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Sep 25th, 2001Copyright © 2001, 2003, Andrew W. Moore

This part of the lecture is 
derived from: 

Regression and 
Classification with
Neural Networks

Andrew W. Moore

Note to other teachers and users of 
these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 
to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 
your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully 
received. 

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 2

Linear Regression

Empirical view: Hmm, looks like the data can be fit by a line going 
through the origin: y = wx. (w is a “weight”)

Score = Σerror2 = Σ(y-wx)2 

(Why square the error? Minimizing score, want to penalize 
positive and negative errors)

y5 = 3.1x5 = 4

y4 = 1.9x4 = 1.5

y3 = 2x3 = 2

y2 = 2.2x2 = 3

y1 = 1x1 = 1

outputsinputs

DATASET
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Getting the best score
• For functions that are linear in the unknown 

parameters, we can simply compute the 
globally best parameters to fit a training set. 
Formulating our example problem in matrix 
notation:

X = (x1, x2, x3, …, xn)T

y = Xw

so estimate of w = (XTX)-1XTy = Σxy/Σx2
(Where did this formula come from? Take the 

derivative of the score and set it to zero)
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Getting the best score
• However, many functions 

we might like to use aren’t 
linear in the unknown 
parameters.

• In this case, the score is a 
function of the training set 
and the parameters:

• Score = Σ(y-f(x,w))2

• We can use gradient 
descent to minimize the 
score.

“Numerical Recipes in X” is a 
good reference,

Matlab provides software

)/( wscorew ∂∂−=∆ ε

wfwxfywscore ∂∂−Σ−=∂∂ /)),((2/
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Linear Regression: Probabilistic Version

Linear regression assumes that the expected value of 
the output given an input, E[y|x], is linear.

Simplest case: Out(x) = wx for some unknown w.

Given the data, we can estimate w.

y5 = 3.1x5 = 4

y4 = 1.9x4 = 1.5

y3 = 2x3 = 2

y2 = 2.2x2 = 3

y1 = 1x1 = 1

outputsinputs

DATASET

← 1 →

↑
w
↓
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1-parameter linear regression
Assume that the data is formed by

yi = wxi + noisei

where…
• the noise signals are independent
• the noise has a normal distribution with mean 0 

and unknown variance σ2

P(y|w,x) has a normal distribution with
• mean wx
• variance σ2
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General 
Gaussian 
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µXE =][

µ=100

σ=15

What is a normal distribution?
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General 
Gaussian 
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µ=100

σ=15

Shorthand: We say X ~ N(µ,σ2) to mean “X is distributed as a Gaussian 
with parameters µ and σ2”.

In the above figure, X ~ N(100,152)

Also known 
as the normal 
distribution 

or Bell-
shaped curve 
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Maximum likelihood estimation of w

Asks the question:
“For which value of w is this data most likely to have 

happened?”
<=>

For what w is
P(y1, y2…yn |x1, x2, x3,…xn, w) maximized?

<=>
For what w is

maximized? ),(
1

i

n

i
i xwyP∏

=
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For what w is
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∑
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Linear Regression

The maximum 
likelihood w is 
the one that 
minimizes sum-
of-squares of 
residuals

We want to minimize a quadratic function of w.

( )

( ) ( ) 222

2

2 wxwyxy

wxy

i
i

iii

i
ii

∑∑ ∑

∑
+−=

−=Ε

E(w) w
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood 
model is

We can use it for 
prediction

( ) wxx =Out
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood 
model is

We can use it for 
prediction

Note:   In Bayesian stats you’d have 

ended up with a prob dist of w

And predictions would have given a prob 

dist of expected output

Often useful to know your confidence.  

Max likelihood can give some kinds of 

confidence too.

p(w)

w

( ) wxx =Out
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Multivariate 
Linear 

Regression
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Multivariate Regression
What if the inputs are vectors?

Dataset has form
x1 y1

x2 y2

x3 y3
.:                                    :
.
xR yR

3 .

. 4                                              
6 .

. 5

. 8

. 10

2-d input 
example

x1

x2
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Multivariate Regression
Write matrix X and Y thus:



















=





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



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=







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







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RRmRR

m

m

R y

y
y

xxx

xxx
xxx

MMM
2

1

21

22221

11211

2 Y  

...

...

...

..........

..........

..........

X

x

x
x1

(there are R datapoints.  Each input has m components)

The linear regression model assumes a vector w such that

Out(x) = xTw = w1x[1] + w2x[2] + ….wmx[D]

The max. likelihood estimate of w is w = (XTX) -1(XTY)
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Constant Term 
in Linear 

Regression
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What about a constant term?
We may expect 
linear data that does 
not go through the 
origin.

