Informally, a (univariate) polynomial is an expression of the form
\[x^3 - 2x^2 + 3x - 1 \]
There is an unknown or variable \(x \) and we
- form powers \(x^i \) of the variable (monomials),
- multiply them by an element in some ground ring (coefficients),
- add several such terms.

Of course, division is not allowed.
The ground ring supplies the coefficients of the polynomials.
In the example, it is presumably \(\mathbb{Z} \).

Hence we can represent a polynomial by a vector of its coefficients:
\[a = (a_0, a_1, \ldots, a_{n-1}) \]
represents
\[p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} \]
If \(a_{n-1} \neq 0 \) then \(n - 1 \) is the degree of \(p \).
In general, \(p(x) \) has degree bound \(n \) (note that this is a strict bound; this notion will be useful later in several algorithms).

Suppose we have a univariate polynomial \(p(x) \) over ring \(R \).
We can replace the unknown \(x \) by elements in \(R \) and evaluate to obtain another element in the ring: For example,
\[p(x) = x^3 - 2x^2 + 3x - 1 \]
produces
\[p(2) = 2^3 - 2 \cdot 2^2 + 3 \cdot 2 - 1 = 5. \]
Hence we can associate the polynomial \(p \) with a polynomial function
\[\hat{p} : R \to R, \quad a \mapsto p(a) \]
This may seem like splitting hairs, but sometimes it is important to keep the two notions apart.

The polynomial and the associated polynomial function really are two different objects. Consider the ground ring \(\mathbb{Z}_2 \). The polynomial
\[p(x) = x + x^2 \]
has the associated function
\[\hat{p}(a) = 0 \]
for all \(a \in \mathbb{Z}_2 \).
In fact, any polynomial \(p(x) = \sum_{i \in I} x^i \) produces the identically 0 map as long as \(I \subseteq \mathbb{N}^+ \) has even cardinality.

Exercise
Describe all polynomial functions over ground rings \(\mathbb{Z}_2 \) and \(\mathbb{Z}_3 \).
Horner’s Rule

If the polynomial is given in coefficient form

\[a = (a_0, a_1, \ldots, a_d) \]

we can easily evaluate at any point \(b \in R \):

\[f(b) = (\ldots (a_0 b + a_{d-1}) b + a_{d-2}) b + \ldots + b + a_0 \]

Proposition

A polynomial of degree \(d \) can be evaluated in \(d \) ring multiplications and \(d \) ring additions.

Interpolation

Suppose we wish to construct a polynomial \(f \) that evaluates to given target values at certain points. Say we want \(f(a_i) = b_i \) for \(i = 0, \ldots, n - 1 \). Define the Lagrange interpolant

\[L_i^n(x) = \prod_{j \neq i} \frac{x - a_j}{a_i - a_j} \]

Proposition

\(L_i^n(a_i) = 1 \) and \(L_i^n(a_j) = 0 \) for \(i \neq j \).

Hence we can choose

\[f(x) = \sum_{i<n} b_i L_i^n(x) \]

Note that \(f \) has degree bound \(n \).

Lagrange Functions

Suppose we want \(f(i) = \) the ith prime \(\text{for } i = 0, \ldots, 5 \).

The Lagrange interpolation looks like

\[f(x) = 2L_6^n(0) + 7L_6^n(1) + 11L_6^n(2) + 13L_6^n(3) \]

which, after expansion and simplification, produces

\[\frac{1}{120} (240 - 286x + 735x^2 - 425x^3 + 105x^4 - 9x^5) \]

Example

Using Polynomials

A more flexible approach is built on the following idea.

Construct a polynomial \(f \) that has \(a \) as its lowest coefficient, so \(f(0) = a \). All other coefficients are chosen at random.

The secret sharers are given not the coefficients of \(f \) but pieces of the point-value description of \(f \), which are obtained by repeated evaluation.

If all \(n \) agree, they can use their information to reconstruct the coefficient representation of \(f \) by interpolation.

Once \(f \) is reconstructed \(a \) can be found be a simple evaluation.

But for any proper subset \(f \) will be underdetermined, and \(a \) cannot be recovered.

It is not hard to generalize this method to \(k < n \).

Secret Sharing

Suppose you have a “secret” \(a \), a natural number, that you want to distribute over \(n \) people in such a way that no proper subgroup of the \(n \) persons can access the secret but the whole group can.

