This part of the lecture is derived from: Regression and Classification with Neural Networks

Note to other teachers and users off these sides. Andrew would bedelighte if you found this source
if you found this source material useful in giving your own lectures. Feel free to use

giving y your own lictures. Feel frie to use
theses sides verbatit, or to modify them
tof fit your own needs. PowerPoint
originals are available. If you make
originals are avaiable. If you make use
of a significant portion of theses slides in
your own lecture, ploase include this
message, or the oflowing like to
source ereopsitory of Andrew's tutorials:
$\frac{\text { hitp://www. cs.cmu.edu/ Nawm/tutorials }}{\text { Comments and corrections gratéfily }}$.
Comments
received.
Copyright © 2001, 2003, Andrew W. Moore

Getting the best score

- For functions that are linear in the unknown parameters, we can simply compute the globally best parameters to fit a training set. Formulating our example problem in matrix notation:
$X=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)^{\top}$
$y=X w$
so estimate of $w=\left(X^{\top} X\right)^{-1} X^{\top} y=\Sigma x y / \Sigma x^{2}$
(Where did this formula come from? Take the derivative of the score and set it to zero)

Copyright © 2001, 2003, Andrew W. Moore
Linear Regression

inputs	outputs
$x_{1}=1$	$y_{1}=1$
$x_{2}=3$	$y_{2}=2.2$
$x_{3}=2$	$y_{3}=2$
$x_{4}=1.5$	$y_{4}=1.9$
$x_{5}=4$	$y_{5}=3.1$

Empirical view: Hmm, looks like the data can be fit by a line going through the origin: $y=w x$. (w is a "weight")
Score $=\Sigma$ error $^{2}=\Sigma(y-w x)^{2}$
(Why square the error? Minimizing score, want to penalize positive and negative errors)
Copyright © 2001, 2003, Andrew W. Moore

Getting the best score

- However, many functions we might like to use aren't linear in the unknown parameters.
- In this case, the score is a function of the training set and the parameters:
- Score $=\Sigma(y-f(x, w))^{2}$
- We can use gradient descent to minimize the score.

$$
\partial s c o r e ~ / \partial w=-2 \Sigma(y-f(x, w)) \partial f / \partial w
$$

"Numerical Recipes in X " is a good reference,
Matlab provides software
Copyright © 2001, 2003, Andrew W. Moore

1-parameter linear regression

Assume that the data is formed by

$$
y_{i}=w x_{i}+\text { noise }_{i}
$$

where..

- the noise signals are independent
- the noise has a normal distribution with mean 0 and unknown variance σ^{2}
$\mathrm{P}(y \mid w, x)$ has a normal distribution with
- mean $w x$
- variance σ^{2}

What is a normal distribution?

Copyright © 2001, 2003, Andrew W. Moore
Neural Networks: Slide 7

Maximum likelihood estimation of w

Asks the question:
"For which value of w is this data most likely to have happened?"
<=>

For what w is

$$
\begin{aligned}
& \mathrm{P}\left(y_{1}, y_{2} \ldots y_{n} \mid x_{1}, x_{2}, x_{3} \ldots x_{n}, w\right) \text { maximized? } \\
& \text { <=> }
\end{aligned}
$$

For what w is

$$
\prod_{i=1}^{n} P\left(y_{i} \mid w, x_{i}\right) \text { maximized' }
$$

Copyright © 2001, 2003, Andrew W. Moore

Linear Regression

The maximum likelihood w is the one that minimizes sum-of-squares of residuals

$$
\begin{aligned}
& \mathrm{E}=\sum_{i}\left(y_{i}-w x_{i}\right)^{2} \\
& =\sum_{i} y_{i}^{2}-\left(2 \sum x_{i} y_{i}\right) w+\left(\sum x_{i}^{2}\right) w^{2}
\end{aligned}
$$

We want to minimize a quadratic function of w.

