Biomechanical studies of the knee for medical robotics applications, and review on other medical robotics systems and activities

Alon Wolf, PhD

Institute for Computer Assisted Orthopaedic Surgery, West Penn Hospital and the Biomedical robotics Lab, R.I,CMU

What's in my talk and on our lab's agenda

- Knee kinematic
- Pathology classification
- Parallel robots for MEMS fabrication
- reciprocal figure and Maxwell theorem
- MBARS: Mini Bone Attached Robotic System
- Medical Cardiac Snake
- A Robotic System for MIS Ultrasound-Guided Prostate Brachytherapy

Major Components in a Medical Robotics Systems

Pre/Intra-operative Planning

Intraoperative robotic system

Post-operative Evaluation

Knee kinematics

- Given geometry and observations of knee motion, extract the mechanical properties of the knee (soft and hard tissues).
- Given knee geometry and mechanical properties, generate knee motion.

Experimental Setup

Mechanical properties of soft tissues $k_{i}, l_{0, i}$

Calculating Contact Path

- Given surface models of both the femur, M_{F}, and the tibia, M_{T}, which are given as triangulated meshes of n_{F} and n_{T} triangles respectively, such that:

$$
\begin{aligned}
& \mathcal{M}_{\mathrm{F}}\left(\mathcal{V}_{F}, \mathcal{T}_{T}\right)=\bigcup_{i=1}^{n_{F}} \mathcal{T}_{\mathrm{F}, \mathrm{i}} \\
& \mathcal{M}_{\mathrm{F}}\left(\mathcal{V}_{F}, \mathcal{T}_{T}\right)=\bigcup_{i=1}^{n_{F}} \mathcal{T}_{\mathrm{F}, i}
\end{aligned}
$$

fix a sampling grid, \mathscr{P}_{G}, of m points to the tibia and attach a set of m parallel lines, \mathcal{L}, to the grid such that when the tibia moves through different flexion configurations both the sampling grid and the set of lines attached to it transform with it

Calculate the intersection point of each of the lines in \mathcal{L} with both surface models \mathcal{M}_{F} and \mathcal{M}_{T}

Cartesian coordinates of a point
verify that $S_{T, j}$ is inside $\mathcal{T}_{T, i} v_{\mathrm{E} \cdot+2}$

$$
|\vec{a} \times \vec{b}|=|\vec{a} \times \vec{d}|+|\vec{b} \times \vec{e}|+|\vec{c} \times \vec{f}|
$$

Check for distance according to
$d_{j}=\left\|\mathcal{P}_{\mathrm{T}, \mathrm{J}}-\mathbb{P}_{\mathrm{F}, \mathrm{j}}\right\|_{j=1, \ldots, m}$
Check for minimal distance and set contact points ${ }^{*}$ to be $\mathscr{P}_{\mathrm{C} . \mathrm{T}, \mathrm{k}}$, and $\mathscr{P}_{\mathrm{C} . \mathrm{F}, \mathrm{k}} \quad(\mathrm{k}=1, \ldots, \mathrm{w})$.
*In case of multiple potential contact points or overlapping surface models due to measurement error, the contact point is set to be the center of gravity of the contact region.

Transform the tibia surface model \mathcal{M}_{T} and \mathcal{L} to the next knee configuration such that

$$
\begin{aligned}
& \mathscr{M}_{T, i+1}={ }^{F} T_{T, i} \mathcal{M}_{T, i} \\
& \mathcal{L}_{i+1}=\left[\begin{array}{cc}
R & 0 \\
W \cdot R & R
\end{array}\right] \cdot \mathcal{L}^{\mathrm{T}},
\end{aligned} \quad \begin{array}{cc}
& =\left[\begin{array}{ccc}
0 & -t_{s} & t_{0} \\
t_{0} & 0 & t_{t} \\
-t_{t} & t_{t} & 0
\end{array}\right]
\end{array}
$$

Repeat these steps for each of the w positions

Experiment

Contact points are shifted medially....

Calculation

$$
\sum M_{L}\left(l_{0}, k\right)_{i, j}=0
$$

Offset of the results

What we want to do next

- Eliminate friction/include in model
- More complex ligament model mechanical/geometrical
- Robust model
- Inverse solution
- Human trial

Inverse solution

- Given knee geometry (hard and soft tissues), mechanical properties of hard and soft tissue find knee configuration such that for configuration i :
$F=\min \left(\sum \operatorname{Work}\left({ }^{F} T_{T, i}\right)\right)$
$F=\min \left(\sum \operatorname{Work}\left({ }^{F} T_{T, i}\right)+P . F(\right.$ overlap $\left.)\right)$

Calculating Contact Volume

For each line \mathcal{L}_{j} calculate:

$$
\begin{aligned}
& d_{T, j}=\left\|\mathscr{P}_{G, j}-S_{T, j}\right\|_{j=1, \cdots, m} \\
& d_{F, j}=\left\|\mathscr{P}_{G, j}-S_{F, j}\right\|_{j=1, \cdots, m}
\end{aligned}
$$