More generally may want to distribute the secret so that \(k \) out of \(n \) persons can access it, but not any subgroup of size \(k - 1 \).

Here is a simple idea for the \(n = k \) problem:

We may safely assume that \(a \) is a \(m \)-bit number. Generate \(n - 1 \) \(m \)-bit numbers \(a_i \) and give number \(a_i \) to person \(i \), \(i = 1, \ldots, n - 1 \). Person \(n \) receives

\[a_n = a \oplus a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1} \]

where \(\oplus \) is bit-wise xor.

Clearly all \(n \) secret sharers can compute \(a \), but if one is missing they are stuck with a random number.
Shamir’s Method

More precisely, pick a prime \(p > a, n \). We will use the ground ring \(\mathbb{Z}_p \).
Generate random numbers \(0 < a_i < p \) for \(i = 1, \ldots, n - 1 \).
Define the polynomial
\[
f(x) = a + a_1 x + \ldots + a_{n-1} x^{n-1}
\]
f is completely determined by the \(n \) point-value pairs \((i, b_i)\), \(i = 1, \ldots, n \).
By interpolation we can retrieve \(f \) from the point-value pairs, hence we can determine \(a = a_0 \).
An important point is that \(n - 1 \) persons can obtain no information about the zero coefficient; every coefficient is equally likely.

Defining Polynomials

So polynomials are associated with functions, we can evaluate them efficiently and we can reconstruct them from point-value pairs.

How do we give a precise definition of polynomials?
The definition should pin down all the essential properties and should make the algebraic structure perfectly clear For example, we can add and multiply polynomials.

There are (at least) two ways we could turn:

- Define an algebraic structure \(R[x] \), the so-called polynomial ring over \(R \).
- Define a collection of formal expressions representing polynomials (implicit representation).

Operations on Coproducts

Again, there is no “unknown” in the definition of the coproduct. That makes it easier to give clean definitions of the algebraic structure.

Addition is easy:
\[
(a_i) + (b_i) = (a_i + b_i)
\]
The sum \((a_i) + (b_i)\) is again an element of the coproduct and it is not too hard to check that this operation is associative and commutative.

But multiplication is somewhat more complicated (Cauchy product):
\[
(a_i) \cdot (b_i) = \left(\sum_{r+s=i} a_r \cdot b_s \right)
\]

Proposition

The product \((a_i) \cdot (b_i)\) is an element of the coproduct.
Write 0 and 1 for the sequences \((0, 0, 0, \ldots)\) and \((1, 0, 0, \ldots)\), respectively.

We have \(a + 0 = a\) so that

\[
\langle \coprod R, +, 0 \rangle
\]

is a commutative monoid and even a group.

Likewise \(1 \cdot a = a \cdot 1 = a\) and

\[
\langle \coprod R, \cdot, 1 \rangle
\]

is also a commutative monoid (assuming that \(R\) is commutative).

Exercise

Prove that coproducts are closed under multiplication. Which properties of the natural numbers are important?

Exercise

Prove that \(\langle \coprod R, \cdot, 1 \rangle\) is a commutative monoid.

The Unknown

Here is a much more interesting element: let

\[x = (0, 1, 0, 0, 0, \ldots) \]

Then \(x^2 = (0, 0, 1, 0, 0, \ldots)\), \(x^3 = (0, 0, 0, 1, 0, 0, \ldots)\) and so forth.

This justifies the notation

\[a_0 + a_1 x + \ldots + a_n x^n \]

for the sequence

\[(a_0, a_1, \ldots, a_n, 0, 0, \ldots) \]

Note that one can actually embed all of \(R\):

\[r \mapsto (r, 0, 0, \ldots) \]

Moreover, this map is (trivially) a ring monomorphism.

The Polynomial Ring

Lemma

\(\langle \coprod R, +, \cdot, 0, 1 \rangle\) is a ring. This ring is commutative whenever \(R\) is.

This is unsurprising, but note that a proof requires a bit of work: we have to verify e.g. that multiplication as defined above really is associative.

We ignore the details.

Definition

The ring \(\langle \coprod R, +, \cdot, 0, 1 \rangle\) is the polynomial ring with coefficients in \(R\) and is usually written \(R[x]\).

In calculus one studies \(R[x]\).

For our purposes, \(Q[x], \mathbb{Z}[x], \mathbb{Z}_m[x]\) or \(F[x]\) where \(F\) is a finite field will be more important.