Shorthand: We say $X \sim N\left(\mu, \sigma^{2}\right)$ to mean " X is distributed as a Gaussian with parameters μ and $\sigma^{2 \prime \prime}$.
In the above figure, $X \sim N\left(100,15^{2}\right)$

Copyright © 2001, 2003, Andrew W. Moore

For what w is

$$
\prod_{i=1}^{n} P\left(y_{i} \mid w, x_{i}\right) \text { maximized? }
$$

For what w is

$$
\prod_{i=1}^{n} \exp \left(-\frac{1}{2}\left(\frac{y_{i}-w x_{i}}{\sigma}\right)^{2}\right) \text { maximized? }
$$

For what w is

$$
\sum_{i=1}^{n}-\frac{1}{2}\left(\frac{y_{i}-w x_{i}}{\sigma}\right)^{2} \text { maximized? }
$$

For what w is

$$
\sum_{i=1}^{n}\left(y_{i}-w x_{i}\right)^{2} \text { minimized? }
$$

Linear Regression

Easy to show the sum of squares is minimized when

$$
w=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
$$

The maximum likelihood model is

$$
\operatorname{Out}(x)=w x
$$

We can use it for prediction

Linear Regression	
Easy to show the sum of squares is minimized when $w=\sum x_{i} y_{i}$	
	Note: In Bayesian stats you'd have
$\text { model is } \operatorname{Out}(x)=w x$	And predictions would have given a prob dist of expected output
We can use it for prediction	Often useful to know your confidence. Max likelihood can give some kinds of confidence too.
Copyrighte 2001,2003 Andrew W. Moore	Neura

Multivariate Linear Regression

Multivariate Regression

What if the inputs are vectors?

2-d input
example

Dataset has form

Copyright © 2001, 2003, Andrew W. Moore

Constant Term in Linear Regression

What about a constant term?
We may expect linear data that does not go through the origin.

Statisticians and Neural Net Folks all agree on a simple
 obvious hack.

Can you guess??

The constant term

- The trick is to create a fake input " X_{0} " that always takes the value 1

X_{1}	X_{2}	Y
2	4	16
3	4	17
5	5	20

Before:
$Y=w_{1} X_{1}+w_{2} X_{2}$
...has to be a poor
model

Copyright © 2001, 2003, Andrew W. Moor

X_{0}	X_{1}	X_{2}	Y
1	2	4	16
1	3	4	17
1	5	5	20

After:
$Y=w_{0} X_{0}+w_{1} X_{1}+w_{2} X_{2}$
$=w_{0}+w_{1} X_{1}+w_{2} X_{2}$
...has a fine constant term

Regression with varying noise

- Suppose you know the variance of the noise that was added to each datapoint.

x_{i}	y_{i}	$\sigma_{i}{ }^{2}$
$1 / 2$	$1 / 2$	4
1	1	1
2	1	$1 / 4$
2	3	4
3	2	$1 / 4$

Assume $\quad y_{i} \sim N\left(w x_{i}, \sigma_{i}^{2}\right)$
Copyright © 2001, 2003, Andrew W. Moore

MLE estimation with varying noise
$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{R}^{2}, w\right)=$ w

Copyright © 2001, 2003, Andrew W. Moore

Weighted Multivariate Regression

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(\mathrm{W} X^{\top} W X\right)^{-1}\left(\mathrm{~W} X^{\top} W Y\right)$
(WX' $X^{\top} W$) is an $m \times m$ matrix: $\mathrm{i}, \mathrm{j}^{\prime}$ th elt is
$\left(W X^{\top} W Y\right)$ is an m-element vector: $i^{\text {th }}$ elt

$$
\begin{aligned}
& \sum_{k=1}^{R} \frac{x_{k i} x_{k j}}{\sigma_{i}^{2}} \\
& \sum_{k=1}^{R} \frac{x_{k i} y_{k}}{\sigma_{i}^{2}}
\end{aligned}
$$

Non-linear Regression

Non-linear MLE estimation

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=$

$$
\begin{gathered}
\underset{w}{\operatorname{argmin}} \sum_{i=1}^{R}\left(y_{i}-\sqrt{w+x_{i}}\right)^{2}= \\
\left(w \text { such that } \sum_{i=1}^{R} \frac{y_{i}-\sqrt{w+x_{i}}}{\sqrt{w+x_{i}}}=0\right)=\begin{array}{l}
\begin{array}{l}
\text { Assuming i.i.d. and } \\
\text { then plugging in } \\
\text { equation for Gaussian } \\
\text { and simplifying. }
\end{array} \\
\begin{array}{l}
\text { Setting dLL/dw } \\
\text { equal to zero }
\end{array}
\end{array}
\end{gathered}
$$

Non-linear MLE estimation

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=$

Non-linear MLE estimation

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=$
w

$$
\left(w \text { such that } \sum_{i=1}^{R} \frac{y_{i}-\sqrt{w+x_{i}}}{\sqrt{w+x_{i}}}=0\right)=\begin{aligned}
& \text { Setting dLL/dw } \\
& \text { equal to zero }
\end{aligned}
$$