Statisticians and 
Neural Net Folks all 
agree on a simple 
obvious hack.

Can you guess??
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The constant term
• The trick is to create a fake input “X0” that 

always takes the value 1

2055
1743
1642
YX2X1

1
1
1
X0

2055
1743
1642
YX2X1

Before:
Y=w1X1+ w2X2 

…has to be a poor 
model

After:
Y= w0X0+w1X1+ w2X2 

= w0+w1X1+ w2X2 

…has a fine constant 
term

In this example, 
You should be able 
to see the MLE w0
, w1 and w2 by 
inspection 
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Linear 
Regression with 
varying noise

Heteroscedasticity
...
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Regression with varying noise
• Suppose you know the variance of the noise that 

was added to each datapoint.

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

1/423
432
1/412
111
4½½
σi

2yixi

),(~ 2
iii wxNy σAssume What’s th

e MLE 

estim
ate of w?
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MLE estimation with varying noise
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero

Trivial algebra
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This is Weighted Regression
• We are asking to minimize the weighted sum of 

squares

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

∑
=

−R

i i

ii wxy

w 1
2

2)(argmin σ

2

1

iσ
where weight for i’th datapoint is
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Weighted Multivariate Regression

The max. likelihood w is w = (WXTWX)-1(WXTWY)

(WXTWX) is an m x m matrix:  i,j’th elt is

(WXTWY) is an m-element vector:  i’th elt

∑
=

R

k i

kjki xx

1
2σ

∑
=

R

k i

kki yx
1

2σ
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Non-linear 
Regression
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Non-linear Regression
• Suppose you know that y is related to a function of x in 

such a way that the predicted values have a non-linear 
dependence on w, e.g:

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

33
23
32
2.51
½½
yixi

),(~ 2σii xwNy +Assume What’s th
e MLE 

estim
ate of w?
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero

We’re down the 
algebraic toilet

So guess w
hat 

we do?
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero

We’re down the 
algebraic toilet

So guess w
hat 

we do?

Common (but not only) approach:
Numerical Solutions:
• Line Search
• Simulated Annealing
• Gradient Descent
• Conjugate Gradient
• Levenberg Marquardt
• Newton’s Method

Also, special purpose statistical-
optimization-specific tricks such as 
E.M. (See Gaussian Mixtures lecture 
for introduction)
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GRADIENT DESCENT
Suppose we have a scalar function

We want to find a local minimum.
Assume our current weight is w

GRADIENT DESCENT RULE:

η is called the LEARNING RATE.  A small positive 
number, e.g. η = 0.05

ℜ→ℜ:f(w)

( )w
w

ww f
∂
∂

−← η
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GRADIENT DESCENT
Suppose we have a scalar function

We want to find a local minimum.
Assume our current weight is w

GRADIENT DESCENT RULE:

η is called the LEARNING RATE.  A small positive 
number, e.g. η = 0.05

ℜ→ℜ:f(w)

( )w
w

ww f
∂
∂

−← η

QUESTION:  Justify the Gradient Descent Rule

Recall Andrew’s favorite 
default value for anything
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Gradient Descent in “m” Dimensions

ℜ→ℜm:)f(w

( )wf-ww ∇← η

Given

points in direction of steepest ascent.

GRADIENT DESCENT RULE:

Equivalently
( )wf-

j
jj w
ηww
∂
∂

← ….where wj is the jth weight

“just like a linear feedback system”

( )
( )

( )



















∂
∂

∂
∂

=∇

wf

wf

wf
1

mw

w
M

( )wf∇ is the gradient in that direction
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What’s all this got to do with Neural 
Nets, then, eh??

For supervised learning, neural nets are also models with 
vectors of w parameters in them.  They are now called 
weights.
As before, we want to compute the weights to minimize sum-
of-squared residuals.

Which turns out, under “Gaussian i.i.d noise”
assumption to be max. likelihood.

Instead of explicitly solving for max. likelihood weights, we 
use GRADIENT DESCENT to SEARCH for them.

“Why?” you ask, a querulous expression in your eyes.  

“Aha!!” I reply: “We’ll see later.”
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Linear Perceptrons
They are multivariate linear models:

Out(x) = wTx

And “training” consists of minimizing sum-of-squared residuals 
by gradient descent.

QUESTION:  Derive the perceptron training rule.