Generalization

Suppose we have a commutative monoid

\(\langle M, +, 0 \rangle\)

where equations \(x + y = m\) have only finitely many solutions.

Then we can define a ring \(R[M]\) on the carrier set

\[
\coprod_M R = \{ a : M \to R \mid \text{only finitely many non-zeros} \}
\]

in the exact same way as before.

We need at least one example for \(M\) (other than \(\mathbb{N}\)) that makes this construction interesting. It is probably good to stay close to \(\mathbb{N}\). \(\mathbb{Z}\) won’t work since it violates the finiteness conditions.

How about \(M = \mathbb{N} \times \mathbb{N}\)?

Exercise

Prove that coproducts are closed under multiplication. Which properties of the natural numbers are important?

Exercise

Prove that \(\langle \coprod R, \cdot, 1 \rangle\) is a commutative monoid.
Bivariate Polynomials

Instead of sequences we now have a grid of coefficients (a two-dimensional array instead of a one-dimensional one).

\[
\begin{pmatrix}
a_{00} & a_{01} & a_{02} & \cdots & a_{0j} & \cdots \\
a_{10} & a_{11} & a_{12} & \cdots & a_{1j} & \cdots \\
a_{20} & a_{21} & a_{22} & \cdots & a_{2j} & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
a_{i0} & a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots \\
\vdots & & & & & \ddots \\
\end{pmatrix}
\]

Addition in \(R[N \times N] \) is essentially the same as before (since it does not depend on the algebraic structure of \(M \), just the carrier set).

But multiplication becomes more interesting.

Multivariate Polynomials

One can easily show that any element in \(R[N \times N] \) has the form

\[a = \sum_{i,j \geq 0} a_{i,j} x^iy^j \]

where only finitely many coefficients are non-zero and addition and multiplication work as one would expect. So we really have a rock-solid definition of bivariate polynomials. And, of course, using the monoid

\[M = (N^n, +, 0) \]

we can get multivariate polynomials in general.

Definition

The ring of polynomials over \(R \) in \(n \) variables is defined by

\[R[x_1, \ldots, x_n] = R[N^n] \]

Multiplication

Let \(x = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots \end{pmatrix} \) and \(y = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots \end{pmatrix} \).

Then for \(R = \mathbb{Z}_7 \) the products \((x + y)^5 \) and \((1 + x)^5(2 + y)^5\) look like this (all other entries are 0).

Normal Form

There is a natural way to write down a multivariate polynomial analogous to the univariate and bivariate case. A monomial is a term of the form

\[x^e = x_1^{e_1}x_2^{e_2} \cdots x_n^{e_n} \]

where \(e = (e_1, \ldots, e_n) \in N^n \). Then any multivariate polynomial can be written as a sum of monomials, multiplied by the appropriate coefficients.

\[p(x) = \sum a_e x^e \]

And, arithmetic works as expected.

Note that the sum is naturally ordered (use the natural lex order on the exponents).

Note: Some authors consider the coefficient to be part of the monomial.

Clarity

One might argue that \(R[x][x] \) and \(R[x,x] \) simply make no sense. \(R[x] \) and \(R[y] \) are isomorphic, so in a sense they are the same.

For a human being (a mathematician) these difficulties are usually irrelevant: one can determine from context what is meant, or even correct the author if need be.

But if one wants to implement polynomial algebra things are more problematic. For example, if evaluation is done by rewrite rules, the name of the variable does play a huge role. Here \(R[x] \) and \(R[y] \) can behave very differently.

Also note that from the implementation point of view \(\prod_{\mathbb{N}} R \) is probably a better model than definitions using terms.
So what exactly is the role of evaluation?
The point is that once we fix the value of the unknown(s), everything else is determined, too.

More precisely, suppose \(f : R \to S \) is some ring homomorphism. Consider the set of all ring homomorphisms from \(R[x] \) to \(S \) that agree with \(f \) on \(R \):

\[
H = \{ h : R[x] \to S \mid h \restriction R = f \}
\]

Then the map

\[
H \to S \quad h \mapsto h(x)
\]

is a bijection.

Exercise
Given two polynomials \(f \) and \(g \), \(g \) divides \(f \) if for some polynomial \(q \):

\[
q \cdot g = f
\]

Moreover, \(q \) and \(r \) are uniquely determined.

Exercise
Show that this property in fact characterizes polynomial rings.

Exercise
Give a similar result for multivariate polynomials.