We're down the algebraic toilet

Copyright © 2001, 2003, Andrew W. Moore

GRADIENT DESCENT

Suppose we have a scalar function $\mathrm{f}(\mathrm{w}): \mathfrak{R} \rightarrow \mathfrak{R}$
We want to find a local minimum.
Assume our current weight is w
GRADIENT DESCENT RULE: $\quad w \leftarrow w-\eta \frac{\partial}{\partial w} \mathrm{f}(w)$
η is called the LEARNING RATE. A small positive number, e.g. $\eta=0.05$

GRADIENT DESCENT
Suppose we have a scalar function $\mathrm{f}(\mathrm{w}): \mathfrak{R} \rightarrow \mathfrak{R}$
We want to find a local minimum.
Assume our current weight is w
GRADIENT DESCENT RULE: $w \leftarrow w-\eta \frac{\partial}{\partial w} \mathrm{f}(w)$
Recall Andrew's favorite default value for anything η is called the LEARNING K I number, e.g. $\eta=0.05$
QUESTION: Justify the Gradient Descent Rule

What's all this got to do with Neural Nets, then, eh??

For supervised learning, neural nets are also models with vectors of \mathbf{w} parameters in them. They are now called weights.
As before, we want to compute the weights to minimize sum-of-squared residuals.

Which turns out, under "Gaussian i.i.d noise" assumption to be max. likelihood.
Instead of explicitly solving for max. likelihood weights, we use GRADIENT DESCENT to SEARCH for them.
"Why?" you ask, a querulous expression in your eyes.
"Aha!!" I reply: "We'll see later."

Copyright © 2001, 2003, Andrew W. Moore

Linear Perceptrons

They are multivariate linear models:

$$
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

And "training" consists of minimizing sum-of-squared residuals by gradient descent.

$$
\begin{aligned}
\mathrm{E} & =\sum_{k}\left(\text { Out }\left(\mathrm{x}_{\mathrm{k}}\right)-y_{\mathrm{k}}\right)^{2} \\
& =\sum_{k}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{\mathrm{k}}-y_{\mathrm{k}}\right)^{2}
\end{aligned}
$$

QUESTION: Derive the perceptron training rule.
Copyright © 2001, 2003, Andrew W. Moore

Linear Perceptron Training Rule
$E=\sum_{k=1}^{R}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2}$
Gradient descent tells us we should update \mathbf{w} thusly if we wish to minimize E :
$w_{j} \leftarrow w_{j}-\eta \frac{\partial E}{\partial w_{j}}$

So what's $\frac{\partial E}{\partial w_{j}}$?

Linear Perceptron Training Rule
$E=\sum_{k=1}^{R}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2} \quad \frac{\partial E}{\partial w_{j}}=\sum_{k=1}^{R} \frac{\partial}{\partial w_{j}}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2}$
Gradient descent tells us we should update w thusly if we wish to minimize E :
$w_{j} \leftarrow w_{j}-\eta \frac{\partial E}{\partial w_{j}}$
So what's $\frac{\partial E}{\partial w_{j}}$?

$$
=\sum_{k=1}^{R} 2\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right) \frac{\partial}{\partial w_{j}}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)
$$

$$
=-2 \sum_{k=1}^{R} \delta_{k} \frac{\partial}{\partial w_{j}} \mathbf{w}^{T} \mathbf{x}_{k}
$$

$$
\begin{aligned}
& . . . \text { where... } \\
& \delta_{k}=y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}
\end{aligned}
$$

$$
=-2 \sum_{k=1}^{R} \delta_{k} \frac{\partial}{\partial w_{j}} \sum_{i=1}^{m} w_{i} x_{k i}
$$

$$
=-2 \sum_{k=1}^{R} \delta_{k} x_{k j}
$$

Copyright © 2001, 2003, Andrew W. Moore

Linear Perceptron Training Rule $E=\sum_{k=1}^{R}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2}$	
Gradient descent tells us we should update w thusly if we wish to minimize E :	
$w_{j} \leftarrow w_{j}-\eta \frac{\partial E}{\partial w_{j}}$.where...	$w_{j} \leftarrow w_{j}+2 \eta \sum_{k=1}^{R} \delta_{k} x_{k j}$
$\frac{\partial E}{\partial w_{j}}=-2 \sum_{k=1}^{R} \delta_{k} x_{k j}$	We frequently neglect the 2 (meaning we halve the learning rate)

