This part of the lecture is
derived from:
Regression and
Classification with
Neural Networks

these siides. Andrew would be delighted
if you found this source material useful in
giving your own lectures, Feel free to use
these slides verbatim, or to modify them
to fit your own needs. PowerPoint
originals are available. If you make use
of a significant portion of these slides in
Your own lecture, please include this
message, or the following link to the
source repository of Andrew's tutorials:
http: //www.cs.crmu.edu/~awm/tutorials .

Andrew W. Moore

Comments and corrections gratefully
received.

Copyright © 2001, 2003, Andrew W. Moore Sep 25th, 2001

Linear Regression

DATASET
[J
° inputs outputs
x =1 =1
o ° x,=3 =22
° ° : =
[] x;=2 »n=2
x,=1.5 =19
xs=4 ys=3.1

Empirical view: Hmm, looks like the data can be fit by a line going
through the origin: y = wx. (w is a “weight”)

Score = Zerror? = X(y-wx)?

(Why square the error? Minimizing score, want to penalize

positive and negative errors)
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 2

Getting the best score

e For functions that are linear in the unknown
parameters, we can simply compute the
globally best parameters to fit a training set.
Formulating our example problem in matrix
notation:

X = (Xq, Xy X35 weey X)T

y = Xw

so estimate of w = (XTX)1XTy = TXxy/Zx?

(Where did this formula come from? Take the
derivative of the score and set it to zero)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 3

Getting the best score

* However, many functions
we might like to use aren't
linear in the unknown
parameters.
o In this case, the score is a
function of the training set
and the parameters:
e Score = X(y-f(x,w))?
» We can use gradient Aw = —s(@score/ 8w)
descent to minimize the

Seore- Bscore/ ow = -2%(y — f(x,w))of / ow

“Numerical Recipes in X" is a
good reference,

Matlab provides software

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 4

Linear Regression: Probabilistic Version

DATASET
([] -
inputs outputs

° x=1 =1
x,=3 =22
=2 »=2
x,=15 y,=19
xs=4 ys=3.1

Linear regression assumes that the expected value of
the output given an input, £/y/xJ, is linear.

Simplest case: Out(x) = wx for some unknown w.
Given the data, we can estimate w.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 5

1-parameter linear regression

Assume that the data is formed by
Y; = wx;+ noise;

where...
e the noise signals are independent

¢ the noise has a normal distribution with mean 0
and unknown variance g2

P(¥lw,x) has a normal distribution with
* mean wx
e variance 02

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 6

General . ey General |~ 1 ey
. p(x)= exp| ————5— . distribution Ip(x) = exp| —~—+5
Gaussian Vazo (20° J GauSSian Lssseste V2ro [207 J

p(x) 0.025] | c'= 5] p(x) 0.025] | ;= 5
0.015 E[X]=p 0.015| E[X]=p
00057 T T T T T T Var[X] = 62 00057 T T T T T T Var[X] = 0-2
40 60 80 #100 120 140 160 40 60 80 £100 120 140 160
X X
))
pn=100 n=100
Shorthand: We say X ~ N(u,c2) to mean “X is distributed as a Gaussian
. . . . with parameters p and c2”.
What is a normal distribution? In the above figure, X ~ N(100,15)
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 7 Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 8

. : . : : For what wis
Maximum likelihood estimation of w
[T P, w.x,) maximized?
Asks the question: i=1
“For which value of wis this data most likely to have For what wis .
happened?” [Texp(—=(2=)*) maximized?
<=> i 2 o
For what wis For what Wlsn | o)
P(Vy VoV | Xy X5 Xg...X,, W) Maximized? > - 5[%) maximized?
_ i=1
<=>) For what wis
For what wis n n o ,
TP w,x) maximized Z:; (», — wx,) minimized?
i=l
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 9 Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 10
Linear Regression Linear Regression
Easy to show the sum of
squares is minimized
when
The maximum T _ le%
likelihood wis w= 2
the one that EW) | —p in
minimizes sum- ; ali
2 The maximum likelihood
of-squares of E=)(y-wx) model i
i odel is
residuals : Out(x) =wx
2 2
= “—2) xy. +(Zx.
Z‘y' (Z 'y')W !)M; We can use it for
We want to minimize a quadratic function of w. prediction
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 11 Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 12

Linear Regression

Easy to show the sum of
squares is minimized

when
DAY
[al——
Z Xi
The maximum likelihood

model is Out(x) = wx

We can use it for
prediction

Copyright © 2001, 2003, Andrew W. Moore

N

TN

Note: Bayesian stats you'd have
ended up with a prob dist of

And predictions would have given a prob
dist of expected output

Often useful to know your confidence.

