
CDM

Functions

Klaus Sutner

Carnegie Mellon University

40-functions 2017/12/15 23:22

1 Defining Functions

� Classification

� Orbits

� Closures

� Higher-Order Functions

Classical Functions 3

In calculus, functions are usually defined like so:

f(x) = x2 + sin(x)

g(x, y) =
x2 + 3y2

x− y

There is an expression, which we can construe as a simple program, that
determines the output value f(x) given x as input. Note that the user
has to figure out the proper input values. E.g., x 6= y is required for g.

This intensional style is very close to computer science: to define a
function we specify a method to compute its values. Note that we have
to to stretch the notion of computation a bit, sin(x) is not computable in
the narrow sense.

Functions à la Dirichlet 4

Alas, this approach to functions is too narrow. It turns out to be better
to abstract away from the computational process and to focus on the
input/output behavior alone.

Definition

Let ρ : A→ B be a relation. ρ is a function (or map, mapping) if

ρ is single-valued: x ρ u ∧ x ρ v ⇒ u = v.

ρ is total: ∀x ∈ A ∃ y ∈ B (x ρ y).

A relation that is only single-valued is also called a partial function.

Notation:

It is customary to write f(x) = y rather than x f y.

A→ B is the set of all functions from A to B.

This is also written BA or Fct(A,B).

I/O 5

This is the input/output relation definition; it is very general and
relatively new (1830), and it is purely extensional: a function is just a set
of pairs (input,output), but we don’t necessarily have any way to
compute the output given the input (even if we a generous about what
constitutes computability and admit things like sin(x)).

Indeed, one of the strengths of this definition is that it allows for
non-computable functions.

This may sound bizarre from the computer science perspective, but it
turns out to be a much more useful platform that the more narrow
definition.

Note that the domain is entirely unconstrained. In particular we can also
accommodate k-ary functions of the form

f : A1 × . . .×Ak → B.

Currying 6

In a sense, k-ary functions for k > 1 are superfluous: we can always
rewrite a k-ary function in terms of unary ones.

The main idea is that

f : A×B → C

can also be construed as

F : A→ (B → C)

where F (a)(b) = f(a, b).

Still, it is useful and more natural to have both options. Also note that
many programming language have great difficulties with the second
version; functions tend not to be first class citizens.

Cardinality 7

The notation BA for the collection of all functions from A to B is quite
natural in the light of the following lemma.

Lemma

The cardinality of BA is |B||A|.

Of course, for this to make sense we first have to explain cardinal
arithmetic, in particular exponentiation κλ; see the section on cardinality
for a proof.

For example, there are uncountably many functions N→ B, i.e., infinite
binary sequences. For finite sets we get ordinary exponentiation.

Mental Health Warning: Insane Notation 8

Since functions are just special relations, composition of relations also
makes sense for functions. Given two functions f : A→ B and
g : B → C we can form the relational composition f • g.

Unfortunately, this is traditionally written backwards as g ◦ f (read: g
after f). Thus, in most texts

(f • g)(x) = (g ◦ f)(x) = g(f(x)).

This notation does make some (minor) sense if function application is
written on the left, but it violates diagrammatic order and, of course,
directly clashes with relational composition. So, for the sake of sanity, we
will write things the natural way:

(f • g)(x) = (f ◦ g)(x) = g(f(x)).

Incidentally, in computer science you will also find notations such as f ; g
to indicate sequential composition.

Recall: Relations 9

Recall that a relation ρ from A to B is a subset of A×B.

Here A is the domain of the relation and B its codomain.

The support (or domain of definition) of ρ is the set

supp(ρ) = { a ∈ A | ∃ b ∈ B a ρ b } ⊆ A

Dually, the range or image of ρ is the set

rng(f) = { b ∈ B | ∃x ∈ Aa ρ b } ⊆ B

More Mischief 10

For a function f : A→ B the domain of definition is all of A, the same
as its domain, and is given as part of the specification.