Surface model overlap

$$
V_{\text {total }}=\sum_{j=1}^{m} v_{j}
$$

$$
v_{j}= \begin{cases}a \cdot\left(d_{T, j}-d_{F, j}\right) & d_{T, j}>d_{F, j} \\ 0 & d_{T, j}<d_{F, j}\end{cases}
$$

$15.1 \mathrm{~mm}^{3}$ for 1.5 mm sampling grid

Pathology classification (Clustering)

Kinematics: The branch of mechanics that studies the motion of a body or a system of bodies without consideration given to its mass or the forces acting on it.

$$
{ }^{a} T_{b}=\left[\begin{array}{cc}
R_{3 \times 3} & P^{T} \\
0_{1 \times 3} & 1
\end{array}\right]
$$

Classical transformation matrix

Screw motion

Screw

- "Any given displacement of a rigid body can be effected by a rotation about an axis combined with a translation parallel to that axis". [Ball, 1900]
- Screw: " A Screw is a straight line with which a definite linear magnitude termed the pitch is associated". [Ball, 1900]

Screw motion (Helical)... mathematical definitions

$$
\hat{\$}=\left[\begin{array}{c}
s \\
s_{0} \times s+\underbrace{p s}
\end{array}\right]
$$

$p_{\text {finite }}=d / \theta=$ translation $/$ rotation
$P=\infty \longrightarrow$ Linear motion $P=0 \longrightarrow$ Rotational motion

Calculate the momentary screw coordinates of Two successive observations and obtain:

Screw coordinates
Screw axis Pitch

For each momentary change of flexion

Jorge Angeles., 1986. Automatic Computation of the Screw Parameters of Rigid-Body Motion. Part I: Finitely Separated Positions, Journal of dynamic systems, measurements and control 108: 39-43

$$
\hat{\$}=\left[\begin{array}{c}
s \\
s_{0} \times s+p s
\end{array}\right]=\left[\$_{1}, \$_{2}, \$_{3}, \$_{4} \$_{5}, \$_{6}\right]^{T}
$$

Clusters in R6

Questions

- Can we distinguish pathologies from observations: are there clusters?
- Are the clusters orthogonal?
- Can new observations be associated with the available clusters?

I don't know

- Does it worth the efforts?

I think...yes

What we want to do next

- Get more new data from Sawbones
- Principal components analysis/ Factor analysis
- Cluster analysis/ Functional data analysis.
- Human trials

Parallel robots for MEMS fabrication

The $3 P R R R R$ robot

$$
\begin{aligned}
& M_{\text {active }}=6(14-15-1)+15 \cdot 1=3 \mathrm{DOF} \\
& M_{\text {locked }}=6(11-12-1)+12 \cdot 1=0 \mathrm{DOF}
\end{aligned}
$$

Screw Based Jacobian of Limited-DOF Parallel Manipulator

- General Purpose manipulator 6-DOF
- Limited DOF
manipulator
< 6-DOF

- Each limb can be considered as an open loop chain connecting a moving platform to a fixed base by l 1-DOF joints.
- The inst. twist, $\$_{p}$ of the moving platform is expressed as a linear combination of the l inst. twists [Mohamed and Duffy, 1985]

$$
\$_{p}=\sum_{j=1}^{l} \dot{q}_{j, i} \hat{\$}_{j, i} \quad \text { for } i=1, \ldots, m(\operatorname{limbs})
$$

$$
\$_{p}=\sum_{j=1}^{l} \dot{q}_{j, i} \hat{\$}_{j, i} \quad \text { for } i=1, \ldots, m(\text { limbs })
$$

- This equation contains many unactuated joint screws which can be eliminated applying the theory of reciprocal screws.
- Identify g unit screws $\hat{\$}_{r, 6-l_{t}+1, i}$ each reciprocal to all the unactuated screws (motor is locked).
- Perform the reciprocal product of both side of $\$_{p}$ with each of the reciprocal screws which were found (g is the actuated joint).

$$
\hat{\$}_{r, 6-l_{i}+1, i}^{T} \cdot \$_{p}=\dot{q}_{j, i} \hat{\$}_{r, 6-l_{i}+1, i}^{T} \cdot \hat{\$}_{g, i}
$$

- Write in matrix form as:
- Where:

$$
J_{x} \$_{p}=J_{q} \dot{q}
$$

$$
J_{a} \$_{p}=\dot{q} \quad \text { where } \quad J_{a}=J_{q}^{-1} J_{x}
$$

$$
\begin{aligned}
& J_{x}=\left[\begin{array}{c}
\hat{\boldsymbol{S}}_{r}^{T}, 6-l_{i+1,1} \\
\hat{\$}_{r, 6-l_{i}+1,2}^{T} \\
\vdots \\
\hat{\boldsymbol{S}}_{r, 6-l_{i}+1, m}^{T}
\end{array}\right] \\
& J_{q}=\left[\begin{array}{cccc}
\hat{\$}_{r, 6-l_{i}+1, i}^{T} \cdot \hat{\$}_{g, 1} & 0 & \cdots & 0 \\
0 & \hat{\boldsymbol{S}}_{r, 6-l_{i}+1, i}^{T} \cdot \hat{\boldsymbol{S}}_{g, 2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \hat{\$}_{r, 6-l_{i}+1, i}^{T} \hat{\$}_{g, m}
\end{array}\right]
\end{aligned}
$$

Deep thoughts...

