

y2 = 2.2x2 = 3

y1 = 1x1 = 1

outputsinputs

DATASET

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 3

Getting the best score
• For functions that are linear in the unknown

parameters, we can simply compute the
globally best parameters to fit a training set.
Formulating our example problem in matrix
notation:

X = (x1, x2, x3, …, xn)T

y = Xw

so estimate of w = (XTX)-1XTy = Σxy/Σx2
(Where did this formula come from? Take the

derivative of the score and set it to zero)
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 4

Getting the best score
• However, many functions

we might like to use aren’t
linear in the unknown
parameters.

• In this case, the score is a
function of the training set
and the parameters:

• Score = Σ(y-f(x,w))2

• We can use gradient
descent to minimize the
score.

“Numerical Recipes in X” is a
good reference,

Matlab provides software

)/(wscorew ∂∂−=∆ ε

wfwxfywscore ∂∂−Σ−=∂∂ /)),((2/

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 5

Linear Regression: Probabilistic Version

Linear regression assumes that the expected value of
the output given an input, E[y|x], is linear.

Simplest case: Out(x) = wx for some unknown w.

Given the data, we can estimate w.

y5 = 3.1x5 = 4

y4 = 1.9x4 = 1.5

y3 = 2x3 = 2

y2 = 2.2x2 = 3

y1 = 1x1 = 1

outputsinputs

DATASET

← 1 →

↑
w
↓

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 6

1-parameter linear regression
Assume that the data is formed by

yi = wxi + noisei

where…
• the noise signals are independent
• the noise has a normal distribution with mean 0

and unknown variance σ2

P(y|w,x) has a normal distribution with
• mean wx
• variance σ2

2

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 7

General
Gaussian 







 −
−= 2

2

2
)(exp

2
1)(

σ
µ

σπ
xxp

2]Var[σ=X

µXE =][

µ=100

σ=15

What is a normal distribution?
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 8

General
Gaussian 







 −
−= 2

2

2
)(exp

2
1)(

σ
µ

σπ
xxp

2]Var[σ=X

µXE =][

µ=100

σ=15

Shorthand: We say X ~ N(µ,σ2) to mean “X is distributed as a Gaussian
with parameters µ and σ2”.

In the above figure, X ~ N(100,152)

Also known
as the normal
distribution

or Bell-
shaped curve

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 9

Maximum likelihood estimation of w

Asks the question:
“For which value of w is this data most likely to have

happened?”
<=>

For what w is
P(y1, y2…yn |x1, x2, x3,…xn, w) maximized?

<=>
For what w is

maximized?),(
1

i

n

i
i xwyP∏

=

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 10

For what w is

For what w is

For what w is

For what w is

maximized?),(
1

i

n

i
i xwyP∏

=

maximized?))(
2
1exp(2

1 σ
ii wxy

n

i

−

=
∏ −

maximized?
2

1 2
1







 −

−∑
= σ

ii
n

i

wxy

() minimized?
2

1
∑
=

−
n

i
ii wxy

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 11

Linear Regression

The maximum
likelihood w is
the one that
minimizes sum-
of-squares of
residuals

We want to minimize a quadratic function of w.

()

() () 222

2

2 wxwyxy

wxy

i
i

iii

i
ii

∑∑ ∑

∑
+−=

−=Ε

E(w) w

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 12

Linear Regression
Easy to show the sum of

squares is minimized
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood
model is

We can use it for
prediction

() wxx =Out

3

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 13

Linear Regression
Easy to show the sum of

squares is minimized
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood
model is

We can use it for
prediction

Note: In Bayesian stats you’d have

ended up with a prob dist of w

And predictions would have given a prob

dist of expected output

Often useful to know your confidence.

Max likelihood can give some kinds of

confidence too.

p(w)

w

() wxx =Out

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 14

Multivariate
Linear

Regression

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 15

Multivariate Regression
What if the inputs are vectors?

Dataset has form
x1 y1

x2 y2

x3 y3
.: :
.
xR yR

3 .

. 4
6 .

. 5

. 8

. 10

2-d input
example

x1

x2

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 16

Multivariate Regression
Write matrix X and Y thus:



















=



















=



















=

RRmRR

m

m

R y

y
y

xxx

xxx
xxx

MMM
2

1

21

22221

11211

2 Y

...

...

...

..........

..........

..........