However, determining the range can be difficult. For example, for a
multivariate integer polynomial the (undecidable) question of whether the
polynomial has any integer roots is the same as asking whether the range
of the corresponding function contains 0.

Note that some texts confuse the domain with the domain of definition,
and the codomain with the range. Always check the definition.

The Graph of a Function 11

Definition

The graph of a function f : A→ A is the relation

grf(f) = { (a, b) | f(a) = b }

Thus the graph is the collection of all input/output pairs of f .

This may seem a bit bizarre, but there is method to the madness:
according to our definition the specification of a function involves not
just the graph but also the domain and codomain.

The domain of f can be retrieved from grf(f) but not the codomain. For
partial functions not even the domain can be obtained.

Extension versus Intension 12

If we follow Dedekind and specify a function as its graph, i.e., a set of
pairs, possibly augmented by domain and codomain we lose anything
resembling the ability to compute the function value f(x) given input x.
This is the extensional view of functions.

Alas, in particular in computer science, it is often important to
understand in a constructive sense how f(x) and x are related.

Unfortunately, an intensional view of functions is quite a bit more
complicated. For example, are λx.x+ x and λx.2x intensionally the
same? Even worse: is an intensional function the same as an algorithm?

Congruences 13

Definition

Let ≈ be an equivalence relation on A and f : A→ A . Then ≈ is a
congruence for f if x ≈ y implies f(x) ≈ f(y).

The definition naturally generalizes to functions of arbitrary arity and to
collections of functions.

Congruences are important in algebraic structures: taking the quotient
with respect to a congruence (rather than an arbitrary equivalence)
produces similar algebraic structures.

Converse and Inverse 14

Another touchy point is the converse of a function, considered as a
relation. Instead of f c one often writes f−1, and calls it the inverse.

That’s OK, but realize that f−1 is in general not a function, just a
relation.

E.g, f = {(1, 1), (2, 1)}.
Then f−1 = {(1, 1), (1, 2)} and therefore not single-valued.

Exercise

When is f−1 again a function? Or at least a partial function? What role
does the range play?

� Defining Functions

2 Classification

� Orbits

� Closures

� Higher-Order Functions

Types of Functions 16

Functions in general are complicated, but there is a simple, general
classification of functions that is eminently useful in many places.

The terminology here is due to Bourbaki and has become totally
standard.

Definition

Let f : A→ B be any function.

f is surjective if ∀ y ∈ B ∃x ∈ A (f(x) = y),

f is injective if f(u) = f(v)⇒ u = v,

f is bijective if f is injective and surjective.

Again 17

Surjective (onto) means every element in the codomain has a preimage.

Injective (one-one): no one in the codomain has more than one preimage.
Another way of thinking about this is that no information is lost during
the application of f : we can reconstruct x from f(x), the operation is
reversible.

Bijective: there is a perfect correspondence between the domain and the
codomain. Bijections are the key element in cardinality arguments.

Example

Here are some real-valued functions familiar from calculus.

x 7→ x2 is neither injective nor surjective.
x 7→ x3 − x is surjective but not injective.
x 7→ ex is injective but not surjective.
x 7→ x3 is bijective (even an order isomorphism).

Characterizing Injectivity 18

Lemma

Let f : A→ B be a function. The following are equivalent:

1 f is injective.

2 f • f c = IA.

3 ∃F : B → A (F ◦ f = IA).

4 f has the left-cancellation property:
∀ g, h : C → A (f ◦ g = f ◦ h⇒ g = h).

The last property may seem a bit strange and unreasonably complicated,
but it is particularly useful when one needs to generalize injectivity in an
algebraic context.

Proof 19

Proof. (of lemma 1)

(1 → 2)

a (f • f c) b iff f(a) = c = f(b). Since f is injective, iff a = b.

(2 → 3)

Let F = f c (and recall the relationship between ◦ and •).

(3 → 4)

Let F , g and h as given. Then

g ◦ f = h ◦ f implies (g ◦ f) ◦ F = (h ◦ f) ◦ F .

