
CDM

Minimization of Finite State Machines

Klaus Sutner

Carnegie Mellon University
Spring 2021

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Computing with Equivalences

5 Moore’s Algorithm

State Complexity 2

Recall our definition of the state complexity stpLq of a recognizable language
L: the minimal number of states of any DFA accepting the language.

Our next goal is to show how to compute the state complexity of a language:
we will construct a corresponding DFA, starting from an arbitrary machine for
the language.

As it turns out, the automaton is unique, up to renaming of states. Thus, we
have a normal form for any recognizable language. This is fairly rare, usually
there are many canonical descriptions of an object.

But Why? 3

Humans are fairly good at constructing small DFAs that are already
minimal–one naturally tends to avoid “useless” states. Unfortunately, this little
reassuring fact does not help much:

Humans fail spectacularly when the machines get large, even a few dozen
states are tricky, thousands are not manageable.

One of the most interesting aspects of finite state machines is that they
can be generated and manipulated algorithmically. These algorithm typi-
cally do not produce minimal machines—and often not even deterministic
ones.

Small Example 4

Here is the accessible part of the product automaton for taa, bbu, built from
the obvious DFAs for aa and bb.

00

1⊥

2⊥

⊥1 ⊥2 ⊥⊥

01 02 0⊥

10 11 12

20 21 22

⊥0

a

a
b

b

a, b

a, b

b

a

a, b

a a a

a a a

a a a, b

a

b b

b

b b b

b b

b

Redraw 5

Here is a slightly better diagram for this machine:

0

1

2

3

4

5

a

a

a, b

b

b

a, b

b

a

a, b

A Minimal Solution 6

However, the state complexity of taa, bbu is only 5 (recall that state complexity
is defined in terms of DFAs, so we have to include the sink in the count).

0

1

2

3, 5 4

a
a

a, b

b
b

b

a

a, b

States 3 and 5 are merged into a single state (and the transitions rerouted
accordingly).

Minimal Automata 7

Definition
A DFA A is minimal if there is no DFA equivalent to A with fewer states than
A.

Thus the state complexity of A is the same as the state complexity of LpAq. As
already pointed out there are several potential problems with this definition:

The existence of a minimal DFA is guaranteed by the fact that N is well-
ordered, but there ought to be a more structural reason.

There might be several minimal DFAs for the same language.

Even if there is a unique minimal DFA, there might not be a good con-
nection between other DFAs and the minimal one.

Really Minimal? 8

How do we know that 5 states are necessary for taa, bbu?

Need initial state q0.
Need state δpq0, aq and δpq0, aq ‰ q0.
Need state δpq0, bq and δpq0, bq ‰ q0, δpq0, aq.
Need state δpq0, aaq and δpq0, aaq ‰ q0, δpq0, aq, δpq0, bq.
Need state δpq0, aaaq and δpq0, aaq ‰ q0, δpq0, aq, δpq0, bq, δpq0, aaq.

If any of these states were equal the machine would accept the wrong
language.

So in a sense all these states are inequivalent, indispensable.
There is no hope to build a machine with fewer than 5 states.

Behavioral Equivalence 9

There is an interesting idea hiding in this argument: some states must be
distinct, so the machine cannot be too small.
To make this more precise we adopt the following definition.

Definition
Let A be a DFA. The behavior of a state p is the acceptance language of A
with initial state replaced by p. Two states are (behaviorally) equivalent if they
have the same behavior.

In symbols:

JpK “ LpxQ,Σ, δ; p, F yq
“ tx P Σ‹ | δpp, xq P F u

So in a DFA the language accepted by the machine is simply Jq0K.

The Main Idea 10

So suppose p and p1 have the same behavior. We can then collapse p and
p1 into just one state: to do this we have to redirect all the affected tran-
sitions to and from p and q.

This is easy for the incoming transitions.

But there is a little problem for the outgoing transitions: one has to merge
all equivalent states, not just a few.

Otherwise the merged states will have nondeterministic transitions em-
anating from them – and we do not want to deal with nondeterministic
machines here.

An Example 11

Language: a˚b.

J1K “ J2K
J3K “ J4K
J5K “ J6K

1 2

3 4

5 6

a

b

a

b

a

b b

a

a, b a, b

Partial Merge 12

Merging only states 1 and 2
produces a nondeterministic
machine.

12

3 4

5 6

b

a

b

a

b b

a

a, b a, b

Another Step 13

Merging 1 and 2;
and 3 and 4.

12

34

5 6

b

a
b

a, b

a, b

a, b a, b

Complete Merge 14

A complete merge produces a DFA.

12

34

56

b

a

a, b

a, b

Reduced Machines 15

In the last machine, all states are inequivalent:

J12K “ a˚b

J34K “ ε

J56K “ H

So no further state merging is possible.