Max likelihood can give some kinds of
confidence too.

Neural Networks: Slide 13

Multivariate
Linear
Regression

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 14

Multivariate Regression
What if the inputs are vectors?

T

X2

3.

2-d input
example

.10

X, —>
Dataset has form
X1
x
X3

Xr

Copyright © 2001, 2003, Andrew W. Moore

h
Y2
E)

®R

Neural Networks: Slide 15

Multivariate Regression
Write matrix X and Y thus:

X X e Xy i
_|*n X2 Xom V= y.2
----- Xpeeees Xri Xr2o e Xpw Yr

(there are R datapoints. Each input has m components)

The linear regression model assumes a vector w such that
Out(x) = x™w = w;x[1] + w,x[2] +wX[D]

The max. likelihood estimate of w is w = (X™X) -1(XTY)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 16

Constant Term
In Linear
Regression

Copyright © 2001, 2003, Andrew W. Moore

Neural Networks: Slide 17

What about a constant term?

We may expect height oy
linear data that does n
not go through the i
origin. o7
65
Statisticians and 8
Neural Net Folks all ol
agree on a simple i T "

obvious hack.

Can you guess??

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 18

The constant term

¢ The trick is to create a fake input " X" that
always takes the value 1

X, | X |Y Xy | X | X Y

2 |4 |16 1 |2 |4 |16

3 |4 (17 1 3 |4 |17

5 |5 |20 1 |5 |5 |20
Before: After:

Y=w Xy + WX, Y= WX+ WX+ WX

...hasto be a POOr | In this example,
You should be able
model to see the MLE w;,
, wyand w,by
inspection

= WytW X+ WX,
...has a fine constant
term

Copyright © 2001, 2003, Andrew W. Moor Neural Networks: Slide 19

edas’{\c'\w

\—\etero‘f’C]
Linear
Regression with
varying noise

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 20

Regression with varying noise

» Suppose you know the variance of the noise that
was added to each datapoint.

y=3 L
XY |of? -
1/2 1/2 4 y=2 'Y
1 1 1 -
2 1 (14 1.

=2

2 3 4 y=0-1 T T T
3 2 1/4 x=0 x=1 x=2 x=3

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 21

25 2 -
Assume yi ~N (Wxi,O' ;) \\N“??(\a‘i‘f/

MLE estimation with varying noise

ArgMAX 10g P(¥,, Vaseess Ve | Xps Xy Xgs OF 1 O3 ey Ty W) =

w Assuming i.i.d. and
WX; then plugging in
argmln zu equation for Gaussian
inl O; and simplifying.
w
Setting dLL/dw
X; WX;
wsuch that Z (y L) _ equal to zero
i=1
ﬁ: X0 Trivial algebra
i
i=| o’ i
R x‘z
25
i=] 0[
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 22

This is Weighted Regression

* We are asking to minimize the weighted sum of
squares

® ez
(v —wx,)’
argmin Z ’
w 1 o=1/2
o=1
o=1/2

=
T T T
x=1 x=2 x=3

1
where weight for i'th datapoint is ol
i
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 23

Weighted Multivariate Regression

The max. likelihood w is w = (WXTWX)-(WXTWY)

R
xklxkj
(WXTWX) is an m x m matrix: i,j'th elt is Z
= o)

1

R

Z XYV
2

k=1 O;

—_

(WXTWY) is an m-element vector: ith elt

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 24

Non-linear
Regression

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 25

Non-linear Regression

e Suppose you know that y is related to a function of x in
such a way that the predicted values have a non-linear
dependence on w, e.g:

y=3 [] []
X |Yi °
Vo |2 y=2 °
1 2.5
2 3 y=t
3 |2 ‘
y=0- T T T
3 3 x=0 x=1 x=2 x=3
2 ‘5
Assume V., ~ N(w+Xx.,0) \\N“"’ eoﬁ/
! i? \e‘—v“
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 26

Non-linear MLE estimation

argmax 1og p(yi, ¥ys Y | X5 Xp0n0 X, 0, W) =

argmin Z(—Jwrx) =

w

R m Setting dLL/dw
wsuch that Z equal to zero
i=1 AWtX;