Definition
A ring element \(a \in R \) is a root of \(p(x) \in R[x] \) if \(p(a) = 0 \).

In other words, a root is any solution of the equation \(p(x) = 0 \).

Finding roots of polynomial equations is often very difficult, in particular when several variables are involved.

For univariate polynomials over the reals good numerical methods exist, but over other rings things are problematic.

For example, computing square roots, i.e. solving \(x^2 - a = 0 \), over \(\mathbb{Z}_m \) is surprisingly difficult. Of course there is a brute-force algorithm, but think of modulus \(m \) having thousands of digits.

And for \(\mathbb{Z}[x_1, x_2, \ldots, x_n] \) it is even undecidable whether a root exists.

Definition
The degree of a monomial \(x^\alpha \) is \(\sum \alpha_i \). The degree of a polynomial is the largest degree of any of its monomials. If the polynomial is zero its degree is \(-\infty \).

Lemma
Let \(R \) be an integral domain and \(p, q \in R[x] \). Then \(\deg(pq) = \deg(p) + \deg(q) \).

Note that if \(R \) be an integral domain then by the lemma \(R[x] \) is again an integral domain.

The lemma fails without the integral domain assumption: Let \(R = \mathbb{Z}_4 \) and consider \(p(x) = q(x) = 2x \).

Definition
Given two polynomials \(f \) and \(g \), \(g \) divides \(f \) if for some polynomial \(q \):

\[
q \cdot g = f
\]

For the integers, the most important algorithm associated with the notion of divisibility is the Division Algorithm: we can compute quotient \(q \) and remainder \(r \) such that \(a = qb + r \), \(0 \leq r < b \).

The situation for polynomials is very similar.

Theorem (Division Algorithm)
Assume that \(F \) is a field. Let \(f \) and \(g \) be two univariate polynomials over \(F \), \(g \neq 0 \). Then there exist polynomials \(q \) and \(r \) such that

\[
f = q \cdot g + r \quad \text{where} \quad \deg(r) < \deg(g).
\]

Moreover, \(q \) and \(r \) are uniquely determined.

Proof Sketch
For existence consider the set of possible remainders

\[
S = \{ f - qg \mid q \in F[x] \}.
\]

If \(0 \in S \) we are done, so suppose otherwise.

Trick: let \(r \in S \) be any element of minimal degree, say \(r = f - qg \).

Write \(m = \deg(r) \) and \(n = \deg(g) \), so we need \(m < n \).

Assume \(m \geq n \) and define

\[
r' = r - a_m/b_n x^{m-n} g
\]

where \(a_m \) and \(b_n \) are the leading coefficients of \(r \) and \(g \), respectively.

But then \(\deg(r') < \deg(r) \) and \(r' \in S \), contradicting minimality.

Uniqueness is left as an exercise.
The Actual Algorithm

Though the theorem is often referred to as “Division Algorithm” it’s just an existence and uniqueness result. However, with a little work one can turn the proof into an algorithm.

Write \(\text{lcl}(h) \) for the leading coefficient of a polynomial \(h \). Suppose \(g \) is monic, so that \(\text{lcl}(g) = 1 \).

Here is an abstract version, to be called on \(f \).

```c
remainder( f, g ) {
    r = f;
    while( deg(r) >= deg(g) ) {
        c = lcl(r);
        k = deg(r) - deg(g);
        r = r - c * x^k * g;
    }
    return r;
}
```

Another Version

Often one needs to compute both \(q \) and \(r \), here is an array-based version which does that. Assume \(\deg(f) = n \) and \(\deg(g) = m \).

```c
r = f;
for i = n-m downto 0 do
    if( deg r = m + i )
        q[i] = lcl(r);
    else
        q[i] = 0;
    r = r - q[i] * x^i * g;
return q[];
```

Note that sparseness is a tricky issue here: divide \(x^{n+1} - 1 \) by \(x - 1 \).

Application: GCD

An important application of the Division Algorithm for integers is the Euclidean algorithm for the GCD.

Likewise we can obtain a polynomial GCD algorithm from the Division Algorithm for polynomials.

In fact, essentially the same algorithm works, just replace \(\mathbb{Z} \) by \(\mathbb{Z}[x] \).

For example, we can obtain cofactors \(s \) and \(t \) such that

\[
\gcd(f, g) = sf + tg.
\]

Local Views

Consider the polynomial

\[
p(x) = x^4 - 8x^3 + 23x^2 - 28x + 12
\]

We can read off immediately that \(p(0) = 12 \) and that the tangent at that point has slope \(-28\).