Definition
A DFA is reduced if all its states are pairwise inequivalent.

Characterization 16

Our goal is to exploit the following theorem for algorithmic purposes.

Theorem
A DFA is minimal if, and only if, it is accessible and reduced.

Accessibility is computationally cheap. The merging part naturally comes in
two phases:

Determine the required partition of the state set.
Merge the blocks into single states of the new machine.

The second phase is easy, the first requires work, in particular if one needs fast
algorithms.

Towards Algorithms 17

Mathematical Thinking: behavioral equivalence. Once the concept of be-
havior is clear, there is a straightforward algorithm for mini-
mization. And, it’s even polynomial time.

Algorithmic Thinking: refinement of equivalence relations. A better al-
gorithm is obtained by thinking clearly about computing with
equivalence relations (Moore). The reward is a clean, quadratic
time algorithm (which is often much better than quadratic).

Smart Algo Thinking: baby-steps vs. giant-steps. Now things get tricky:
all sub-quadratic algorithms require a much more careful ar-
gument and deeper algorithmic methods. A bit of creative in-
sight is required to get down to log-linear. And doing things
elegantly and efficiently is quite difficult.

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Computing with Equivalences

5 Moore’s Algorithm

Merging and Algebra 19

The merging approach is really algebraic in nature. Given some complicated
structure S, try to simplify matters as follows:

Find an equivalence relation E on S,

that is compatible with the operations on S, and then

replace S by the quotient structure S{E.

In general one would like to make the quotient structure as small as possible,
so the equivalence relation should be as coarse as possible.

Operations on S extend naturally to operations on S{E: rxs ˚ rys “ rx ˚ ys.

Congruences 20

The important point here is that not just any equivalence will do, rather we
need a congruence: an equivalence that coexists peacefully with the algebraic
operations under consideration.

E.g., if S has a binary operation ˚ then we need

x E x1, y E y1 implies x ˚ y E x1 ˚ y1

Thus, it might be a good idea to take a closer look at the algebra of languages,
whatever that may turn out to be.

Example
The classical example is modular arithmetic: the modm relation is a
congruence with respect to addition and multiplication.

Important Congruences 21

Are there any relevant congruences in our case?

Definition
Given a language L Ď Σ‹, its syntactic congruence is defined by

u ”L v ðñ @x, y P Σ‹
`

xuy P L ô xvy P L
˘

Given a DFA A, its transition congruence is defined by

u «A v ðñ @ p P Q
`

App, uq “ App, vq
˘

Moreover, its right transition congruence is defined by

u «rA v ðñ Apq0, uq “ Apq0, vq

Here App, uq is just convenient notation for the transition function of the DFA.

Total Recall 22

Definition
Let E be an equivalence relation on A and B Ď A. Then E saturates B if B is
the union of equivalence classes of E.

In other words,
B “

ď

xPB

rxsE .

”L saturates L, and is the coarsest congruence to do so.
In any DFA, the behavioral equivalence relation saturates the set of final
states.

The last item is important: behavioral equivalence is a refinement of the basic
partition pF,Q´ F q. We can use this as the starting point in an iterative
algorithm.

Example 23

Let L “ a‹b‹. By substituting appropriate values for x and y in the definition
of ”L we can “compute” the the equivalence classes of ”L.

For example, for u “ a we need x P a‹ and y P a‹b‹ to have xuv P L.

This is quite tedious because of the universal quantifier, but ultimately
produces the following classes:

rεs “ tεu ras “ a` rbs “ b` rabs “ a`b` rbas “ Σ‹ ´ L

Note that the corresponding automaton (see next slide) is not minimal.

The Syntactic Congruence Automaton 24

ε

a

b

ab

ba

a

a

b

b

b

a

b

a

a, b

Clearly, there is a DFA with just 3 states for this language.

Myhill-Nerode 25

Theorem (Myhill-Nerode 1958)
A language L is recognizable iff it is saturated by a congruence of finite index
(and in particular its syntactic congruence).

Proof.
Given a DFA A for L its transition congruence has finite index and saturates L.
Of the opposite direction, let Q be the finite collection of equivalence classes of
”. Define a DFA by

δprxs, aq “ rxas

q0 “ rεs

F “ t rxs | x P L u

This works since ” is a congruence that saturates L.
l

Algebra of Languages 26

Given an alphabet Σ we consider the carrier set of all languages over Σ:

LpΣq “ PpΣ‹q “ tL | L Ď Σ‹ u

Note that LpΣq is uncountable (same cardinality as the reals) even in the
degenerate case Σ “ tau.

From a computational perspective LpΣq is interesting only as a general
framework, we need to restrict our attention to small (countable) subsets of
LpΣq if we want algorithms e.g. for the Membership Problem.