Assuming i.i.d. and
then plugging in

equation for Gaussian
and simplifying.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 27

Non-linear MLE estimation

argmax log p(yi, yyse Vg [%15 X550 X, 0, W) =

w Assuming i.i.d. and
then plugging in
argmln Z(—Jwtx,)Z = equation for Gaussian
i=1 and simplifying.
w
R _ Setting dLL/dw
w+X,
ot S| A
i=1 w+X;

We're down the
algebraic toilet

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 28

Non-linear MLE estimation

argmaX log p(Y] sVasees Vp | X5 X0y Xp, Oy w)=
w

Common (but not only) approach:
Numerical Solutions:
¢ Line Search
¢ Simulated Annealing
¢ Gradient Descent
* Conjugate Gradient
e Levenberg Marquardt
¢ Newton’s Method

Assuming i.i.d. and
then plugging in

equation for Gaussian
and simplifying.

Igebraic toilet

Also, special purpose statistical-
optimization-specific tricks such as
E.M. (See Gaussian Mixtures lecture
for introduction)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 29

GRADIENT DESCENT

Suppose we have a scalar function f(W) RoNR

We want to find a local minimum.
Assume our current weight is w

GRADIENT DESCENT RULE: W(_W_nﬂf(w)
ow

n is called the LEARNING RATE. A small positive
number, e.g. n = 0.05

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 30

GRADIENT DESCENT
Suppose we have a scalar function f(W)Z RoR

We want to find a local minimum.
Assume our current weight is w

: 0
GRADIENT DESCENT RULE: ,, <_W_,7$f(w)

Recall Andrew'’s favorite

n is called the LEARNING st VAR for anyiing

number, e.g. n = 0.05°

QUESTION: Justify the Gradient Descent Rule

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 31

Gradient Descent in "m” Dimensions
Given f(w):R" >R

1)

Vi(w)= ! : points in direction of steepest ascent.
9 ¢(w)

ow,

m

[Vf(w) is the gradient in that direction

GRADIENT DESCENT RULE: w < w-7Vf(w)
Equivalently

w; W, —nawif(w) ..where w; is the jth weight

7 “just like a linear feedback system”

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 32

What's all this got to do with Neural
Nets, then, eh??

For supervised learning, neural nets are also models with
vectors of w parameters in them. They are now called
weights.

As before, we want to compute the weights to minimize sum-
of-squared residuals.

Which turns out, under “Gaussian i.i.d noise”
assumption to be max. likelihood.

Instead of explicitly solving for max. likelihood weights, we
use GRADIENT DESCENT to SEARCH for them. ————)

n in your eyes: |

o erulous expressid
‘rﬁ\il\il}\i{/;’i ;c;u ask, @ querulous express
\. ' "
| wwe'll see later”

“ .
A
| “Anatt” T repy:

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 33

Linear Perceptrons

They are multivariate linear models:
Out(x) = wx

And “training” consists of minimizing sum-of-squared residuals
by gradient descent.

E = z (OUt (Xk)_ yk)2

k

= Zk (WTXk _yk)z

QUESTION: Derive the perceptron training rule.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 34

Linear Perceptron Training Rule
EZZ(yk _WTXk)Z

Gradient descent tells us
we should update w
thusly if we wish to
minimize £:

Wy W

J

a8,

So what's ow

J

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 35

Linear Perceptron Training Rule

R o OE & o
E= _ oE _ 9 _w’ 2

kZ::,(J’k woX;) ow, Sow, e —w'x,)

R
Gradient descent tellsus | =$"2(y, —w” P
= Ye=WX)—— (- W,
we should update w ; ! Fow, " !
thusly if we wish to r 2
minimize £: =-2» 5, —
kZ:]: k ow, WX,

E ...where...
W/‘<_W./"76W_ S =y, —-W'x,
J R m

= 722(& iz WXy
k=1 aW/ i=l
oE o
So what's R
ow, =-2)6x,
k=1

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 36

Linear Perceptron Training Rule
E:Z(.Vk _wak)2

Gradient descent tells us
we should update w
thusly if we wish to

minimize £:
OF 7
W, 4w, -1
! 7 ow,
) w.<—w.+2;72 0, Xy
..where... J J = g
=
OE & \
—— =23 0%
6wj k=1 We frequently neglect the 2 (meaning
we halve the learning rate)
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 37

The “Batch” perceptron algorithm

1) Randomly initialize weights w; w; ... w,,

2) Get your dataset (append 1’s to the inputs if
you don’t want to go through the origin).