By associativity, g ◦ (f ◦ F) = h ◦ (f ◦ F), g = h.

More Proof 20

(4 → 1)

Pick a, b ∈ A such that f(a) = f(b).

Set C = {�} and let g(�) = a, h(�) = b.

Then g ◦ f = h ◦ f , hence g = h and thus a = b.

2

For example, f : R→ R , f(x) = ex is injective since the function
F : R→ R , F (x) = lnx for x > 0 and F (x) = 0, otherwise, has the
property in part (3) of the lemma.

And Surjectivity 21

Lemma

Let f : A→ B be a function. The following are equivalent:

1 f is surjective.

2 IB ⊆ f c • f .

3 ∃F : B → A (f ◦ F = IB).

4 f has the right-cancellation property:
∀ g, h : B → C (g ◦ f = h ◦ f ⇒ g = h).

Exercise

Give a proof for lemma 9.

Decomposing Functions 22

How special are injective and surjective functions? According to the
following theorem, not very.

Theorem

Every function is a composition of a surjective function and an injective
function.

Proof.

Let ρ = Kf be the kernel equivalence relation for f : A→ B . Define
g : A→ A/ρ and h : A/ρ→ B by

g(x) = [x]ρ

h([x]ρ) = f(x)

Then f = h ◦ g, h is injective, and g is surjective.

Touchy point: must check that h is well-defined. What if [x]ρ = [y]ρ?

2

Inverting Functions 23

If f : A→ B is bijective then f−1 : B → A is a function (even a
bijection).

If f : A→ B is injective then f−1 : rng(f)→ A is a function. Can
be extended to a function f−1 : B → A by picking random values
for points in B − rng(f).

But for non-injective f , f−1 is not even a partial function, just a relation.

Nonetheless, in calculus, one often tries to find inverses for some
restrictions of f .

Example

f(x) = x3 has an inverse as a function f : R→ R .

f(x) = x2 has no inverse as a function f : R→ R , but f : R+
0 → R+

0

has an inverse:
√
x.

Likewise, sin has infinitely many piecewise inverses.

Characteristic Functions 24

Consider subsets of some fixed universe U .

Definition

The characteristic function of A ⊆ U , χ
A

: U → B is

χ
A

(x) =

{
1 if x ∈ A
0 otherwise.

χ
A

is just another representation of A, and sometimes more useful.

Characteristic function are referred to as bitvectors in computer science.
Consider the universe U = {0, . . . , n− 1}. Then A = {2, 3, 6, 8} for
n = 10 corresponds to

bool AA[] = {0,0,1,1,0,0,1,0,1,0}

Set Operations 25

Set operations translate into logical connectives:

χ
A∪B(x) = Hor(χA(x), χ

B
(x))

χ
A∩B(x) = Hand(χA(x), χ

B
(x))

χ
A∆B

(x) = Hxor(χA(x), χ
B

(x))

χ
Ac

(x) = Hnot(χA(x))

While bitvectors are simple they do provide a perfectly good
implementation for small universes. Note that one can pack the bits and
exploit bit-parallelism to speed up all the operations above Of course, for
large universes this method fails miserably.

Exercise

Implement a bitvector library.

YABA 26

So, a subset of any fixed universe can be identified with a sequence of
true/false values:

P(U) corresponds to U → B

The logical operations on B can naturally be extended to sequences of
true/false values: apply them point-wise to corresponding elements in the
sequences. Note that point-wise operations on (short) bit sequences are
useful enough to be incorporated in many programming languages such
as C.

Hence it is not too surprising that

〈P(U),∪,∩, , ∅,U 〉

is yet another Boolean algebra, we a just dealing with vectors of Boolean
values.

Functions and Equivalence Relations 27

Definition

Let f : A→ B be a function. Define the kernel relation of f by

x ρ y ⇐⇒ f(x) = f(y)

The kernel relation is usually written Kf or ker(f).

It is easy to check that ρ is an equivalence relation on A.