X

x

x
x1

(there are R datapoints. Each input has m components)

The linear regression model assumes a vector w such that

Out(x) = xTw = w1x[1] + w2x[2] + ….wmx[D]

The max. likelihood estimate of w is w = (XTX) -1(XTY)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 17

Constant Term
in Linear

Regression
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 18

What about a constant term?
We may expect
linear data that does
not go through the
origin.

Statisticians and
Neural Net Folks all
agree on a simple
obvious hack.

Can you guess??

4

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 19

The constant term
• The trick is to create a fake input “X0” that

always takes the value 1

2055
1743
1642
YX2X1

1
1
1
X0

2055
1743
1642
YX2X1

Before:
Y=w1X1+ w2X2

…has to be a poor
model

After:
Y= w0X0+w1X1+ w2X2

= w0+w1X1+ w2X2

…has a fine constant
term

In this example,
You should be able
to see the MLE w0
, w1 and w2 by
inspection

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 20

Linear
Regression with
varying noise

Heteroscedasticity
...

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 21

Regression with varying noise
• Suppose you know the variance of the noise that

was added to each datapoint.

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

1/423
432
1/412
111
4½½
σi

2yixi

),(~ 2
iii wxNy σAssume What’s th

e MLE

estim
ate of w?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 22

MLE estimation with varying noise

=),,...,,,,...,,|,...,,(log 22
2

2
12121argmax wxxxyyyp

w
RRR σσσ

=
−∑

=

R

i i

ii wxy

w 1
2

2)(argmin σ

=







=

−∑
=

0)(such that
1

2

R

i i

iii wxyxw
σ



















∑

∑

=

=

R

i i

i

R

i i

ii

x

yx

1
2

2
1

2

σ

σ

Assuming i.i.d. and
then plugging in
equation for Gaussian
and simplifying.

Setting dLL/dw
equal to zero

Trivial algebra

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 23

This is Weighted Regression
• We are asking to minimize the weighted sum of

squares

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

∑
=

−R

i i

ii wxy

w 1
2

2)(argmin σ

2

1

iσ
where weight for i’th datapoint is

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 24

Weighted Multivariate Regression

The max. likelihood w is w = (WXTWX)-1(WXTWY)

(WXTWX) is an m x m matrix: i,j’th elt is

(WXTWY) is an m-element vector: i’th elt

∑
=

R

k i

kjki xx

1
2σ

∑
=

R

k i

kki yx
1

2σ

5

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 25

Non-linear
Regression

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 26

Non-linear Regression
• Suppose you know that y is related to a function of x in

such a way that the predicted values have a non-linear
dependence on w, e.g:

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

33
23
32
2.51
½½
yixi

),(~ 2σii xwNy +Assume What’s th
e MLE

estim
ate of w?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 27

Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
w

RR σ

() =+−∑
=

R

i
ii xwy

w 1

2argmin

=









=

+

+−
∑
=

0such that
1

R

i i

ii

xw
xwy

w

Assuming i.i.d. and
then plugging in
equation for Gaussian
and simplifying.

Setting dLL/dw
equal to zero

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 28

Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
w

RR σ

() =+−∑
=

R

i
ii xwy

w 1

2argmin

=









=

+

+−
∑
=

0such that
1

R

i i

ii

xw
xwy

w

Assuming i.i.d. and
then plugging in
equation for Gaussian
and simplifying.

Setting dLL/dw
equal to zero

We’re down the
algebraic toilet

So guess w
hat

we do?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 29

Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
w

RR σ

() =+−∑
=

R

i
ii xwy

w 1

2argmin

=









=

+

+−
∑
=

0such that
1

R

i i

ii

xw
xwy

w

Assuming i.i.d. and
then plugging in
equation for Gaussian
and simplifying.

Setting dLL/dw
equal to zero

We’re down the
algebraic toilet

So guess w
hat

we do?

Common (but not only) approach:
Numerical Solutions:
• Line Search
• Simulated Annealing
• Gradient Descent
• Conjugate Gradient
• Levenberg Marquardt
• Newton’s Method

Also, special purpose statistical-
optimization-specific tricks such as
E.M. (See Gaussian Mixtures lecture
for introduction)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 30

GRADIENT DESCENT
Suppose we have a scalar function

We want to find a local minimum.
Assume our current weight is w

GRADIENT DESCENT RULE:

η is called the LEARNING RATE. A small positive
number, e.g. η = 0.05

ℜ→ℜ:f(w)

()w
w

ww f
∂
∂

−← η

6

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 31

GRADIENT DESCENT
Suppose we have a scalar function

We want to find a local minimum.
Assume our current weight is w

GRADIENT DESCENT RULE:

η is called the LEARNING RATE. A small positive
number, e.g. η = 0.05

ℜ→ℜ:f(w)

()w
w

ww f
∂
∂

−← η

QUESTION: Justify the Gradient Descent Rule

Recall Andrew’s favorite
default value for anything

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 32

Gradient Descent in “m” Dimensions

ℜ→ℜm:)f(w

()wf-ww ∇← η

Given

points in direction of steepest ascent.