For example, we can study decidable languages in general or easily decidable
languages such as recognizable ones.

Algebraic Operations 27

Since we are dealing with a powerset, there are the obvious Boolean operations
union, intersection and complement that can be applied to languages over Σ.
So we have a Boolean algebra

xLpΣq,Y,X, y

That’s OK, but not terribly interesting: at no point are we using the fact that
the sets in question are sets of words, rather than arbitrary objects.

But we also have operations that are specific to languages:

concatenation
Kleene star

Building Recognizable Languages 28

The choice of concatenation and Kleene star may seem rather arbitrary. It is is
justified by the following theorem (see lecture on Kleene algebras for a proof).

Theorem (Kleene)
Every recognizable language can be obtained from singletons tau for a P Σ,
and H, by finitely many applications of the operations union, concatenation
and Kleene star. Given a finite state machine for the language, the
decomposition can be generated algorithmically.

In other words, the collection RegpΣq of all recognizable languages over
alphabet Σ is a sub-algebra of

xLpΣq,Y, ¨, ‹, 0, 1y

where 0 is polite for H, and 1 stands for tεu. The recognizable languages are
then generated by singletons tau.

How about Intersection and Complement? 29

Note that the theorem makes a rather surprising claim: it suffices to consider
operations union, concatenation and Kleene star when one tries to construct
recognizable languages from atomic pieces (in this case singletons tau and the
empty set).

But recognizable languages are closed under intersection and complement. It is
by no means clear how

LXK or Σ‹ ´ L

can be so generated, even if we already know how to handle K and L.

Who Cares? 30

The first part of this result is actually very important in applications: it
provides a simple notation system for recognizable languages.
If we write a for the singleton language tau then all recognizable language can
be written down using just ` for union, ¨ for concatenation and ‹ for Kleene
star (we won’t quibble about the empty set here).
These expressions are usually referred to as regular expressions or as rational
expressions.
They are crucial for a lot of text searching and manipulation tools such as grep,
awk, sed and pearl: it is easy to type in recognizable expressions but would be
entirely hopeless to have to input the corresponding finite state machines.

The second part is more of theoretical interest: the algorithm usually generates
a really bad decomposition (much too big, but simplification is hard).

Quotients 31

Conspicuously absent from our algebra so far is any operation resembling
division. If we think of division as the inverse of multiplication (i.e.,
concatenation) a plausible answer is the following.

Definition
Let L Ď Σ‹ be a language and x P Σ‹. The left quotient of L by x is

x´1 L “ t y P Σ‹ | xy P L u.

So we are simply removing a prefix x from all words in the language that start
with this prefix. If there is no such prefix we get an empty quotient.

This is the reason why it is a bit more elegant to talk about quotients in the
context of languages rather than words: for words x and y the quotient x´1y
would be undefined whenever x fails to be a prefix of y.

Rant on Notation 32

It is standard to write left quotients as

x´1 L

Here is the bad news: left quotients are actually a right action of Σ‹ on LpΣq.

As a consequence, the first law of left quotients looks backward.

Algebra of Quotients 33

Lemma
Let a P Σ, x, y P Σ‹ and L,K Ď Σ‹. Then the following hold:

pxyq´1L “ y´1x´1L,

x´1
pLdKq “ x´1Ld x´1K where d is one of Y, X or ´,

a´1
pLKq “ pa´1LqK Y∆pLq a´1K,

a´1L‹ “ pa´1LqL‹.

Here we have used the abbreviation ∆pLq to simplify notation:

∆pLq “

#

tεu if ε P L,
H otherwise.

So ∆pLq is either zero or one in the language semiring and simulates an
if-then-else.

Comments 34

Note that pxyq´1L “ y´1x´1L and NOT x´1y´1L. As already mentioned,
the problem is that algebraically left quotients are a right action.

Quotients coexist peacefully with Boolean operations, we can just push the
quotients inside.

But for concatenation and Kleene star things are a bit more involved; the
lemma makes no claims about the general case where we divide by a word
rather than a single letter.

Exercise
Prove the last lemma.

Exercise
Generalize the rules for concatenation and Kleene star to words.

All Behaviors 35

The reason we are interested in quotients is that they are closely related to
behaviors of states in a DFA. More precisely, consider the following question:

What are the possible behaviors of states in an arbitrary DFA for
a fixed recognizable language?

One might think that the behaviors differ from machine to machine, but they
turn out to be the same, always.
To see why, first ignore the machines and consider the acceptance language
directly. Note that the language is the behavior of the initial state and thus the
same in any DFA.

We write QpLq for the set of all quotients of a language L.