( )( )

( )2

2

∑

∑

−=

−=Ε

Τ

k

k

y

y

kk

kk

x   

xOut

w
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Linear Perceptron Training Rule

∑
=

−=
R

k
k

T
kyE

1

2)( xw

Gradient descent tells us 
we should update w
thusly if we wish to 
minimize E:

j
jj w

Eηww
∂
∂

← -

So what’s ?
jw
E

∂
∂
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Linear Perceptron Training Rule
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Gradient descent tells us 
we should update w
thusly if we wish to 
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∂
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∂
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∂
−=

R

k

m

i
kii

j
k xw
w

δ
1 1

2

∑
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Linear Perceptron Training Rule

∑
=

−=
R

k
k

T
kyE

1

2)( xw

Gradient descent tells us 
we should update w
thusly if we wish to 
minimize E:

j
jj w

Eηww
∂
∂

← -

…where…

∑
=

−=
∂
∂ R

k
kjk

j

xδ
w
E

1
2

∑
=

+←
R

k
kjkjj xδηww

1

2

We frequently neglect the 2 (meaning 
we halve the learning rate)
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The “Batch” perceptron algorithm
1) Randomly initialize weights  w1 w2 … wm

2) Get your dataset (append 1’s to the inputs if 
you don’t want to go through the origin).

3) for i = 1 to R

4) for  j = 1 to m

5) if             stops improving then stop.  Else loop 
back to 3.

iii y xwΤ−=:δ

∑
=

+←
R

i
ijijj xww

1
δη

∑ 2
iδ
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ijijj

iii

xww
y

ηδ
δ

+←
−← Τxw

A RULE KNOWN BY
MANY NAMES

The LMS Rule

The delta rule

The Widrow Hoff rule

Classical

conditioning

The adaline rule
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If data is voluminous and arrives fast

Input-output pairs (x,y) come streaming in very 
quickly.  THEN

Don’t bother remembering old ones.  
Just keep using new ones.

observe (x,y)

jjj xδηwwj
y

    
xw
+←∀

−← Τδ
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GD Advantages (MI disadvantages):
• Biologically plausible
• With very very many attributes each iteration costs only O(mR). If 

fewer than m iterations needed we’ve beaten Matrix Inversion
• More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):
• It’s moronic
• It’s essentially a slow implementation of a way to build the XTX matrix 

and then solve a set of linear equations
• If m is small it’s especially outageous. If m is large then the direct 

matrix inversion method gets fiddly but not impossible if you want to 
be efficient.

• Hard to choose a good learning rate
• Matrix inversion takes predictable time. You can’t be sure when 

gradient descent will stop.

Gradient Descent vs Matrix Inversion 
for Linear Perceptrons
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GD Advantages (MI disadvantages):
• Biologically plausible
• With very very many attributes each iteration costs only O(mR). If 

fewer than m iterations needed we’ve beaten Matrix Inversion
• More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):
• It’s moronic
• It’s essentially a slow implementation of a way to build the XTX matrix 

and then solve a set of linear equations
• If m is small it’s especially outageous. If m is large then the direct 

matrix inversion method gets fiddly but not impossible if you want to 
be efficient.

• Hard to choose a good learning rate
• Matrix inversion takes predictable time. You can’t be sure when 

gradient descent will stop.

Gradient Descent vs Matrix Inversion 
for Linear Perceptrons
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GD Advantages (MI disadvantages):
• Biologically plausible
• With very very many attributes each iteration costs only O(mR). If 

fewer than m iterations needed we’ve beaten Matrix Inversion
• More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):
• It’s moronic
• It’s essentially a slow implementation of a way to build the XTX matrix 

and then solve a set of linear equations
• If m is small it’s especially outageous. If m is large then the direct 

matrix inversion method gets fiddly but not impossible if you want to 
be efficient.

• Hard to choose a good learning rate
• Matrix inversion takes predictable time. You can’t be sure when 

gradient descent will stop.

Gradient Descent vs Matrix Inversion 
for Linear Perceptrons

But we’ll
soon see that

GD
has an important extra

trick up its sleeve
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Perceptrons for Classification
What if all outputs are 0’s or 1’s ?

or

We can do a linear fit.

Our prediction is   0 if out(x)≤1/2

1 if out(x)>1/2

WHAT’S THE BIG PROBLEM WITH THIS???
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Perceptrons for Classification
What if all outputs are 0’s or 1’s ?

or

We can do a linear fit.

Our prediction is   0 if out(x)≤½

1 if out(x)>½

WHAT’S THE BIG PROBLEM WITH THIS???