GRADIENT DESCENT RULE:

Equivalently
()wf-

j
jj w
ηww
∂
∂

← ….where wj is the jth weight

“just like a linear feedback system”

()
()

()



















∂
∂

∂
∂

=∇

wf

wf

wf
1

mw

w
M

()wf∇ is the gradient in that direction

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 33

What’s all this got to do with Neural
Nets, then, eh??

For supervised learning, neural nets are also models with
vectors of w parameters in them. They are now called
weights.
As before, we want to compute the weights to minimize sum-
of-squared residuals.

Which turns out, under “Gaussian i.i.d noise”
assumption to be max. likelihood.

Instead of explicitly solving for max. likelihood weights, we
use GRADIENT DESCENT to SEARCH for them.

“Why?” you ask, a querulous expression in your eyes.

“Aha!!” I reply: “We’ll see later.”

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 34

Linear Perceptrons
They are multivariate linear models:

Out(x) = wTx

And “training” consists of minimizing sum-of-squared residuals
by gradient descent.

QUESTION: Derive the perceptron training rule.

()()

()2

2

∑

∑

−=

−=Ε

Τ

k

k

y

y

kk

kk

x

xOut

w

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 35

Linear Perceptron Training Rule

∑
=

−=
R

k
k

T
kyE

1

2)(xw

Gradient descent tells us
we should update w
thusly if we wish to
minimize E:

j
jj w

Eηww
∂
∂

← -

So what’s ?
jw
E

∂
∂

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 36

Linear Perceptron Training Rule

∑
=

−=
R

k
k

T
kyE

1

2)(xw

Gradient descent tells us
we should update w
thusly if we wish to
minimize E:

j
jj w

Eηww
∂
∂

← -

So what’s ?
jw
E

∂
∂

∑
=

−
∂
∂

=
∂
∂ R

k
k

T
k

jj

y
ww

E
1

2)(xw

∑
=

−
∂
∂

−=
R

k
k

T
k

j
k

T
k y

w
y

1

)()(2 xwxw

∑
= ∂

∂
−=

R

k
k

T

j
k w
δ

1
2 xw

k
T

kk yδ xw−=
…where…

∑ ∑
= =∂

∂
−=

R

k

m

i
kii

j
k xw
w

δ
1 1

2

∑
=

−=
R

k
kjk xδ

1
2

7

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 37

Linear Perceptron Training Rule

∑
=

−=
R

k
k

T
kyE

1

2)(xw

Gradient descent tells us
we should update w
thusly if we wish to
minimize E:

j
jj w

Eηww
∂
∂

← -

…where…

∑
=

−=
∂
∂ R

k
kjk

j

xδ
w
E

1
2

∑
=

+←
R

k
kjkjj xδηww

1

2

We frequently neglect the 2 (meaning
we halve the learning rate)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 38

The “Batch” perceptron algorithm
1) Randomly initialize weights w1 w2 … wm

2) Get your dataset (append 1’s to the inputs if
you don’t want to go through the origin).

3) for i = 1 to R

4) for j = 1 to m

5) if stops improving then stop. Else loop
back to 3.

iii y xwΤ−=:δ

∑
=

+←
R

i
ijijj xww

1
δη

∑ 2
iδ

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 39

ijijj

iii

xww
y

ηδ
δ

+←
−← Τxw

A RULE KNOWN BY
MANY NAMES

The LMS Rule

The delta rule

The Widrow Hoff rule

Classical

conditioning

The adaline rule

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 40

If data is voluminous and arrives fast

Input-output pairs (x,y) come streaming in very
quickly. THEN

Don’t bother remembering old ones.
Just keep using new ones.

observe (x,y)

jjj xδηwwj
y

xw
+←∀

−← Τδ

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 41

GD Advantages (MI disadvantages):
• Biologically plausible
• With very very many attributes each iteration costs only O(mR). If

fewer than m iterations needed we’ve beaten Matrix Inversion
• More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):
• It’s moronic
• It’s essentially a slow implementation of a way to build the XTX matrix

and then solve a set of linear equations
• If m is small it’s especially outageous. If m is large then the direct

matrix inversion method gets fiddly but not impossible if you want to
be efficient.