Example

Let A be the set of all polygons, f(x) the area of x. Yields the
“same-area” relation Kf .

Let f : Z→ Z , f(x) = x mod m. Then Kf is congruence modulo m.

Kernels Everywhere 28

Question: Could it be that every equivalence relation is already a kernel
relation?

In other words, given an arbitrary equivalence relation ρ on A, can we
produce a function f : A→ B such that ρ = Kf .

If we don’t care much about the codomain this is easy:

f : A −→ P(A)
x 7−→ [x]

Better Kernels 29

Theorem

Every equivalence relation ρ on A is a kernel relation. In fact, we can
choose a function f : A→ A such that Kf = ρ.

Proof.

We have to produce a function f : A→ A such that ρ = Kf .

For each equivalence class [x]ρ pick one representative x0 ∈ [x]ρ.

Set f(z) = x0 for all z ∈ [x]ρ.

2

A Minor Foundational Problem 30

But, there is a small problem: how do we actually pick x0 ∈ [x]?

If [x] ⊆ A is just an abstract set, there is no mechanism to select x0.

As B. Russell pointed out, given an infinite collection of pairs of shoes
one can select one from each pair; given an infinite collection of socks
one is stumped.

Choice 31

But, we have the celebrated Axiom of Choice.

Consider the partition P ⊆ P(A) corresponding to ρ.

By (AC), there is a choice set C:

∀X ∈ P (|X ∩ C| = 1).

Hence we can define

f(x) = y iff x ρ y ∧ y ∈ C

It is easy to check that f really is a function and that ρ = Kf .

Well-Orders 32

Alternatively, we can follow Zermelo and use (AC) to construct a
well-order ≺ of A: for each non-empty subset X of A we can use choice
to pull out an element which we will declare to be the ≺-minimal element
of X.

But then we can define
f(x) = min

≺
[x]ρ

This idea is extremely useful in practice when A = [n].

Kernel Schmernel 33

So who should worry about this general abstract nonsense? Admittedly,
it seems that computer science does not require the Axiom of Choice, but
the kernel idea provides a very nice data structure for equivalence
relations.

Suppose A = [n] for simplicity.

Then we can represent any equivalence relation ρ on A by a selector
function f : [n]→ [n] , i.e., by a simple integer array of length n. For
example, we could set

f(a) = min
(
x ∈ [n] | x ρ a

)

This is the canonical selector function.

Example

Congruence modulo 4 on [10] produces

x 1 2 3 4 5 6 7 8 9 10
f(x) 1 2 3 4 1 2 3 4 1 2

Idempotent Deflationary Functions 34

Then
a ρ b ⇐⇒ f(a) = f(b)

Note that this function has the following properties:

idempotent: f ◦ f = f

deflationary: f(x) ≤ x

On the other hand, any function with these properties defines an
equivalence relation.

So we can implement equivalence relations in Θ(n) space with O(1)
lookup.

Exercise

Show that a function f : [n]→ [n] is a canonical selector for some
equivalence relation if, and only if, it is idempotent and deflationary.

� Defining Functions

� Classification

3 Orbits

� Closures

� Higher-Order Functions

Functional Digraphs 36

Recall that every binary relation on V can be represented by a digraph
G = 〈V,E〉 . What’s special about these graphs when the relation is a
function?

Definition (Degrees)

Let v ∈ V be a vertex in a digraph G.
The indegree of v is |{u ∈ V | (u, v) ∈ E }|.
The outdegree of v is |{u ∈ V | (v, u) ∈ E }|.

Since the edges in a functional digraph are given by (x, f(x)), every
vertex must have outdegree 1.

However, the indegree may vary from 0 to |A|.

Transient and Period 37

What happens if we trace a path in a functional digraph starting from
some vertex a?

a, f(a), f(f(a)), . . . , fn(a), . . .

Since f is single-valued, we can follow exactly one path.

If A is finite, then the path must ultimately wind up on a cycle (the limit
cycle)

f t(a) = f t+p(a)

for some t ≥ 0, p > 0, which depend on x.