The "Batch" perceptron algorithm

1) Randomly initialize weights $w_{1} w_{2} \ldots w_{m}$
2) Get your dataset (append 1's to the inputs if you don't want to go through the origin).
3) for $i=1$ to R

$$
\delta_{i}:=y_{i}-\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}
$$

4) for $j=1$ to $\mathrm{m} \quad w_{j} \leftarrow w_{j}+\eta \sum_{i=1}^{R} \delta_{i} x_{i j}$
5) if $\sum \delta_{i}^{2}$ stops improving then stop. Else loop back to 3 .
Copyright © 2001, 2003, Andrew W. Moore
Neural Networks: Slide 38

```
Gradient Descent vs Matrix Inversion for Linear Perceptrons
GD Advantages (MI disadvantages):
-
.
-
GD Disadvantages (MI advantages):
-
.
-
Coprighte 2001,2003 , Andewew. M More
Neural Networks: Slide 41
```


Gradient Descent vs Matrix Inversion

 for Linear PerceptronsGD Advantages (MI disadvantages):

- Biologically plausible
- With very very many attributes each iteration costs only $O(m R)$. If fewer than m iterations needed we've beaten Matrix Inversion
- More easily parallelizable (or implementable in wetware)?

GD Disadvantages (MI advantages):

- It's moronic
- It's essentially a slow implementation of a way to build the XTX matrix and then solve a set of linear equations
- If m is small it's especially outageous. If m is large then the direct matrix inversion method gets fiddly but not impossible if you want to be efficient.
- Hard to choose a good learning rate
- Matrix inversion takes predictable time. You can't be sure when gradient descent will stop.
Copyright © 2001, 2003, Andrew W. Moore

Gradient Descent vs Matrix Inversion for Linear Perceptrons

GD Advantages (MI disadvantag):

- Biologically plausible
- With very very many attrib fewer than m iterations nee
- More easily parallelizable (ai

But we'll
GD Disadvanta soon see that

- It's moronic GD
- It's essentially and then solve a se
- If m is small it's especy matrix inversion mé be efficient.
- Hard to choose a good lear
- Matrix inversion takes pred table time. You can't be sure when gradient descent will stop.
Copyright © 2001, 2003, Andrew W. Moore

Perceptrons for Classification

What if all outputs are 0's or 1's?

Copyright © 2001, 2003, Andrew W. Moore

Fix \#1

- Only pay attention to points at border.
- This leads to SVM approach.

Perceptrons for Classification

What if all outputs are 0's or 1's ?

We can do a linear fit.
Our prediction is 0 if out $(x) \leq 1 / 2$
1 if out $(x)>1 / 2$
WHAT'S THE BIG PROBLEM WITH THIS???

Copyright © 2001, 2003, Andrew W. Moore
Neural Networks: Slide 44

Perceptrons for Classification

What if all outputs are 0's or 1's ?

Copyright © 2001, 2003, Andrew W. Moore

Fix \#2: Change definition of error

Don't minimize $\quad \sum\left(y_{i}-\mathrm{w}^{\mathrm{T}} \mathbf{x}_{i}\right)^{2}$.
Minimize number of misclassifications instead. [Assume outputs are
$+1 \&-1$, not $+1 \& 0]$

$$
\sum\left(y_{i}-\operatorname{Round}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{i}\right)\right)
$$

where $\operatorname{Round}(x)=-1$ if $x<0$ NON OBVIOUS WHY THIS WORKS!

The gradient descent rule can be changed to: if $\left(\boldsymbol{x}_{i}, y_{i}\right)$ correctly classed, don't change
if wrongly predicted as 1
$\boldsymbol{w} \leftarrow \boldsymbol{w}-\boldsymbol{x}_{\boldsymbol{i}}$
if wrongly predicted as -1

$$
w \leftarrow w+x_{i}
$$

The Sigmoid

$$
g(h)=\frac{1}{1+\exp (-h)}
$$

Note that if you rotate this curve through 180° centered on ($0,1 / 2$) you get the same curve.
i.e. $g(h)=1-g(-h)$

Can you prove this?

Copyright © 2001, 2003, Andrew W. Moore

Fix \#3: Use a different function

Linear Perceptron Classification Regions

We'll use the mode

$$
\begin{aligned}
& \operatorname{Out}(\boldsymbol{x})=g\left(\boldsymbol{w}^{\top}(\boldsymbol{x}, 1)\right) \\
& \quad=g\left(w_{1} x_{1}+w_{2} x_{2}+w_{0}\right)
\end{aligned}
$$

Which region of above diagram classified with +1 , and which with 0 ??