• Hard to choose a good learning rate
• Matrix inversion takes predictable time. You can’t be sure when

gradient descent will stop.

Gradient Descent vs Matrix Inversion
for Linear Perceptrons

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 42

GD Advantages (MI disadvantages):
• Biologically plausible
• With very very many attributes each iteration costs only O(mR). If

fewer than m iterations needed we’ve beaten Matrix Inversion
• More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):
• It’s moronic
• It’s essentially a slow implementation of a way to build the XTX matrix

and then solve a set of linear equations
• If m is small it’s especially outageous. If m is large then the direct

matrix inversion method gets fiddly but not impossible if you want to
be efficient.

• Hard to choose a good learning rate
• Matrix inversion takes predictable time. You can’t be sure when

gradient descent will stop.

Gradient Descent vs Matrix Inversion
for Linear Perceptrons

8

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 43

GD Advantages (MI disadvantages):
• Biologically plausible
• With very very many attributes each iteration costs only O(mR). If

fewer than m iterations needed we’ve beaten Matrix Inversion
• More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):
• It’s moronic
• It’s essentially a slow implementation of a way to build the XTX matrix

and then solve a set of linear equations
• If m is small it’s especially outageous. If m is large then the direct

matrix inversion method gets fiddly but not impossible if you want to
be efficient.

• Hard to choose a good learning rate
• Matrix inversion takes predictable time. You can’t be sure when

gradient descent will stop.

Gradient Descent vs Matrix Inversion
for Linear Perceptrons

But we’ll
soon see that

GD
has an important extra

trick up its sleeve

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 44

Perceptrons for Classification
What if all outputs are 0’s or 1’s ?

or

We can do a linear fit.

Our prediction is 0 if out(x)≤1/2

1 if out(x)>1/2

WHAT’S THE BIG PROBLEM WITH THIS???

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 45

Perceptrons for Classification
What if all outputs are 0’s or 1’s ?

or

We can do a linear fit.

Our prediction is 0 if out(x)≤½

1 if out(x)>½

WHAT’S THE BIG PROBLEM WITH THIS???

Blue = Out(x)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 46

Perceptrons for Classification
What if all outputs are 0’s or 1’s ?

or

We can do a linear fit.

Our prediction is 0 if out(x)≤½

1 if out(x)>½

Blue = Out(x)

Green = Classification

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 47

Fix #1
• Only pay attention to points at border.
• This leads to SVM approach.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 48

Fix #2: Change definition of error
() .xw

2∑ Τ− iiyDon’t minimize

Minimize number of misclassifications instead. [Assume outputs are
+1 & -1, not +1 & 0]

where Round(x) = -1 if x<0

1 if x≥0

The gradient descent rule can be changed to:

if (xi,yi) correctly classed, don’t change

if wrongly predicted as 1 w w - xi

if wrongly predicted as -1 w w + xi

()()∑ Τ− iiy xw Round

NOTE: CUTE &
NON OBVIOUS WHY

THIS WORKS!!

9

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 49

Classification with Perceptrons II:
Sigmoid Functions

Least squares fit useless
This fit would classify much
better. But not a least
squares fit.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 50

Fix #3: Use a different function

Least squares fit useless
This fit would classify much
better. But not a least
squares fit.

SOLUTION:

Instead of Out(x) = wTx

We’ll use Out(x) = g(wTx)

where is a
squashing function

() ()1,0: →ℜxg

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 51

The Sigmoid

)exp(1
1)(

h
hg

−+
=

Note that if you rotate this
curve through 180o

centered on (0,1/2) you get
the same curve.

i.e. g(h)=1-g(-h)

Can you prove this?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 52

The Sigmoid

Now we choose w to minimize

[] []∑∑
=

Τ

=

−=−
R

i
ii

R

i
ii gyy

1

2

1

2)xw()x(Out

)exp(1
1)(

h
hg

−+
=

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 53

Linear Perceptron Classification
Regions

0 0
0

1
1

1

X2

X1

We’ll use the model Out(x) = g(wT(x,1))

= g(w1x1 + w2x2 + w0)

Which region of above diagram classified with +1, and
which with 0 ??