Blue = Out(x)
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Perceptrons for Classification
What if all outputs are 0’s or 1’s ?

or

We can do a linear fit.

Our prediction is   0 if out(x)≤½

1 if out(x)>½

Blue = Out(x)

Green = Classification
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Fix #1
• Only pay attention to points at border.
• This leads to SVM approach.
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Fix #2: Change definition of error
( ) .xw

2∑ Τ− iiyDon’t minimize

Minimize number of misclassifications instead.  [Assume outputs are 
+1 & -1, not +1 & 0]

where   Round(x) =    -1 if x<0

1 if x≥0

The gradient descent rule can be changed to:

if (xi,yi) correctly classed, don’t change

if wrongly predicted as 1 w w - xi

if wrongly predicted as -1 w w + xi

( )( )∑ Τ− iiy xw Round

NOTE: CUTE &
NON OBVIOUS WHY 

THIS WORKS!!
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Classification with Perceptrons II:
Sigmoid Functions

Least squares fit useless
This fit would classify much 
better.  But not a least 
squares fit.
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Fix #3: Use a different function

Least squares fit useless
This fit would classify much 
better.  But not a least 
squares fit.

SOLUTION:

Instead of Out(x) = wTx

We’ll use    Out(x) = g(wTx)

where                            is a 
squashing function

( ) ( )1,0: →ℜxg
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The Sigmoid

)exp(1
1)(

h
hg

−+
=

Note that if you rotate this 
curve through 180o

centered on (0,1/2) you get 
the same curve.

i.e. g(h)=1-g(-h)

Can you prove this?
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The Sigmoid

Now we choose  w to minimize

[ ] [ ]∑∑
=

Τ

=

−=−
R

i
ii

R

i
ii gyy

1

2

1

2 )xw()x(Out

)exp(1
1)(

h
hg

−+
=
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Linear Perceptron Classification 
Regions

0      0
0

1
1

1

X2

X1

We’ll use the model         Out(x) = g(wT(x,1))

= g(w1x1 + w2x2 + w0)

Which region of above diagram classified with +1, and 
which with 0 ??
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Gradient descent with sigmoid on a perceptron
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The sigmoid perceptron
update rule:

where
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Other Things about Perceptrons

• Invented and popularized by Rosenblatt (1962)

• Even with sigmoid nonlinearity, correct 
convergence is guaranteed

• Stable behavior for overconstrained and 
underconstrained problems
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Perceptrons and Boolean Functions
If inputs are all 0’s and 1’s and outputs are all 0’s and 1’s…

• Can learn the function   x1 ∧ x2  

• Can learn the function x1 ∨ x2 .

• Can learn any conjunction of literals, e.g.
x1 ∧ ~x2 ∧ ~x3 ∧ x4 ∧ x5

QUESTION:  WHY?

X1

X2

X1

X2
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Perceptrons and Boolean Functions
• Can learn any disjunction of literals

e.g. x1 ∧ ~x2 ∧ ~x3 ∧ x4 ∧ x5

• Can learn majority function
f(x1,x2 … xn) =    1 if  n/2 xi’s or more are = 1

0 if less than n/2 xi’s are = 1

• What about the exclusive or function?
f(x1,x2) = x1 ∀ x2 = 
(x1 ∧ ~x2) ∨ (~ x1 ∧ x2)
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Multilayer Networks
The class of functions representable by perceptrons

is limited
( ) 
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jj xwgg     Out(x) xw

Use a wider 
representation !
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j xwgWg  Out(x) This is a nonlinear function

Of a linear combination
Of non linear functions

Of linear combinations of inputs
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A 1-HIDDEN LAYER NET
NINPUTS = 2                                    NHIDDEN = 3
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Why not use multiple layers of linear 
networks?
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OTHER NEURAL NETS

2-Hidden layers + Constant Term

1

x1

x2

x3

x2

x1

“JUMP” CONNECTIONS
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Backpropagation (Chain Rule)

( )( )

descent.gradient by 

xOut              

minimize to

}{,}{   weightsofset  a Find

Out(x)
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That’s it!
That’s the backpropagation

algorithm.

That’s it!
That’s the backpropagation

algorithm.
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Backpropagation Convergence
Convergence to a global minimum is not
guaranteed.

•In practice, this is not a problem, apparently.

Tweaking to find the right number of hidden 
units, or a useful learning rate η, is more 
hassle, apparently.