3) for i=1toR 5.

1

T
yi_w xi

; — R
4) for j=1tom W, w40 b,
i=1
5) if >'s° stopsimproving then stop. Else loop
back to 3.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 38

T
51’ SV —WX; A RULE KNOWN BY

MANY NAMES

w, < w, + ﬂéixij

’ The delta ryje
>

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 39

If data is voluminous and arrives fast

Input-output pairs (x;,)) come streaming in very
quickly. THEN

Don't bother remembering old ones.
Just keep using new ones.

observe (x,)
S y—-w'x
Viw «<w +ndx;

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 40

Gradient Descent vs Matrix Inversion

for Linear Perceptrons
GD Advantages (MI disadvantages):

GD Disadvantages (MI advantages):

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 41

Gradient Descent vs Matrix Inversion

for Linear Perceptrons
GD Advantages (MI disadvantages):

¢ Biologically plausible

e With very very many attributes each iteration costs only O(mR). If
fewer than m iterations needed we've beaten Matrix Inversion

e More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):

¢ It's moronic

e It's essentially a slow implementation of a way to build the XTX matrix
and then solve a set of linear equations

e If mis small it's especially outageous. If m is large then the direct
matrix inversion method gets fiddly but not impossible if you want to
be efficient.

¢ Hard to choose a good learning rate

e Matrix inversion takes predictable time. You can’t be sure when
gradient descent will stop.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 42

Gradient Descent vs Matrix Inversion
for Linear Perceptrons

* Biologically plausible

e With very very many attrib\
fewer than m iterations neg

¢ More easily parallgliza But we'll
GD Disadvantax soon see that
 It's moronic GD

o It's essentially< XTX matrix
and then solve a e
e If mis small it's espe

matrix inversion mi
be efficient.

* Hard to choose a good lea

* Matrix inversion takes pred|«table time. You can't be sure when
gradient descent will stop.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 43

Perceptrons for Classification

What if all outputs are O’s or 1’s ?

We can do a linear fit.
Our prediction is 0 if out(x)<1/2
1 if out(x)>1/2
WHAT’'S THE BIG PROBLEM WITH THIS???

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 44

Perceptrons for Classification

What if all outputs are 0’s or 1’s ?

We can do a linear fit.

Our prediction is 0 if out(x)<%2
1 if out(x)>%
WHAT'S THE BIG PROBLEM WITH THIS???

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 45

Perceptrons for Classification

What if all outputs are 0’s or 1’s ?

We can do a linear fit.

X)<V4 ‘Green = Classification ‘

Our prediction is 0 if out(
1 if out(x)>%2

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 46

Fix #1
¢ Only pay attention to points at border.
¢ This leads to SVM approach.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 47

Fix #2: Change definition of error

Don’t minimize Z (y,- - WTXi)Z-
Minimize number of misclassifications instead. [Assume outputs are

e ot ad 3" (3, - Round (w'x,))

where Round(x{= -1 if x<0
1if x=0

NOTE: CUTE &
NON OBVIOUS WHY
THIS WORKS!!

The gradient descent rule can be changed to:
if (x;,y;) correctly classed, don’t change
if wrongly predicted as 1 wéE w- X

if wrongly predicted as -1 wéE wfx;

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 48

Classification with Perceptrons II:
Sigmoid Functions

Least squares fit useless
This fit would classify much
better. But not a least
squares fit.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 49

Fix #3: Use a different function

Least squares fit useless
SOLUTION:
Instead of Out(x) = w'x
We'll use Out(x) = g(w'x)

where g(x):iR—)(O,l) is a
squashing function

Copyright © 2001, 2003, Andrew W. Moore

This fit would classify much
better. But not a leas
squares fit.

Neural Networks: Slide 50

The Sigmoid

1+exp(—h)

g(h) =

Note that if you rotate this - 1
curve through 180°

centered on (0,1/2) you get
the same curve.

i.e. g(h)=1-g(-h)

‘ Can you prove this?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 51

The Sig

g(h)= 1+exp(—h)

Now we choose w to minimize

> [y, —Out(x)f

i=1

Copyright © 2001, 2003, Andrew W. Moore

= i[yi —g(wx)f

Neural Networks: Slide 52

Linear Perceptron Classification

Regions
0o 0
[] o .
X5 1
1
)(14>

We'll use the model Out(x) = gw'(x,1))
= gmx; + WX, + W)
Which region of above diagram classified with +1, and
which with 0 ??

