AI as Function Approximation

© Chris Atkeson 2004
RI & HCII, CMU
www.cs.cmu.edu/~cga
cga@cmu.edu

Classification, Regression, Density Estimation

• Classification: identify class [yes/no, male/female, healthy/has-flu/has-sars, ...], basically identify a discrete quantity
• Regression: estimate continuous quantity [tomorrow's temperature, stock market index, robot arm acceleration]
• Probability/Density Estimation: estimate the probability or density function of outcomes

Input: Features

• Discrete features: gender, nationality, blood type
• Continuous features: location in room, barometric pressure, value of dollar
• Multiple features can be organized in a vector: \(x = [\text{male, US, AB, 3.5, 2.4, 28.9}] \)
• One view is that AI is all about finding the right features. If you choose good features, a problem is easy and almost any solution method works. If you choose badly, nothing works.

AI = Function Approximation or Learning = Function Approximation

• Classification: find function that maps inputs into classes: class = f(x)
• Regression: find function that maps inputs into values: value = f(x)
• Probability/Density Estimation: find a function that maps inputs to probabilities/densities f(x)
• The function might be a formula with adjustable parameters, and learning involves adjusting the parameters so that the function correctly classifies/estimates on a training set.

A (made up) example: Toad gender determination

• Features: Length, Weight
• Males are red dots, females blue in graph
• Separate clouds of points with a line \(aL + bW + c = 0 \)
• Male: \(aL + bW + c > 0 \)
• Female: \(aL + bW + c < 0 \)
• Learning: find parameters \(a, b, \) and \(c \) to minimize error

What about overlap?

Sometimes a more complex function does better (is the problem shape or noise?)
I will teach you about tools (functions) to try

- Decision trees, neural nets, memory-based approaches, ...
- http://www.cs.waikato.ac.nz/~ml is a nice source for information and software
- Your first assignment will be to classify email as spam/non-spam

Issue is how tools are used

- Just choosing a tool is usually not the best approach. How tools used is often more important than the quality of the tool.
- Example: Doctors don’t just do a single classification. They can ask for more tests. Tests cost money. How should the entire process work to get the best outcome?
- Example: What is the best way to filter spam? Put email classified as spam in a folder? Rank order email in incoming list so more spam-like mail comes last? Let the users classify? Don’t classify, just check for duplicate email across many users.

Often we don’t want the truth, we want a good decision

- If male toads are a delicacy, but female toads are fatal to eat, we would never want to mistake a female toad for a male, but it is okay to make the opposite mistake.
- This is known as bias.

Two philosophies

- Probabilistic: Issue is noise, want to make the best classification/decision in the presence of uncertainty. Try to model probability distributions.
- We will first talk about empirical approaches. Later we will take a more probabilistic point of view.

Complex points

- Often continuous features are discretized (location in a room is measured on a grid, for example), or discrete features behave like continuous quantities (number of people in a room), issue is similarity, but we can induce a similarity on discrete values