Gradient descent with sigmoid on a perceptron

First, notice $\quad g^{\prime}(x)=g(x)(1-g(x))$ Because : $g(x)=\frac{1}{1+e^{-x}}$ so $g^{\prime}(x)=\frac{-e^{-x}}{\left(1+e^{-x}\right)^{2}}$ $=\frac{1-1-e^{-x}}{\left(1+e^{-x}\right)^{2}}=\frac{1}{\left(1+e^{-x}\right)^{2}}-\frac{1}{1+e^{-x}}=\frac{-1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right)=-g(x)(1-g(x))$	
$\begin{aligned} & \text { Out(x) }=g\left(\sum_{k} w_{k} x_{k}\right) \\ & \begin{aligned} & \mathrm{E}=\sum_{i}\left(y_{i}-g\left(\sum_{k} w_{k} x_{i k}\right)\right)^{2} \\ & \frac{\partial \mathrm{E}}{\partial w_{j}}=\sum_{i} 2\left(y_{i}-g\left(\sum_{k} w_{k} x_{i k}\right)\right)\left(-\frac{\partial}{\partial w_{j}} g\left(\sum_{k} w_{k} x_{i k}\right)\right) \\ & \quad=\sum_{i}-2\left(y_{i}-g\left(\sum_{k} w_{k} x_{i k}\right)\right) g^{\prime}\left(\sum_{k} w_{k} x_{i k}\right) \frac{\partial}{\partial w_{j}} \sum_{k} w_{k} x_{i} \\ & \quad=\sum_{i}-2 \delta_{i} g\left(\text { net }_{i}\right)\left(1-g\left(\text { net }_{i}\right)\right) x_{i j} \end{aligned} \end{aligned}$ where $\delta_{i}=y_{i}-\operatorname{Out}\left(\mathrm{x}_{i}\right) \quad$ net ${ }_{i}=\sum w_{k} x_{k}$	The sigmoid perceptron update rule: $\begin{gathered} w_{j} \leftarrow w_{j}+\eta \sum_{i=1}^{R} \delta_{i} g_{i}\left(1-g_{i}\right) x_{i j} \\ \text { where } \quad g_{i}=g\left(\sum_{j=1}^{m} w_{j} x_{i j}\right) \\ \delta_{i}=y_{i}-g_{i} \end{gathered}$
Copyright © 2001, 2003, Andrew W. M	Neural Networks: Slide 54

Other Things about Perceptrons

- Invented and popularized by Rosenblatt (1962)
- Even with sigmoid nonlinearity, correct convergence is guaranteed
- Stable behavior for overconstrained and underconstrained problems

Perceptrons and Boolean Functions

- Can learn any disjunction of literals
e.g. $x_{1} \wedge \sim x_{2} \wedge \sim x_{3} \wedge x_{4} \wedge x_{5}$
- Can learn majority function

$$
f\left(x_{1}, x_{2} \ldots x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } n / 2 x_{i}^{\prime} \text { s or more are }=1 \\
0 \text { if less than } n / 2 x_{i}^{\prime} \text { 's are }=1
\end{array}\right.
$$

- What about the exclusive or function?

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \forall \mathrm{x}_{2}= \\
& \left(x_{1} \wedge \sim x_{2}\right) \vee\left(\sim x_{1} \wedge x_{2}\right)
\end{aligned}
$$

Backpropagation Convergence

Convergence to a global minimum is not guaranteed.
-In practice, this is not a problem, apparently.
Tweaking to find the right number of hidden units, or a useful learning rate η, is more hassle, apparently.

IMPLEMENTING BACKPROP: Differentiate Monster sum-square residual Write down the Gradient Descent Rule 图 It turns out to be easier \& computationally efficient to use lots of local variables with names like $h_{j} o_{k} v_{j}$ net ${ }_{i}$ etc...

Learning-rate problems

FIGURE 5.10 Gradient descent on a simple quadratic surface (the fefl and right parts are copies of the same surface). Four trajectories are shown, each for 20
steps from the open circle. The mind stant error contour. The only significant difierence tand the ellipse shows a con value of η, which was $0.02,0.0476,0.049$, and

Backpropagation (Chain Rule)
$\operatorname{Out}(\mathrm{x})=g\left(\sum_{j} W_{j} g\left(\sum_{k} w_{j k} x_{k}\right)\right)$
Find a set of weights $\left\{W_{j}\right\},\left\{w_{j k}\right\}$
to minimize

$$
\sum_{i}\left(y_{i}-\operatorname{Out}\left(\mathrm{x}_{i}\right)\right)^{2}
$$

by gradient descent.