Quotients Example 1 36

Using the lemma, we can compute the quotients of a˚b.

a´1 a˚b “ a˚b

b´1 a˚b “ ε

a´1 ε “ H

b´1 ε “ H

a´1
H “ H

b´1
H “ H

Thus Qpa˚bq consists of: a˚b, ε and H.

Quotients Example 1, Contd. 37

Note that these equations between quotients really determine the transitions in
the example machine for state-merging from above.

a´1 a˚b “ a˚b a˚b
a
ÝÑ a˚b

b´1 a˚b “ ε a˚b
b
ÝÑ ε

a´1 ε “ H ε
a
ÝÑ H

b´1 ε “ H ε
b
ÝÑ H

a´1
H “ H H

a
ÝÑ H

b´1
H “ H H

b
ÝÑ H

Quotients Example 2 38

Sometimes it is important to keep track of the words that produce a particular
quotient. E.g., let L be the finite language ta, aab, bbbu.

This time QpLq has size 6, with witnesses as follows:
x x´1 L

ε ta, aab, bbbu
a tε, abu
b tbbu
bb tbu
aab tεu
ab H

Of course the witness x is not uniquely determined, for example
pabzq´1 L “ pbazq´1 L “ H for any z. The table lists the length-lex minimal
witness in each case (which is the appropriate order for many algorithms).

Quotients Example 2.5 39

Moreover, there happens to be a “natural” DFA for L that has six states.

1

2

3

4 5

⊥

a

b

a

b
b

a

a

b

a, b

a, b

Could this be coincidence? Nah . . .

For example, δp1, aq “ 2 and J2K “ tε, abu.
Corresponding to a´1 L “ tε, abu.

Quotients Example 3 40

A larger example, L “ L1 “ a˚b˚ Y bab.

a´1L1 a˚b˚ L2
b´1L1 b˚ Y ab L3
a´1L2 L2
b´1L2 b˚ L4
a´1L3 b L5
b´1L3 L4
a´1L4 H L6
b´1L4 L4
a´1L5 L6
b´1L5 ε L7
a´1L6{7 L6
b´1L6{7 L6

Exercise
Verify this table.

Quotients Example 4 41

An even larger example, L “ L1 “ a˚ba˚ Y b˚ab˚.

a´1L1 a˚ba˚ ` b˚ L2 b´1L5 b˚ L8
b´1L1 b˚ab˚ ` a˚ L3 a´1L6 b˚

a´1L2 a˚ba˚ L4 b´1L6 b˚ab˚

b´1L2 a˚ ` b˚ L5 a´1L7 b˚

a´1L3 a˚ ` b˚ b´1L7 H L9
b´1L3 b˚ab˚ L6 a´1L8 H

a´1L4 a˚ba˚ b´1L8 b˚

b´1L4 a˚ L7 a´1L9 H

a´1L5 a˚ b´1L9 H

Exercise
Verify this table.

Quotients Example 5 42

Here is a very different example:

L “ t aibi | i ě 0 u “ tε, ab, aabb, aaabbb, . . .u

This time there are infinitely many quotients.

pakq´1L “ t aibi`k | i ě 0 u

pakblq´1L “ tbk´lu 1 ď l ď k

pakblq´1L “ H l ą k

This is no coincidence: the language L is not recognizable.

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Computing with Equivalences

5 Moore’s Algorithm

The Decomposition Lemma 44

Here is a simple observation about the relationship between languages (not just
recognizable) and their quotients.

Proposition
Let L Ď Σ‹ be any language. Then

L “ ∆pLq Y
ď

aPΣ

a ¨ pa´1 Lq

Proof. Duh. l

To convince a theorem prover one would need a precise definition of a word
and a language.

Exercise
Give a fastidious definition of words as functions w : rns Ñ Σ , n P N, and use
this definition to give a formal proof of the Decomposition lemma.

The Crucial Insight 45

The Decomposition lemma is just about trivial.

But, from the right point of view this little observation is quite helpful:

Think of the quotients as states.

Then the Decomposition lemma describes the transitions on these states:
L

a
ÝÑ a´1L

The ∆ term determines whether a state is final.

The Quotient Machine 46

In other words, we can build a DFA out of the quotients. To see how, suppose
Q “ QpLq is a finite list of all the quotients of some language L.

Construct a DFA

QL “ xQ,Σ, δ; q0, F y

as follows:

δpK, aq “ a´1 K

q0 “ L

F “ tK P Q | ε P K u

Quotient Machine, contd. 47

This is perfectly in keeping with our definitions: the state set has to be finite,
but no one said the states couldn’t be complicated.

At any rate, in QL we have
δpq0, xq “ δpL, xq “ x´1 L.

But then
x P L ðñ ε P x´1 L ðñ δpq0, xq P F

so that QL duly accepts L.