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 53

Gradient descent with sigmoid on a perceptron

First, notice '(x)= g(x)1-g(x))

Because: g(x)= so g'(x)=

l+e™ "

N R 1 1 -1

(H[sz (HWJZ e lee

(st

Out(x) = g[; wmj
oSl
SR SR

SAef e e
=325, net, Y1 - glnet,)x,

where &=y, —Out(x,) net,=> w,x

The sigmoid perceptron
update rule:

R
W W, +leé‘1g[(l_g[)xy

i=1
where & = g{z w/'xg/J
Jj=1

5=y—8&

Copyright © 2001, 2003, Andrew W. Mobre

Neural Networks: Slide 54

Other Things about Perceptrons

* Invented and popularized by Rosenblatt (1962)

» Even with sigmoid nonlinearity, correct
convergence is guaranteed

» Stable behavior for overconstrained and
underconstrained problems

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 55

Perceptrons and Boolean Functions

If inputs are all 0’s and 1’s and outputs are all 0’s and 1’s...

D \
+ Can learn the function x; A x, %
O O
X
\ \
; %
+ Can learn the function x, v x, . &
X

« Can learn any conjunction of literals, e.g.
Xy A ~Xy A ~X3 A X4 A Xs

QUESTION: WHY?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 56

Perceptrons and Boolean Functions

* Can learn any disjunction of literals
€.9. X{ A ~Xp A ~X3 A X4 A X

+ Can learn majority function
f(x4,X, ... X,) = [1if n/2 x/s or more are =1
0 if less than n/2 xj's are = 1

» What about the exclusive or function?

f(X1.%0) = X, V X, =
(X1 A ~X3) v (~ X1 A Xy)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 57

Multilayer Networks

The class of functions representable by perceptrons

is limited
Out(x) = g(wa): g[z wjij

Use a wider
representation !

Out(x) = g(z W/g[z Wik i j] This is a nonlinear function
/ * Of a linear combination
Of non linear functions
Of linear combinations of inputs
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 58

A 1-HIDDEN LAYER NET

Ninpurs = 2 Nimppen = 3

Nup

ZVVka
=

)

Out = g[

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 59

Why not use multiple layers of linear
networks?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 60

OTHER NEURAL NETS

2-Hidden layers + Constant Term

“JUMP” CONNECTIONS

NI[VS NHID
8 ZWkak + ZWk"k
k=1 =]

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 61

Backpropagation (Chain Rule)
Out(x) = g[; W, g(zk: wjkka]

Find a set of weights {W },{w}

to minimize
> (5~ Oulx,)
by gradient descent.

That's it!
That's the backpropagation
algorithm.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 62

Backpropagation Convergence

Convergence to a global minimum is not
guaranteed.
«In practice, this is not a problem, apparently.

Tweaking to find the right number of hidden
units, or a useful learning rate n, is more
hassle, apparently.

IMPLEMENTING BACKPROP: [~ Differentiate Monster sum-square residual &
Write down the Gradient Descent Rule E It turns out to be easier &
computationally efficient to use lots of local variables with names like h; o, v net;
etc...

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 63

Choosing the learning rate
¢ This is a subtle art.

¢ Too small: can take days instead of minutes
to converge

* Too large: diverges (MSE gets larger and
larger while the weights increase and
usually oscillate)

¢ Sometimes the “just right” value is hard to
find.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 64

Learning-rate problems

From J. Hertz, A. Krogh, and R.
G. Palmer. Introduction to the

Theory of Neural Computation.
Addison-Wesley, 1994.