IMPLEMENTING BACKPROP: Differentiate Monster sum-square residual  
Write down the Gradient Descent Rule  It turns out to be easier & 
computationally efficient to use lots of local variables with names like hj ok vj neti
etc…
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Choosing the learning rate
• This is a subtle art.
• Too small: can take days instead of minutes 

to converge
• Too large: diverges (MSE gets larger and 

larger while the weights increase and 
usually oscillate)

• Sometimes the “just right” value is hard to 
find.
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Learning-rate problems

From J. Hertz, A. Krogh, and R. 
G. Palmer. Introduction to the 
Theory of Neural Computation. 
Addison-Wesley, 1994.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 66

Improving Simple Gradient Descent
Momentum
Don’t just change weights according to the current datapoint.
Re-use changes from earlier iterations.

Let  ∆w(t) = weight changes at time t.
Let                be the change we would make with

regular gradient descent.
Instead we use

Momentum damps oscillations.
A hack?  Well, maybe.

w∂
Ε∂

−η

( ) ( )tt ∆w
w

∆w αη +
∂
Ε∂

−=+1

momentum parameter

( ) ( ) ( )ttt ∆www +=+1
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Momentum illustration
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Improving Simple Gradient Descent
Newton’s method

)|(|
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+
∂
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+=+

If we neglect the O(h3) terms, this is a quadratic form

Quadratic form fun facts:

If y = c + bT x - 1/2 xT A x

And if A is SPD

Then

xopt = A-1b is the value of x that maximizes y
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Improving Simple Gradient Descent
Newton’s method
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If we neglect the O(h3) terms, this is a quadratic form
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This should send us directly to the global minimum if the 
function is truly quadratic.

And it might get us close if it’s locally quadraticish
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Improving Simple Gradient Descent
Newton’s method
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If we neglect the O(h3) terms, this is a quadratic form
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This should send us directly to the global minimum if the 
function is truly quadratic.

And it might get us close if it’s locally quadraticish

BUT (and it’s a big but)…
That second derivative matrix can be 

expensive and fiddly to compute.

If we’re not already in the quadratic bowl, 

we’ll go nuts.
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Improving Simple Gradient Descent
Conjugate Gradient
Another method which attempts to exploit the “local 
quadratic bowl” assumption

But does so while only needing to use

and not
2

2

w∂
∂ E

It is also more stable than Newton’s method if the local 
quadratic bowl assumption is violated.

It’s complicated, outside our scope, but it often works well. 
More details in Numerical Recipes in C.

w∂
∂E
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BEST GENERALIZATION
Intuitively, you want to use the smallest, 

simplest net that seems to fit the data.

HOW TO FORMALIZE THIS INTUITION?

1. Don’t.  Just use intuition
2. Bayesian Methods Get it Right
3. Statistical Analysis explains what’s going on
4. Cross-validation
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Other “Neural Networks”
• Polynomials (linear in weights)
• Projection Pursuit Σgi(wi

Tx), gi() arbitrary, 
say splines.

• Additive Regression Σgi(xi), align units with 
coordinate axes, gi() arbitrary 

• Radial Basis Functions Σgi(|x-ci|2)
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Non-parametric Neural Networks
• Add parameters (neurons/units) as you go 

along.
• GMDH (do it with polynomials)
• Cascade Correlation
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GMDH (c.f. BACON, AIM)
• Group Method Data Handling
• A very simple but very good idea:
1. Do linear regression
2. Use cross-validation to discover whether any 

quadratic term is good. If so, add it as a basis 
function and loop.

3. Use cross-validation to discover whether any of a 
set of familiar functions (log, exp, sin etc) 
applied to any previous basis function helps. If 
so, add it as a basis function and loop.

4. Else stop
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GMDH (c.f. BACON, AIM)
• Group Method Data Handling
• A very simple but very good idea:
1. Do linear regression
2. Use cross-validation to discover whether any 

quadratic term is good. If so, add it as a basis 
function and loop.

3. Use cross-validation to discover whether any of a 
set of familiar functions (log, exp, sin etc) 
applied to any previous basis function helps. If 
so, add it as a basis function and loop.

4. Else stop

Typical learned function:

ageest = height - 3.1 sqrt(weight) + 

4.3 income / (cos (NumCars))
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When will GMDH fail?
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When will GMDH fail?
• Will not learn XYZ if X, Y, and Z are zero 

mean and independent such that E(XY), 
E(XZ), and E(YZ) are all zero.
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What You Should Know
• How to use matlab to do multivariate Least-

squares linear regression.
• Derivation of least squares as max. 

likelihood estimator of linear coefficients
• The general gradient descent rule, 

relationship to chain rule
• How to use matlab to fit data with nonlinear 

functions
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Which approach is better?