Exercises 48

Exercise
We can implement the quotient computation for regular languages using DFAs
to represent the languages. What is the running time of the brute-force
implementation?

Exercise
A simple special case occurs when the initial language is finite: we can
compute quotients by word processing. What is the running time of this
method? How does it compare to other methods of computing the minimal
DFA for a finite language?

How About Other DFAs? 49

It is clear by now that there is a very close link between behaviors and
quotients of the acceptance language.
More precisely, it follows from the Decomposition lemma that in any DFA
whatsoever

Jδpp, aqK “ a´1 JpK

Note that it is critical here that DFAs are deterministic: there is only one path
in the diagram starting at the initial state labeled by any particular word x.
The theory of nondeterministic machines is much more complicated.

Quotients and Behaviors 50

Lemma
Let A be an arbitrary DFA, p a state and x P Σ‹. Then

Jδpp, xqK “ x´1 JpK

Proof. Straightforward induction on x. Use

pxaq´1L “ a´1
px´1Lq

l

Corollary
Suppose A is a DFA accepting L. Then for any word x:

Jδpq0, xqK “ x´1L

So What? 51

Hence all accessible states have as behavior one of the quotients of L.
Conversely, all quotients appear as the behavior of at least one state in any
DFA for L. This may not sound too impressive, but it has some very
interesting consequences.

Corollary
Every recognizable language has only finitely many left quotients.

Corollary
Every DFA accepting a recognizable language has at least as many states as
the number of quotients of the language.

Corollary
The quotient machine for a recognizable language has the lowest possible state
complexity.

State Complexity Revealed 52

So now we know that for any recognizable language L the quotient automaton
QL is minimal:

stpLq “ # quotients of L

So, computing state complexity comes down to generating all quotients. We
know more or less how to do this algebraically, and we have a clumsy algorithm
based on manipulating DFAs.

Nice, but as we will see later, quotients are often also useful in describing and
analyzing finite state machines in general.

The Minimal Automaton 53

Theorem
A DFA for a recognizable language is minimal with respect to the number of
states if, and only if, it is accessible and reduced. Moreover, there is only one
such minimal DFA (up to isomorphism): the quotient automaton of the
language.

Proof.
Let L be the recognizable language in question and suppose that L has n
quotients.

First assume that A is an accessible and reduced DFA for L. Then every
quotient of L must appear exactly once as the behavior of a state in A, hence
stpAq “ n.
By the corollary every DFA for L has at least n states, so A is minimal.

Proof, contd. 54

For the opposite direction, clearly any minimal automaton A for L must be
accessible.

From the corollary, stpAq ě n and we know how to construct a DFA with
exactly n states.

But A is minimal, so stpAq “ n.

Again every quotient of L must appear exactly once as the behavior of a state:
thus A is reduced.

Uniqueness 55

It remains to show that all DFAs for L of size n are essentially the same as the
quotient machine QL – we can rename the states, but other than that the
machine is fixed.

To see this note we can define a bijection

f : QÑ QpLq
fppq “ JpK

from the states of A to the states of QL (the quotients of L).

This is a bijection since A has size n and we know that all quotients must
appear as the behavior of at least one state.

Compatibility 56

Moreover, this bijection is compatible with the transitions in the machines in
the sense that fpδpp, aqq “ δpfppq, aq. As a diagram:

p
a

ÝÝÝÝÝÑ δpp, aq
§

§

đ

f

§

§

đ

f

fppq
a

ÝÝÝÝÝÑ δpfppq, aq

Lastly, f maps initial to initial, and final to final states.

Hence, the states in A are just “renamed” quotients: the machines A and QL

are isomorphic.
l

Machine Homomorphisms 57

The isomorphism from above leads to a more general question: is there a good
notion of a structure preserving map between two finite state machines? For
simplicity, let’s only consider DFAs.

Preserving Computations 58

It is clear that for a map f from machine A1 to machine A2 to be a
homomorphism it must preserve transitions:

p
a
ÝÑ q implies fppq

a
ÝÑ fpqq

Moreover, we require fpq10q “ q20 and fpF1q “ F2.
It follows immediately that LpA1q Ď LpA2q.

However, we may still have LpA1q ‰ LpA2q (why?), so if we are interested in
equivalent machines we need to strengthen the conditions a bit:

f´1
pF2q “ F1

Homomorphisms that have this stronger property and are also surjective are
often called covers or covering maps.

Covers 59

Thus, a covering map can identify some states in the first machine while
preserving the language.
Needless to say, the classical example of a cover is the behavioral map:

f : QÑ QpLq
fppq “ JpK

Hence we have the following lemma which shows that an arbitrary DFA for a
given recognizable language is always an “inflated” version of the minimal DFA.
There always is a close connection between an arbitrary DFA and the minimal
automaton.