» each for 30

< only significant differance belmwlhe ellipse shows g cop.

the ies i
and 4.0505 I'mmnieftl mt.mjemmm i the

right.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 65

Improving Simple Gradient Descent

Momentum
Don'’t just change weights according to the current datapoint.
Re-use changes from earlier iterations.
Let Aw(f) = weight changes at time ¢.
Let 6E be the change we would make with
ow regular gradient descent.
Instead we use

Aw(t +1)= —na—E + aAW(t)
ow

t+1)=wit)+Aw ¢
Momentum dam;(bs osgillat‘ilv)r(ms). W ()

A hack? Well, maybe.

momentum parameter

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 66

Momentum illustration

FIGURE 6.3 Gradient descent on the
simple quadratic surface of Fig. 5.10.
Both trajectories are for 12 steps with
n = 0.0476, the best value in the aksence
of momenfum. On the left there is no me;
mentum (@ = 0), while @ = 0.5 on the
right.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 67

Improving Simple Gradient Descent

Newton’s method
nr PE OE w1 hT 0°E
ow 2 ow’

E(w+h)=E(w)+

h[)

If we neglect the O(#°) terms, this is a quadratic form

Quadratic form fun facts:
Ify=c+b"x-12x Ax
And if Ais SPD

Then

x%t = A1his the value of x that maximizes y

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 68

Improving Simple Gradient Descent
Newton’s method

L OE 1., 0E

E(w+h)=E(w)+h %+2h 3w2h+0(‘h‘)

If we neglect the O(#°) terms, this is a quadratic form

2*E| " o
Wew—|— | —
ow ow

This should send us directly to the global minimum if the
function is truly quadratic.

And it might get us close if it's locally quadraticish

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 69

Improving Simple Gradient Descent
Conjugate Gradient

Another method which attempts to exploit the “local
quadratic bowl” assumption

But does so while only needing to use ~ OE
ow

and not 9’

awz
It is also more stable than Newton’s method if the local
quadratic bowl assumption is violated.

It's complicated, outside our scope, but it often works well.
More details in Numerical Recipes in C.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 71

Improving Simple Gradient Descent
Newton’s method

E(w+h):E(w)+hT%+ h’ O’E

2 o h+O(/h ")

g BUT (Qfllect the O(#°)terms, this is a quadratic form

angd jrr

That s b' bu =2
feXpe S€cony dery B, =1 o
/ NSiv Vati T
If wer, e and fi d/y’Ve fnatn'x 9]

e not {0 copy, <3N be [
| We 190 Already ; Pute, jmum if the
function - o he QUadrag. . /
/
And it might get US Close-_ . ow, Aticish

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 70

BEST GENERALIZATION

Intuitively, you want to use the smallest,
simplest net that seems to fit the data.

HOW TO FORMALIZE THIS INTUITION?

Don’t. Just use intuition

Bayesian Methods Get it Right

Statistical Analysis explains what's going on
Cross-validation

HoON =~

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 72

Other “Neural Networks”

¢ Polynomials (linear in weights)

* Projection Pursuit £g,(w;"x), g() arbitrary,
say splines.

¢ Additive Regression 2g;(x;), align units with
coordinate axes, g;() arbitrary

« Radial Basis Functions =g;(|x-c;|?)

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 73

Non-parametric Neural Networks

¢ Add parameters (neurons/units) as you go
along.

¢ GMDH (do it with polynomials)
¢ Cascade Correlation

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 74

GMDH (c.f. BACON, AIM)

e Group Method Data Handling
e A very simple but very good idea:
1. Do linear regression

Use cross-validation to discover whether any
quadratic term is good. If so, add it as a basis
function and loop.

3. Use cross-validation to discover whether any of a
set of familiar functions (log, exp, sin etc)
applied to any previous basis function helps. If
so, add it as a basis function and loop.

4. Else stop

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 75

GMDH (c.f. BACON, AIM)

e Group Method Data Handling
e A very simple but very good idea:
1. D(Typical learned function:

U¢agesst = height - 3.1 sqrt(weight) + \%

q 4.3 income / (cos (NumCars)) sis
function and Toop.

3. Use cross-validation to discover whether any of a
set of familiar functions (log, exp, sin etc)
applied to any previous basis function helps. If
so, add it as a basis function and loop.

4. Else stop

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 76

When will GMDH fail?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 77

When will GMDH fail?

o Will not learn XYZ if X, Y, and Z are zero
mean and independent such that E(XY),
E(XZ), and E(YZ) are all zero.

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 78

What You Should Know
¢ How to use matlab to do multivariate Least-
squares linear regression.

¢ Derivation of least squares as max.
likelihood estimator of linear coefficients

» The general gradient descent rule,
relationship to chain rule

e How to use matlab to fit data with nonlinear
functions

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 79

Which approach is better?

Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 80