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 54

Gradient descent with sigmoid on a perceptron
() () ()()

() ()

() ()()

() ()()

∑

∑

∑∑∑ ∑

∑∑ ∑

∑ ∑

∑

=−=

−−=

∂
∂

























−−=



















∂
∂

−















−=

∂
Ε∂

















−=Ε









=

−−=







−+

−
−+

−
=

−+
−






 −+

=






 −+

−−−
=






 −+

−−
=

−+
=

−=

k
kkiiii

iji
i

ii

k
ikk

jk
ikk

i k
ikki

k
ikk

ji k
ikki

j

i k
ikki

k
kk

xwy

xgg

xw
w

xwgxwgy

xwg
w

xwgy
w

xwgy

xwg

xgxgxexexexexe

xe

xe

xexgxe
xg

xgxgxg

net)Out(x where

net1net2

'2

2

Out(x)

1
1

11
1

1

1

1
2

1

1
2

1

11

2
1

' so
1

1 :Because

1' notice First,

2

δ

δ

()∑
=

−+←
R

i
ijiiijj xggww

1

1δη









= ∑

=

m

j
ijji xwgg

1

iii gy −=δ

The sigmoid perceptron
update rule:

where

10

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 55

Other Things about Perceptrons

• Invented and popularized by Rosenblatt (1962)

• Even with sigmoid nonlinearity, correct
convergence is guaranteed

• Stable behavior for overconstrained and
underconstrained problems

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 56

Perceptrons and Boolean Functions
If inputs are all 0’s and 1’s and outputs are all 0’s and 1’s…

• Can learn the function x1 ∧ x2

• Can learn the function x1 ∨ x2 .

• Can learn any conjunction of literals, e.g.
x1 ∧ ~x2 ∧ ~x3 ∧ x4 ∧ x5

QUESTION: WHY?

X1

X2

X1

X2

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 57

Perceptrons and Boolean Functions
• Can learn any disjunction of literals

e.g. x1 ∧ ~x2 ∧ ~x3 ∧ x4 ∧ x5

• Can learn majority function
f(x1,x2 … xn) = 1 if n/2 xi’s or more are = 1

0 if less than n/2 xi’s are = 1

• What about the exclusive or function?
f(x1,x2) = x1 ∀ x2 =
(x1 ∧ ~x2) ∨ (~ x1 ∧ x2)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 58

Multilayer Networks
The class of functions representable by perceptrons

is limited
() 








== ∑Τ

j
jj xwgg Out(x) xw

Use a wider
representation !

















= ∑∑

k
jkjk

j
j xwgWg Out(x) This is a nonlinear function

Of a linear combination
Of non linear functions

Of linear combinations of inputs

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 59

A 1-HIDDEN LAYER NET
NINPUTS = 2 NHIDDEN = 3









= ∑

=

HIDN

k
kkvWg

1

Out









=









=









=

∑

∑

∑

=

=

=

INS

INS

INS

N

k
kk

N

k
kk

N

k
kk

xwgv

xwgv

xwgv

1
33

1
22

1
11

x1

x2

w11

w21

w31

w1

w2

w3

w32

w22

w12

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 60

Why not use multiple layers of linear
networks?

11

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 61

OTHER NEURAL NETS

2-Hidden layers + Constant Term

1

x1

x2

x3

x2

x1

“JUMP” CONNECTIONS









+= ∑∑

==

HIDINS N

k
kk

N

k
kk vWxwg

11
0 Out

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 62

Backpropagation (Chain Rule)

()()

descent.gradient by

xOut

minimize to

}{,}{ weightsofset a Find

Out(x)

2∑

∑ ∑

−

















=

i
ii

jkj

j k
kjkj

y

wW

xwgWg

That’s it!
That’s the backpropagation

algorithm.

That’s it!
That’s the backpropagation

algorithm.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 63

Backpropagation Convergence
Convergence to a global minimum is not
guaranteed.

•In practice, this is not a problem, apparently.

Tweaking to find the right number of hidden
units, or a useful learning rate η, is more
hassle, apparently.

IMPLEMENTING BACKPROP: Differentiate Monster sum-square residual
Write down the Gradient Descent Rule It turns out to be easier &
computationally efficient to use lots of local variables with names like hj ok vj neti
etc…

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 64

Choosing the learning rate
• This is a subtle art.
• Too small: can take days instead of minutes

to converge
• Too large: diverges (MSE gets larger and

larger while the weights increase and
usually oscillate)

• Sometimes the “just right” value is hard to
find.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 65

Learning-rate problems

From J. Hertz, A. Krogh, and R.
G. Palmer. Introduction to the
Theory of Neural Computation.
Addison-Wesley, 1994.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 66

Improving Simple Gradient Descent
Momentum
Don’t just change weights according to the current datapoint.
Re-use changes from earlier iterations.