Lemma
Let L be a recognizable language and A an arbitrary accessible DFA for L.
Then there is covering map from A onto QL.

Example 60

There is a natural DFA A for all words x P ta, bu‹ such that x´3 “ a. The
states in A are words over ta, bu of length at most 3 and the transitions are of
the form

δpw, sq “

#

ws if |w| ă 3,
w2w3s otherwise.

The initial state is ε and the final states are taaa, aab, aba, abbu. The covering
map to the quotient automaton has the form

aaa ÞÑ aaa aa, baa ÞÑ baa
aab ÞÑ aab ab, bab ÞÑ bab
aba ÞÑ aba a, ba, bba ÞÑ bba
abb ÞÑ abb ε, b, bb, bbb ÞÑ bbb

Note that the transition diagram of the minimal automaton is a binary de
Bruijn graph (of order 3).

Application: Minimization 61

The covering map provides a way to minimize a DFA A: all we need to do is to
merge all the states that map to the same quotient: behavioral equivalence is
the kernel relation defined by the cover map.

But note that there is a bit of a vicious cycle: to compute the cover f directly
we need QL. If we have the latter there is no need to minimize A.

Nonetheless, covers indicate the right approach to efficient algorithms:

Start with any DFA A for L.
Remove inaccessible states from A.
Compute the behavioral equivalence relation for A.
Lastly, merge states with the same behavior.

But Why? 62

Why bother with quotient machines when one could simple explain, say,
Moore’s minimization algorithm and be done with it?

Because explaining a transformation from one object (or type) to another
purely in terms of an algorithm is usually a disaster: you know how to perform
the computation, but you have no idea what’s really going on. Try matrix
multiplication, for example.

The quotient concept explains why minimization works, the algorithms are just
ways of implementing the basic idea. As we will see, if one is content with
quadratic running time, then the implementation is quite straightforward.
Getting to log-linear is quite a challenge, though.

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Computing with Equivalences

5 Moore’s Algorithm

Aside: Partitions versus Equivalence Relations 64

We will switch back and forth between two natural representations of the same
concept.

Equivalence Relations
A relation ρ Ď AˆA that is reflexive, symmetric and transitive.

Partition
A collection B1, B2, . . . , Bk of pairwise disjoint, non-empty
subsets of A such that

Ť

Bi “ A (the blocks of the partition).

As always, we need to worry about appropriate data structures and algorithms
that operate on these data structures.

Total Recall, I 65

Definition
Given a map f : AÑ B the kernel relation induced by f is the equivalence
relation

x Kf y ðñ fpxq “ fpyq.

Note that Kf is indeed an equivalence relation.

This may seem somewhat overly constrained, but in fact every equivalence
relation is a kernel relation for some appropriate function f : just let fpxq “ rxs.
The codomain here is PpAq which is not attractive computationally.

But, we can use a function f : AÑ A : just choose a fixed representative in
each class rxs.

The Canonical Selector Function 66

In general we need to assume the existence of such a choice function
axiomatically, but in any context relevant to us things are much simpler: we
can always assume that A carries some natural total order.
In fact, usually A “ rns and we can store f as a simple array: this requires only
Opnq space and equivalence testing is Op1q with very small constants.

Definition
The canonical selector function or canonical choice function for an equivalence
relation R on A is

selRpxq “ min
`

z P A | x ρ z
˘

So each equivalence class is represented by its least element.

To test whether a, b P A are equivalent we only have to compute fpaq and fpbq
and test for equality. If the values of f are stored in an array this is Op1q, with
very small constants.

Total Recall, II 67

Here are some basic ideas involving equivalence relations.

Definition
Let ρ and σ be two equivalence relations on A. ρ is finer than σ (or: σ is
coarser that ρ), if x ρ y implies x σ y. In symbols ρ Ď σ.

To avoid linguistic dislocations, we mean this to include the case where ρ and
σ are the same. We will say that ρ is strictly finer than σ if we wish to exclude
equality.
In terms of blocks this means that every block of ρ is included in a block of σ
(does not cut across boundaries).

If we think of equivalence relations as sets of pairs then

ρ Ď σ ðñ ρ Ď σ.

Meet 68

We also need some simple manipulations of equivalence relations.

Definition (Meet of Equivalence Relations)
Let ρ and σ be two equivalence relations on A. Then ρ [σ denotes the
coarsest equivalence relation finer than both ρ and σ.

In other words,
x pρ[σq y ðñ x ρ y ^ x σ y.

This is sometimes written ρX σ which is fine if we think of the relations as sets
of pairs, but a bit misleading otherwise.

Join 69

The dual notion of meet is join.