But what about the polynomial around \(x = 1 \)? Here it is convenient to use Taylor expansion to rewrite \(p \) in the form

\[
p(x) = (x - 1)^4 - 4(x - 1)^3 + 5(x - 1)^2 - 2(x - 1)
\]

We can see that \(x = 1 \) is a root and the tangent has slope \(-2\).

More Local Views

Similarly

\[
\begin{align*}
p(x) &= (x - 2)^4 - (x - 2)^2 \\
p(x) &= (x - 3)^4 + 4(x - 3)^3 + 5(x - 3)^2 + 2(x - 3)
\end{align*}
\]

so it is clearly useful to consider polynomials in non-expanded form.

Exercise

What conclusions can you draw from the various representations of \(p(x) \)?

Bounds

On rare occasions one can also easily establish bounds given the “right” representation of a polynomial. For instance,

\[
p(x) = x^4 - 4x^3 + 7x^2 - 10x + 10
\]

appears to be positive over \(\mathbb{R} \).

One can prove this by tediously checking the behavior over the intervals with endpoints \(-\infty, -1, 3/2, 2, \infty\). Alternatively, one can use differentiation to find the global minimum of \(p \).

Or one can note that \(p(x) = (x^2 - 1)^2 + (x - 3)^2 \).
Polynomials: Applications

Roots

Roots and Divisibility

Lemma
Let \(a \) be a root of \(f \in F[x] \). Then \((x - a) \) divides \(f(x) \).

Proof.
Write
\[
f = q(x - a) + r
\]
where \(\deg(r) < 1 \). But then \(r \) must be 0, done.

Lemma
Any non-zero polynomial \(f \in F[x] \) has at most \(\deg(f) \) many roots.

Proof.
Use the last lemma and induction on the degree.

Decomposition

So if \(\deg(f) = n \) and \(f \) has \(n \) roots we decompose \(f \) completely into linear terms:
\[
f = c(x - a_1)(x - a_2) \cdots (x - a_n)
\]

Of course, there may be fewer roots, even over a rich field such as \(\mathbb{R} \): \(f = x^2 + 2 \) has no roots.

This problem can be fixed by enlarging \(\mathbb{R} \) to the field of complex numbers \(\mathbb{C} \) (the so-called algebraic completion of \(\mathbb{R} \)).

Vieta

Suppose \(p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 \) has complex roots \(x_1, \ldots, x_n \) (not necessarily all distinct). Then
\[
\sum_{I \subseteq [n]} \prod_{i \in I} x_i = (-1)^k \frac{a_{n-k}}{a_n}
\]

In particular
\[
x_1 + \ldots + x_n = -a_{n-1}/a_n
\]
\[
x_1 \cdots x_n = (-1)^n a_0/a_n
\]

Proof. Expand the linear decomposition.

Rational Root Test

For polynomials \(p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 \) with integral coefficients it is often necessary to determining whether any of the roots are rational.

Plugging in a term \(p/q \) (in lowest common terms) one finds that
\[
p \text{ divides } a_0
\]
\[
q \text{ divides } a_n
\]
Thus, there are only finitely many cases to check. Unfortunately, this works only for univariate polynomials (it is not known whether the existence of rational solutions to a Diophantine equation is decidable).

More Roots

Note that over arbitrary rings more roots may well exist.

For example over \(R = \mathbb{Z}_{15} \) the equation \(x^2 - 4 = 0 \) has four roots: \(\{2, 7, 8, 13\} \).

But of course
\[
(x - 2)(x - 7)(x - 8)(x - 13) = 1 + 7x^2 + x^4 \not\equiv x^2 - 4
\]

Exercise
Using the Chinese Remainder theorem explain why there are four roots in the example above. Can you generalize?
Point-Value Representation

The fact that a non-zero polynomial of degree n can have at most n roots can be used to show that the interpolating polynomial

$$f(x) = \sum_i h_i \prod_{j \neq i} \frac{x - a_j}{a_i - a_j}$$

is unique: suppose g is another interpolating polynomial so that $g(a_i) = h_i$. Then $f - g$ has $n + 1$ roots and so is identically zero.

Hence we have an alternative representation for polynomials: we can give a list of point-value pairs rather than a list of coefficients. To the naked eye this proposal may seem absurd: why bother with a representation that is clearly more complicated? As we well see, there are occasions when point-value is computationally superior to coefficient list.