That's it!
 That's the backpropagation algorithm.

Copyright © 2001, 2003, Andrew W. Moore

Choosing the learning rate

- This is a subtle art.
- Too small: can take days instead of minutes to converge
- Too large: diverges (MSE gets larger and larger while the weights increase and usually oscillate)
- Sometimes the "just right" value is hard to find.

Improving Simple Gradient Descent Momentum

Don't just change weights according to the current datapoint. Re-use changes from earlier iterations. Let $\Delta \mathbf{w}(t)=$ weight changes at time t. Let $-\eta \frac{\partial \mathrm{E}}{\partial \mathrm{w}} \quad \begin{aligned} & \text { be the change we would make with } \\ & \text { regular gradient descent. }\end{aligned}$
Instead we use

$$
\begin{aligned}
& \Delta \mathbf{w}(t+1)=-\eta \frac{\partial \mathrm{E}}{\partial \mathbf{w}}+\alpha \mathbf{\Delta} \mathbf{w}(t) \\
& \mathbf{w}(t+1)=\mathbf{w}(t)+\Delta \mathbf{w}(t)
\end{aligned}
$$

Momentum damps oscillations.
A hack? Well, maybe.

Momentum illustration

FIGURE 6.3 Gradient descent on the simple quadratic surface of Fig. 5.10. Both trajectories are for 12 steps with $\eta=0.0476$, the best value in the absence of momentum. On the left there is no mo mentum ($\alpha=0$), while $\alpha=0.5$ on the right.

Improving Simple Gradient Descent

Newton's method

$$
E(\mathbf{w}+\mathbf{h})=E(\mathbf{w})+\mathbf{h}^{T} \frac{\partial E}{\partial \mathbf{w}}+\frac{1}{2} \mathbf{h}^{T} \frac{\partial^{2} E}{\partial \mathbf{w}^{2}} \mathbf{h}+O\left(|\mathbf{h}|^{3}\right)
$$

If we neglect the $O\left(h^{3}\right)$ terms, this is a quadratic form

$$
\mathbf{w} \leftarrow \mathbf{w}-\left[\frac{\partial^{2} E}{\partial \mathbf{w}^{2}}\right]^{-1} \frac{\partial E}{\partial \mathbf{w}}
$$

This should send us directly to the global minimum if the function is truly quadratic.

And it might get us close if it's locally quadraticish
Copyright © 2001, 2003, Andrew W. Moore

Improving Simple Gradient Descent

 Conjugate GradientAnother method which attempts to exploit the "local quadratic bowl" assumption
But does so while only needing to use $\frac{\partial E}{\partial \mathbf{w}}$
and not $\frac{\partial^{2} E}{\partial \mathbf{w}^{2}}$
It is also more stable than Newton's method if the local quadratic bowl assumption is violated.

It's complicated, outside our scope, but it often works well. More details in Numerical Recipes in C.

Other "Neural Networks"

- Polynomials (linear in weights)
- Projection Pursuit $\Sigma g_{i}\left(w_{i}^{\top} x\right), g_{i}()$ arbitrary, say splines.
- Additive Regression $\Sigma \mathrm{g}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)$, align units with coordinate axes, $\mathrm{g}_{\mathrm{i}}()$ arbitrary
- Radial Basis Functions $\Sigma \mathrm{g}_{\mathrm{i}}\left(\left|\mathrm{x}-\mathrm{c}_{\mathrm{i}}\right|^{2}\right)$

GMDH (c.f. BACON, AIM)

- Group Method Data Handling
- A very simple but very good idea:

1. Do linear regression
2. Use cross-validation to discover whether any quadratic term is good. If so, add it as a basis function and loop.
3. Use cross-validation to discover whether any of a set of familiar functions (log, exp, sin etc) applied to any previous basis function helps. If so, add it as a basis function and loop.
4. Else stop

When will GMDH fail?

- Will not learn $X Y Z$ if X, Y, and Z are zero mean and independent such that $E(X Y)$, $E(X Z)$, and $E(Y Z)$ are all zero.

What You Should Know

- How to use matlab to do multivariate Leastsquares linear regression.
- Derivation of least squares as max. likelihood estimator of linear coefficients
- The general gradient descent rule, relationship to chain rule
- How to use matlab to fit data with nonlinear functions

Which approach is better?