Definition (Join of Equivalence Relations)
Let ρ and σ be two equivalence relations on A. Then ρ \ σ denotes the finest
equivalence relation coarser than both ρ and σ.

Note that ρ \ σ is required to be an equivalence relation, so we cannot in
general expect ρ[σ “ ρY σ in the sets-of-pairs model: the union typically
fails to be transitive. Hence, we have to take the transitive closure:

ρ \ σ “ tclpρY σq

Meet Algorithm 70

Let’s take a closer look at the problem of computing the meet of two
equivalence relations.
We may safely assume that the carrier set is A “ rns and that both relations ρ
and σ are given by their canonical selectors (implemented as two arrays r and s
of size n).
Let τ “ ρ [σ. Then

p τ q ðñ selρppq “ selρpqq ^ selσppq “ selσpqq

so we are really looking for identical pairs in the table

1 2 3 . . . p . . . n

rp1q rp2q rp3q . . . rppq . . . rpnq
sp1q sp2q sp3q . . . sppq . . . spnq

Meet Algorithm, II 71

Here is an example:
1 2 3 4 5 6 7 8

r 1 1 1 1 5 5 1 5
s 1 2 2 2 1 1 1 2
t 1 2 2 2 5 5 1 8

// construct meet R and Rˆa
for(p = 1 .. n) {

i = r[p]; // selector for R
j = r[delta[p,a]]; // selector for R_a
if((i,j) is new)

t[p] = val(i,j) = p;
else

t[p] = val(i,j);
}

Hashing 72

The algorithm uses only trivial data structures except for the “new” query: we
have to check if a pair has already been encountered.
The natural choice here is a hash table, though other fast container types are
also plausible.

Proposition
Using array representations, we can compute the meet of two equivalence
relations in expected linear time.

Exercise
Show how to implement the algorithm in linear time (not just expected) using
a quadratic precomputation.

1 Minimal Automata

2 The Algebra of Languages

3 The Quotient Machine

4 Computing with Equivalences

5 Moore’s Algorithm

Moore’s Algorithm 74

This method goes back to a paper by E. F. Moore from 1956.

The main idea is to start with the very rough approximation pF,Q´ F q and
then refine this equivalence relation till we get behavioral equivalence.

More precisely, consider the curried transition maps F “ t δa | a P Σ u where
δa : QÑ Q , δappq “ δpp, aq.

We need the coarsest equivalence relation finer than pF,Q´ F q that is
compatible with respect to F . Compatible means: the δa do not mangle the
blocks of the partition.

The constraint “coarsest” is important, otherwise we could just refine ρ to the
identity (and get back the same machine).

Refinement 75

Definition
Let f : AÑ A be an endofunction and F a family of such functions.
An equivalence relation ρ on A is f -compatible if x ρ y implies fpxq ρ fpyq.
ρ is F-compatible if it is f -compatible for all f P F .

Let ρ be some equivalence relation and write ρF for the coarsest refinement of
ρ that is F-compatible. Note that

ρF
“

ğ

tσ Ď ρ | σF-compatible u

Of course, we need a real algorithm to compute this join.

Refinement Lemma 76

To compute ρF first define for any f P F and any equivalence relation σ:

p σf q ô fppq σ fppq

Rf pσq “ σ [σf

It is easy to see that Rf pσq is indeed an equivalence relation and is a
refinement of σ. The following lemma shows that we cannot make a mistake
by applying these refinement operations.

Lemma

ρF
Ď σ Ď ρ implies Let ρF

Ď Rf pσq Ď σ for all f P F .

ρF
Ď σ Ď ρ, σ not F-compatible implies Rf pσq Ĺ σ for some f P F .

Proof 77

Let τ Ď ρ be F-compatible and assume x τ y. By assumption, τ Ď σ. By
compatibility, fpxq τ fpyq, whence fpxq σ fpyq. But then x Rf pσq y.

Since σ fails to be F-compatible there must be some f P F such that x σ y
but not fpxq σ fpyq. Hence Rf pσq ‰ σ.

l

According to the lemma, we can just apply the operations Rf repeatedly until
we get down to ρF .

YAFP 78

Surprise, surprise, this is Yet Another Fixed Point problem. Let

Rpρq “
ę

fPF

Rf pρq

Then behavioral equivalence is the fixed point of pF,Q´ F q under R.

Alas, this giant-step method is not that great algorithmically unless the
alphabet is very small: we have to hash k`1-vectors of integers.

It is usually preferable to perform a sequence of k baby-steps

ρ ÞÑ Rδapρq

Here we cycle through a in Σ and stop when nothing new happens during one
cycle.

State Merging Algorithm 79

Once we have computed the behavioral equivalence relation E (or, for that
matter, any other compatible equivalence relation on Q) we can determine the
quotient structure: we replace Q by Q{E, and q0 and F by the corresponding
equivalence classes.