Definition

The least t and p such that f t(a) = f t+p(a) is the transient and the
period of a (wrt. f).

The Lasso 38

Tracing a function on a finite domain:

Note that we always get exactly this type of picture; the only thing that
can change is the length of the handle and the cycle.

A Typical Limit Cycle 39

Several lassos can share the same limit cycle.

A Complete Diagram 40

The whole diagram may have several limit cycles (this is ECA 74 on 7-bit
configurations).

Example 1 41

Here is a simple example: the function

f(x) = x2 + 1 mod 11

with domain and codomain {0, 1, . . . , 10}. Here is the diagram:

01

25 310467

89

There is one limit cycle of length 2, the maximum transient is 4.

Another Picture 42

Iterating the function a few times provides another way to visualize the
same function.

Example 2 43

Here is the same function f(x) = x2 + 1 mod 21 but with modulus 21.

This time there are two fixed points, maximum transient is 3.

And Iterating 44

� Defining Functions

� Classification

� Orbits

4 Closures

� Higher-Order Functions

Closure 46

Let S be some ambient set and f : S → S on operation on S.

X ⊆ S is f -closed if f(X) ⊆ X.

For a list of function f = f1, . . . , fk we say that X is f -closed if X is
fi-closed for all i.

The f -closure of X0 ⊆ S is the least X such that X0 ⊆ X and X is
f -closed.

We write clf (X0) or cl(X0,f).

In terms of set-theory we have

cl(X0,f) =
⋂
{Y | X0 ⊆ Y ∧ Y f -closed }

Examples 47

Example

S = N, x0 = 0, f(x) = x+ 1.

Closure: N.

Example

S = Z, x0 = 0, f1(x) = x+ 1, f2(x) = x− 1.

Closure: Z.

Example

S = N, x0 = 0, f1(x) = x+ a, f2(x) = x+ b where a, b coprime.

Closure: F ∪ {x ∈ N | x ≥ (a− 1)(b− 1) } where F is finite.

Exercise

S = N, f1(x) = bx/2c, f2(x) = dx/2e.
Determine cl(x0,f).

Clearly,
cl(2k,f) = {0, 1, 2, 4, 8, . . . , 2k}

but other values are not so clear. For example,

cl(560,f) = {0, 1, 2, 3, 4, 5, 8, 9, 17, 18, 35, 70, 140, 280, 560}

and

cl(561,f) = {0, 1, 2, 3, 4, 5, 8, 9, 17, 18, 35, 36, 70, 71, 140, 141, 280, 281, 561}

Here is a plot of the size of these sets:

1000 2000 3000 4000 5000

12

14

16

18

20

22

24

Fixed Points 50

The set-theoretic description of the closure is impredicative and thus not
particularly useful from an algorithmic perspective. We can express the
problem as a fixed point computation below and stops when the least
fixed point of the operation Consider the operation

Φ : Y 7→ Y ∪
⋃
fi(Y)

Then the closure X of X0 is the least fixed point of Φ containing X0.

But we can approximate the closure from below by starting at X0 and
applying Φ till a fixed point is reached:

cl(X0;f) =
⋃

k≥0

Φk(X0)

Closure Algorithms 51

Here is a prototype algorithm along these lines.

Let us say that x ∈ S requires attention (via fi) if x ∈ X but fi(x) /∈ X.

X = X0
while(some x requires attention via fi)

add f(x) to X

For a real algorithm (at least for the finite case), we need to explain what
data structures are used and how we search for an element requiring
attention.

The good news is that this is old hat: this is precisely the the problem of
graph exploration.

The graph in question here has [k]-labeled edges

u
i−→ fi(u)

and we are trying to find the points reachable from X0.

The only difference with standard algorithms such as DFS and BFS is
that we don’t have an explicit adjacency list representation, we compute
edges when we need them.

Spanning Trees 53

Closure algorithms organized like DFS or BFS produce a spanning tree in
the subgraph reachable from X0:

whenever u requires attention via fi we compute v = fi(u).