Let ∆w(t) = weight changes at time t.
Let be the change we would make with

regular gradient descent.
Instead we use

Momentum damps oscillations.
A hack? Well, maybe.

w∂
Ε∂

−η

() ()tt ∆w
w

∆w αη +
∂
Ε∂

−=+1

momentum parameter

() () ()ttt ∆www +=+1

12

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 67

Momentum illustration

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 68

Improving Simple Gradient Descent
Newton’s method

)|(|
2
1)()(3

2

2

hh
w

h
w

hwhw OEEEE TT +
∂
∂

+
∂
∂

+=+

If we neglect the O(h3) terms, this is a quadratic form

Quadratic form fun facts:

If y = c + bT x - 1/2 xT A x

And if A is SPD

Then

xopt = A-1b is the value of x that maximizes y

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 69

Improving Simple Gradient Descent
Newton’s method

)|(|
2
1)()(3

2

2

hh
w

h
w

hwhw OEEEE TT +
∂
∂

+
∂
∂

+=+

If we neglect the O(h3) terms, this is a quadratic form

ww
ww

∂
∂









∂
∂

−←
−
EE

1

2

2

This should send us directly to the global minimum if the
function is truly quadratic.

And it might get us close if it’s locally quadraticish

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 70

Improving Simple Gradient Descent
Newton’s method

)|(|
2
1)()(3

2

2

hh
w

h
w

hwhw OEEEE TT +
∂
∂

+
∂
∂

+=+

If we neglect the O(h3) terms, this is a quadratic form

ww
ww

∂
∂









∂
∂

−←
−
EE

1

2

2

This should send us directly to the global minimum if the
function is truly quadratic.

And it might get us close if it’s locally quadraticish

BUT (and it’s a big but)…
That second derivative matrix can be

expensive and fiddly to compute.

If we’re not already in the quadratic bowl,

we’ll go nuts.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 71

Improving Simple Gradient Descent
Conjugate Gradient
Another method which attempts to exploit the “local
quadratic bowl” assumption

But does so while only needing to use

and not
2

2

w∂
∂ E

It is also more stable than Newton’s method if the local
quadratic bowl assumption is violated.

It’s complicated, outside our scope, but it often works well.
More details in Numerical Recipes in C.

w∂
∂E

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 72

BEST GENERALIZATION
Intuitively, you want to use the smallest,

simplest net that seems to fit the data.

HOW TO FORMALIZE THIS INTUITION?

1. Don’t. Just use intuition
2. Bayesian Methods Get it Right
3. Statistical Analysis explains what’s going on
4. Cross-validation

13

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 73

Other “Neural Networks”
• Polynomials (linear in weights)
• Projection Pursuit Σgi(wi

Tx), gi() arbitrary,
say splines.

• Additive Regression Σgi(xi), align units with
coordinate axes, gi() arbitrary

• Radial Basis Functions Σgi(|x-ci|2)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 74

Non-parametric Neural Networks
• Add parameters (neurons/units) as you go

along.
• GMDH (do it with polynomials)
• Cascade Correlation

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 75

GMDH (c.f. BACON, AIM)
• Group Method Data Handling
• A very simple but very good idea:
1. Do linear regression
2. Use cross-validation to discover whether any

quadratic term is good. If so, add it as a basis
function and loop.

3. Use cross-validation to discover whether any of a
set of familiar functions (log, exp, sin etc)
applied to any previous basis function helps. If
so, add it as a basis function and loop.

4. Else stop

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 76

GMDH (c.f. BACON, AIM)
• Group Method Data Handling
• A very simple but very good idea:
1. Do linear regression
2. Use cross-validation to discover whether any

quadratic term is good. If so, add it as a basis
function and loop.

3. Use cross-validation to discover whether any of a
set of familiar functions (log, exp, sin etc)
applied to any previous basis function helps. If
so, add it as a basis function and loop.

4. Else stop

Typical learned function:

ageest = height - 3.1 sqrt(weight) +

4.3 income / (cos (NumCars))

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 77

When will GMDH fail?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 78

When will GMDH fail?
• Will not learn XYZ if X, Y, and Z are zero

mean and independent such that E(XY),
E(XZ), and E(YZ) are all zero.

14

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 79

What You Should Know
• How to use matlab to do multivariate Least-

squares linear regression.
• Derivation of least squares as max.

likelihood estimator of linear coefficients
• The general gradient descent rule,

relationship to chain rule
• How to use matlab to fit data with nonlinear

functions

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 80

Which approach is better?