Define
δ1prpsE , aq “ rδpp, aqsE

Proposition
This produces a new DFA that is equivalent to the old one, and reduced.

Exercise
Show that this merging really produces a DFA (rather than some random finite
state machine.

Running Time 80

As we have seen, each refinement step is Opnq, so a big step is Opknq where k
is the cardinality of the alphabet.
Thus the running time will be Opknrq where r is the number of refinement
rounds. In many cases r is quite small, but one can force r “ n´ 2.

Lemma
Moore’s minimization algorithm runs in (expected) time Opkn2

q.

Exercise
Figure out how to guarantee linear time for each stage at the cost of a
quadratic time initialization. Discuss advantages and disadvantages of this
method.

Merging Example 81

The 6-state DFA for a‹b.

1 2

3 4

5 6

a

b

a

b

a

b b

a

a, b a, b

Computing Behavioral Equivalence 82

Transition matrix
1 2 3 4 5 6

a 2 2 5 6 5 6
b 3 4 6 5 5 6

final states t3, 4u:

1 2 3 4 5 6
E0 1 1 3 3 1 1
a 1 1 1 1 1 1
b 3 3 1 1 1 1
E1 1 1 3 3 5 5
a 1 1 5 5 5 5
b 3 3 5 5 5 5
E2 1 1 3 3 5 5

Hence E2 “ E1 and the algorithm terminates. Merged states are t1, 2u, t3, 4u,
t5, 6u.
To save space, we have performed giant refinement steps.

Another Example 83

Consider the DFA with final states t1, 4u and transition table

1 2 3 4 5 6 7 8
a 2 4 5 2 6 8 4 6
b 3 5 4 3 7 4 8 7

produces the trace:
1 2 3 4 5 6 7 8

E0 1 2 2 1 2 2 2 2
a 2 1 2 2 2 2 1 2
b 2 2 1 2 2 1 2 2
E1 1 2 3 1 5 3 2 5
a 2 1 5 2 3 5 1 3
b 3 5 1 3 2 1 5 2
E2 1 2 3 1 5 3 2 5

Digression: Brzozowski’s Method 84

The last minimization method may be the most canonical, but there are others.
Noteworthy is in particular a method by Brzozowski that uses reversal and
Rabin-Scott determinization to construct the minimal automaton.

Write

revpAq for the reversal of any finite state machine, and

powpAq for the accessible part obtained by determinization.

Thus pow preserves the acceptance language but rev reverses it.

Key Lemma 85

Lemma
If A is an accessible DFA, then A1 “ powprevpAqq is reduced.

Proof.
Let A “ xQ,Σ, δ; q0, F y.
A1 is accessible by construction, so we only need to show that any two states
have different behavior.
Let P “ δ´1

x pF q ‰ P 1 “ δ´1
y pF q in A1 for some x, y P Σ‹.

We may safely assume that p P P ´ P 1.
Since A is accessible, there is a word z such that p “ δzpq0q.
Since A is deterministic, zop is in the A1-behavior of P but not of P 1.

l

Application: Determining Minimal Automata 86

On occasion the last lemma can be used to determine minimal automata
directly.

For example, if A “ Aa,´k is the canonical NFA for the language “kth symbol
from the end is a”, then revppowprevpAqqq is A plus a sink. Hence powpAq
must be the minimal automaton.

The same holds for the natural DFA A that accepts all words over t0, 1u whose
numerical values are congruent 0 modulo some prime p. Then revpAq is again
an accessible DFA and powprevppowprevpAqqqq is isomorphic to A.

Brzozowski Minimization 87

More generally, we can use the lemma to establish the following surprising
minimization algorithm.

Theorem (Brzozowski 1963)
Let A be a finite state machine. Then the automaton powprevppowprevpAqqqq
is (isomorphic to) the minimal automaton of A.

Proof.
pA “ powprevpAqq is an accessible DFA accepting LpAqop.

By the lemma, A1 “ powprevp pAqq is the minimal automaton accepting
LpAqop op

“ LpAq.
l

Which is Better? 88

One might ask whether Moore or Brzozowski is better in the real world.
Somewhat surprisingly, given a good implementation of Rabin-Scott
determinization, there are some examples where Brzozowski’s method is faster.

Theorem (David 2012)
Moore’s algorithm has expected running time Opn log lognq.

Theorem (Felice, Nicaud, 2013)
Brzozowski’s algorithm has exponential expected running time.

These results assume a uniform distribution, it is not clear whether this
properly represents “typical” inputs.

	Minimal Automata
	The Algebra of Languages
	The Quotient Machine
	Computing with Equivalences
	Moore's Algorithm