If v has not yet been encountered we place the edge u→ v into the
spanning tree.

If v has been encountered we can record an “equation” u · i = v (see the
section on algebra).

Higher Arities 54

Note that our definitions of closure also make sense for functions of
higher arity.

For example, given a binary function f : S × S → S we can say that
X ⊆ S is f -closed if f(X ×X) ⊆ X.

� Defining Functions

� Classification

� Orbits

� Closures

5 Higher-Order Functions

Associated Functions 56

Suppose we have a function

f : A→ B

with domain A and codomain B.

We can naturally associate this function with several others that operate
only indirectly on the elements of A.

More precisely, we can lift f to

lists over A

subsets of A

subsets of B

Lists 57

Write List(X) for the collection of all sequences over a ground set X.
Then f gives rise to a map

List(f) : List(A)→ List(B)

defined by

List(f)(nil) = nil

List(f)(a :: x) = f(a) :: List(f)(x)

This lifting has several good properties:

List(IA) = IList(A)

List(f ◦ g) = List(f) ◦ List(g)

Power Sets 58

Likewise we obtain

P(f) : P(A)→ P(B)

defined by

P(f)(X) = { f(a) | a ∈ X }

Alternatively, we can go in the opposite direction:

P′(f) : P(B)→ P(A)

defined by

P′(f)(Y) = { a ∈ A | f(a) ∈ Y }

Examples 59

In practice, one often write f instead of List(f) and P(f). For P′(f) one
finds the notation f−1.

Example

Let f : R→ R , f(x) = x2.

f((0, 1, 2, 3)) = (0, 1, 4, 9)

f([−2, 2]) = f([0, 2]) = [0, 4].

f−1([0, 1]) = [−1, 1], f−1([−1, 1]) = [−1, 1], f−1([−2,−1]) = ∅

Functions as Input 60

Another important class of functions takes other functions as input,
These are sometimes called higher-order functions or functionals.

Integration (or differentiation) of real functions

∫
: (R→ R)→ (R→ R)

Composition

◦ : (B → C)× (A→ B)→ (A→ C)

Binding
bind1st : (A×B → C)×A→ (B → C)

Map
map : (A→ B)× List(A)→ List(B)

Iteration
iterate : (A→ A)× N→ (A→ A)

Example: Fold 61

Here is a well-known example of a higher order function: fold. Suppose
we have

a function f : A×B → A

an starting element e ∈ A

By recursion, define

fold(f, e, .) : List(B)→ A

fold(f, e, nil) = e

fold(f, e, L :: b) = f(fold(f, e, L), b)

Note that we have used induction on the right in this definition. For
example,

fold(f, e, (a, b, c, d)) = f(f(f(f(e, a), b), c), d)

But Why? 62

A surprising number of list operations can be defined easily in terms of
fold.

f(a, b) e fold(f, e, .)

a+ 1 0 length

prep(a, b) nil reverse

app(a, g(b)) nil map g

a ∨ [b = b0] tt search

a+ [b = b0] 0 count

Here [α = β] follows Knuth’s convention: it is 1 if indeed α = β, and 0
otherwise.

And, of course, in a Boolean context we interpret 0 as false, and 1 as
true. Overloading is fun, grin and bear it.

Implementing Removal 63

Here is another example for the versatility of fold.

Suppose we wish to implement an operation that removes some element
b0 from a list.

We could use e = nil and

f(x, y) =

{
x if y 6= b0,

app(x, y) otherwise.

Exercise

Explain in detail how this implementation of removal works.

Exercise

Verify the claims in the table above.

Summary 64

Functions are often associated with computation, but the standard
definition focuses on the input/output behavior only.

Basic properties of functions are extensions of similar properties of
binary relations.

Kernels and equivalence relations are closely related.

Iteration of endofunctions produces orbits, a central concept in
discrete dynamics.

Higher order functions arise naturally and are supported by some
programming languages.