Multiplying Polynomials

Suppose we have two univariate polynomials f and g of degree bound n. Using the brute force algorithm (i.e., literally implementing the definition of multiplication in $\prod R$) we can compute the product $f \cdot g$ in $\Theta(n^2)$ ring operations.

Now suppose we are dealing with real polynomials. There is a bizarre way to speed up multiplication:

- Convert f and g into point-value representation where the support points are carefully chosen.
- Multiply the values pointwise to get h.
- Convert h back to coefficient representation.

Vandermonde Matrices

Here is another look at conversions between coefficient and point-value representation, i.e., between evaluation and interpolating.

Definition

Define the n by n Vandermonde matrix by

$$VM(x_0, x_1, \ldots, x_{n-1}) = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{pmatrix}$$

Lemma

$$|VM(x)| = \prod_{i<j} (x_j - x_i)$$

Evaluation versus Interpolation

It follows that the Vandermonde matrix is invertible iff all the x_i are distinct. Now consider a polynomial

$$f(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$$

To evaluate f at points $a = (a_0, \ldots, a_{n-1})$ we can use matrix-by-vector multiplication:

$$b = VM(a) \cdot c$$

But given the values b we can obtain the coefficient vector by

$$c = VM(a)^{-1} \cdot b$$

Implicit Representation

Recall our alternative way of defining polynomials: formal expressions involving ring elements and the variables using operations plus and times.

We have used this implicit representation in several places already, without any protest from the audience.

- The expressions $c(x - a_1)(x - a_2) \cdots (x - a_n)$ encountered in the root decomposition.
- The description of the determinant of a Vandermonde matrix $\prod_{i<j} (x_j - x_i)$.
- Using interpolation and evaluation to retrieve the secret in Shamir’s method.
So? 55
More precisely, we could consider polynomials to be arbitrary expressions built from
- the variables x_1, \ldots, x_n,
- elements in the ground ring,
- addition, subtraction and multiplication.

Obviously we can recover the explicit polynomial (i.e. the coefficient list) from these explicit representations.

Example
Polynomial $p = (x_1 - x_2) (x_3 - x_4) (x_5 - x_6)$ expands to
\[x_1 x_3 x_5 - x_2 x_3 x_5 - x_1 x_4 x_6 + x_2 x_4 x_6 - x_1 x_3 x_6 + x_2 x_3 x_6 + x_1 x_4 x_6 - x_2 x_4 x_6. \]

We just have to expand (multiply out) to get the "classical form".

What exactly is meant by "expanding" a polynomial?

Expanding Polynomials 56
We want to bring a multivariate polynomial $f(x_1, x_2, \ldots, x_n)$ into normal form. First we apply rewrite rules to push multiplication to the bottom of the tree until we have a sum of products:
\[
\begin{align*}
\alpha (\beta + \gamma) &\rightarrow \alpha \beta + \alpha \gamma \\
(\beta + \gamma) \alpha &\rightarrow \beta \alpha + \gamma \alpha
\end{align*}
\]

Then we collect terms with the same monomial and adjust the coefficient.
\[
\ldots + c x^e + \ldots + d x^e \ldots \rightarrow \ldots + (c + d) x^e + \ldots
\]
Some terms may cancel here (we don’t keep monomials with coefficient 0).
Computationally it is probably best to first sort the terms (rather than trying to do pattern matching at a distance).

The problem is that it may take exponential time to perform the expansion: there may be exponentially many terms in the actual polynomial.

Polynomial Identities 57
A task one encounters frequently in symbolic computation is to check whether two polynomials are equivalent, i.e., whether an equation between polynomials
\[
f(x_1, x_2, \ldots, x_n) = g(x_1, x_2, \ldots, x_n)
\]
holds in the sense that for all $x_1, x_2, \ldots, x_n \in R$.

Definition
Two polynomials $f(x)$ and $g(x)$ are equivalent if for all $\alpha \in R$:
\[f(\alpha) = g(\alpha). \]
In particular f is identically zero if $f(x)$ and 0 are equivalent.

In other words, two polynomials $f(x)$ and $g(x)$ are equivalent iff
\[\hat{f}(x) = \hat{g}(x). \]
Notation: $f(x) \equiv g(x)$.

Zero Testing 58
Note that the polynomial identity $f \equiv g$ can be rewritten as $f - g \equiv 0$.