More deep thoughts...

Limb with l joints $: \mathrm{k}$ unactuated

Jacobian of constraints

- Screws that are R.R to all the joint screws in a link form a $6-l_{i}$ system: identify $6-l_{i}$ reciprocal basis screw of the $\mathrm{i}^{\text {th }}$ limb.
- Perform the R.R product

$$
\begin{array}{ll}
\$_{p}=\sum_{j=1}^{l} \dot{q}_{j, i} \hat{\$}_{j, i} & \text { for } i=1, \ldots, m \text { (limbs) } \\
\hat{\$}_{r, k, i}^{T} \$_{p}=0 & \text { for } k=1,2, \ldots \ldots, 6-l_{i} \\
J_{c} \$_{p}=0 & \\
\begin{array}{l}
\text { Jacobian of constraints } \\
\text { Jac-2004 }
\end{array} & J=\left[\begin{array}{c}
J_{a} \\
J_{c}
\end{array}\right]
\end{array}
$$

Screw based Jacobian

Plane

$$
\hat{\boldsymbol{S}}_{r, 1, i}^{T}=\left(P_{2,1} \times \hat{\boldsymbol{n}}_{r, 1,1}^{T}\right)^{T} \hat{\boldsymbol{n}}_{r, 1,1}^{T}
$$

1/24/2005

$$
\begin{aligned}
& \dot{q}=\left[\dot{d}_{1,1}, \dot{d}_{1,2}, \dot{d}_{1,3}, 0,0,0\right] \\
& \dot{q}=J \$_{p} \\
& \hat{n}_{i}^{T}=[0,0,1]^{T}
\end{aligned}
$$

Hyperbolic

Hzyeoboglic Congruence

The reciprocal figure (Amir Degani)

- Definition: (Maxwell - 1864)

Two plane figures are reciprocal when they consist of an equal number of lines, so that corresponding lines in the two figures are perpendicular.
Corresponding line which converge to a point in one figure form a closed polygon in the other.

Maxwell Theorem

A drawing is the picture of a spherical polyhedron

The framework is rigid (supports a self stress)

Has a corresponding reciprocal figure

Duality: Singularities \longleftrightarrow Reciprocal Figures

- Intuitive connection between MaxwellCremona Theorem and parallel mechanism singularity.

When there exists a reciprocal figure

$$
\begin{aligned}
& \text { The planar framework is rigid } \\
& \text { The mechanism looses a DOF }
\end{aligned}
$$

1/24/2005

IC-2004

Future work

- Close mathematical formulation for 2D
-3D

MBARS: Mini Bone Attached Robotic

System

Imaged Free System

Cloud of points and Tracking the trochlear groove

Haptic device

Intra-operative planning and bone shaping

How does it being done today

- Surgeon traces (by hand \& marker) template on to PF-surface
- Burr/chisle used to resect the trochlear groove
- Template is tried on knee; repeat 2 if necessary
- Secure final implant

First Prototype

1/24/2005

IC-2004

Low Level Control

Medical Cardiac Snake

Medical Snake Robot for Cardiac Intervention

Once in operation theater, 6 mm workingoport running through the snake

- Drug delivery/inspection/intervention in the abdominal and thoracic area.
- Cell transplantation
- Gene therapy for angiogenesis
- Epicardial electrode placement for resynchronization
- Epicardial atrial ablation
- Intrapericardial drug delivery
- Ventricle-to-coronary artery bypass (VCAB)
- Laparoscopic interventions.
- Laparoscopic tool of the next generation

A Robotic System for MIS ltrasound-Guided Prostate Brachytherapy

- Using radio active seeds for treatment of cancer.
- Robotics guided Needle insertion
- Small/compact system based on high accuracy mini parallel robot.
- No tracking system.
- Ultrasound based.
- Ultrasound registration
- Deformable model / Real time segmentation
- Study on seeds motion due to deformation $->$ model adjustment
- Needle deflection/ robotic guided (other applications too)

What we want to do

- Robot refinement and US mechanism
- Integrating US sensor with robotic platform
- Build 3D US model, and seeds tracking
- Real time simulation and real time update
- Elastic modeling of needle deflection in soft tissue and robotic compensation.

Thank you for your attention