Problem:
How can we check whether a multivariate polynomial $f \in F[x]$ is identically zero?

Note: The polynomial may not be given in normal form, but as in the example in a much shorter, parenthesized form. We want a method that is reasonably fast without having to expand out the polynomial first.

Using Roots 59
Assume that the ground ring is a field F.

Suppose f has degree d. As we have seen, in the univariate case there are at most d roots and d roots determine the polynomial (except for a multiplicative constant).

So we could simply check if the polynomial vanishes at, say, $a = 0, 1, 2, \ldots, d$: f will vanish on all $d + 1$ points iff it is identically zero.

Requires only $d + 1$ evaluations of the polynomial (in any form).

Unfortunately, the roots for multivariate polynomials are a bit more complicated.

A Quadratic Surface 60
$x^2 - y^2 + 1$
The Key lemma

Let \(f \in F[x_1, \ldots, x_n] \) be of degree \(d \) and \(S \subseteq F \) a set of cardinality \(s \). Then \(f \) is not identically zero then \(f \) has at most \(ds^{n-1} \) roots in \(S^n \).

Proof.
The proof is by induction on \(n \).

The set \(S \) here could be anything. For example, over \(\mathbb{Q} \) we might choose \(S = \{0,1,2,\ldots, s-1\} \).

Schwartz’s Method

The main application of the lemma is to give a probabilistic algorithm to check whether a polynomial is zero.

Suppose \(f \) is not identically zero and has degree \(d \).

Choose a point \(a \in S^n \) uniformly at random and evaluate \(f(a) \). Then

\[
Pr[f(a) = 0] \leq \frac{d}{s}
\]

So by selecting \(S \) of cardinality \(2d \) the error probability is 1/2.

Note that the number of variables plays no role in the error bound.

Certainty

With more work we can make sure the \(f \) really vanishes.

Corollary

Let \(f \in F[x_1, \ldots, x_n] \) be of degree \(d \) and \(S \subseteq F \) a set of cardinality \(s > d \). If \(f \) vanishes on \(S^n \) then \(f \) is identically zero.

But note that for finite fields we may not be able to select a set of cardinality higher than \(d \).

Recall the example over \(\mathbb{Z}_2 \): in this case we can essentially only choose \(S = \mathbb{Z}_2 \), so only degree 1 polynomials can be tackled by the lemma.

That’s fine for univariate polynomials (since any monomial \(x^i \) simplifies to \(x \)) but useless for multivariate polynomials.

A Real Algorithm

To lower the error bound, we repeat the basic step \(k \) times.

\[
\text{// is } f \text{ identically zero ?}
\]

\[
\text{do } k \text{ times}
\]

\[
\text{pick a uniformly at random in } S^n
\]

\[
\text{if} \ (f(a) \neq 0)
\]

\[
\text{return false;}
\]

\[
\text{od}
\]

\[
\text{return true;}
\]

Note that the answer false is always correct.

Answer true is correct with error bound \(\varepsilon \) provided that

\[
k = \lceil \log 1/\varepsilon \rceil
\]

Application

Recall that a perfect matching in a bipartite graph is a subset \(M \) of the edges such that the edges do not overlap and every vertex is incident upon one edge in \(M \).

There is a polynomial time algorithm to check whether a perfect matching exists, but using Schwartz’s lemma one obtains a faster and less complicated algorithm.

Suppose the vertices are partitioned into \(u_i \) and \(v_i \), \(i = 1,\ldots,n \).

Define a \(n \times n \) matrix \(A \) by

\[
A(i,j) = \begin{cases} x_{ij} & \text{if } (u_i,v_j) \in E, \\ 0 & \text{otherwise.} \end{cases}
\]

Note that the determinant of \(A \) is a polynomial whose non-zero terms look like

\[
\pm x_{1\pi(1)}x_{2\pi(2)}\ldots x_{n\pi(n)}
\]

Testing Perfect Matchings

Proposition

The graph has a perfect matching iff the determinant of \(A \) is not identically zero.

Proof.

If the graph has no perfect matching then all the terms in the determinant are 0 (they all involve at least one non-edge).

But if the graph has a perfect matching it must have the form

\[
M = \{ (u_i,v_{\pi(i)}) \mid i \in [n] \}
\]

where \(\pi \) is a permutation.

But then the determinant cannot be 0 since the corresponding monomial cannot be canceled out.

\(\square \)