
CDM
Register Machines

Klaus Sutner
Carnegie Mellon University
Spring 2021

Where Are We? 1

Recall: we are looking for a formal definition of computability. So far we
have seen primitive recursive functions, a huge collection of intuitively
computable functions. So could this be the final answer? Sadly, no. Here
are the main obstructions:

General Recursion Some intuitively computable functions, based on a
general type of recursion, fail to be primitive recursive.

Evaluation Computability forces functions to be partial in general, we
need to adjust our framework correspondingly.

Insane Growth Some computable functions have stupendous growth
rates, faster than primitive recursive ones.

1 General Recursion

2 Eval

3 Insane Growth

4 Register Machines

5 Universality

Ackermann’s Function (1928) 3

We have seen that course-of-value recursion does not push us out of the
realm of primitive recursive functions. Similarly, double recursion won’t
hurt (try it). And yet, there is more to recursion than this. Here is a
classical example: the Ackermann function A : N× N→ N defined by
double recursion. We write x+ instead of x+ 1.

A(0, y) = y+

A(x+, 0) = A(x, 1)

A(x+, y+) = A(x,A(x+, y))

On the surface, this looks more complicated than primitive recursion. Of
course, it is not at all clear that Ackermann could not somehow be
turned into a p.r. function.

Family Perspective–Currying 4

It is useful to think of Ackermann’s function as a family of unary
functions (Ax)x≥0 where Ax(y) = A(x, y) (“level x of the Ackermann
hierarchy”).

The definition then looks like so:

A0(y) = y+

Ax+(0) = Ax(1)

Ax+(y+) = Ax(Ax+(y))

From this it follows easily by induction that

Lemma
Each of the functions Ax is primitive recursive (and hence total).

The Bottom Hierarchy 5

A(0, y) = y+

A(1, y) = y++

A(2, y) = 2y + 3

A(3, y) = 2y+3 − 3

A(4, y) = 22. . .
2

− 3

The first 4 levels of the Ackermann hierarchy are easy to understand,
though A4 starts causing problems: the stack of 2’s in the exponentiation
has height y + 3.

Tetration 6

A4 is usually called super-exponentiation or tetration and often written
na or a↑↑n.

a↑↑n =
{

1 if n = 0,
aa↑↑(n−1) otherwise.

For example,
A(4, 3) = 2↑↑6− 3 = 2265536 − 3

an insanely large number.

The Mystery of A(6, 6) 7

Alas, if we continue just a few more levels, darkness befalls.

A(5, y) ≈ super-super exponentiation

A(6, y) ≈ an unspeakable horror

A(7, y) ≈ speechlessness

For level 5, one can get some vague understanding of iterated
super-exponentiation, A(5, y) = (λz.y+3z)y+3(1)− 3 but things start to
get murky.
At level 6, we iterate over the already nebulous level 5 function, and
things really start to fall apart.
At level 7, Wittgenstein comes to mind: “Wovon man nicht sprechen
kann, darüber muss man schweigen.”1

1Whereof one cannot speak, thereof one must be silent. Tractatus
Logico-Philosophicus

Ackermann vs. PR 8

Theorem
The Ackermann function dominates every primitive recursive function f
in the sense that there is a k such that

f(x) < A(k,max x).

Hence A is not primitive recursive.

Sketch of proof.
Since we are dealing with a rectype, we can argue by induction on the
buildup of f .
The atomic functions are easy to deal with.
The interesting part is to show that the property is preserved during an
application of composition and of primitive recursion. Alas, the details
are rather tedious.

2

Ackermann and Union/Find 9

One might think that the only purpose of the Ackermann function is to
refute the claim that computable is the same as p.r. Surprisingly, the
function pops up in the analysis of the Union/Find algorithm (with
ranking and path compression).
The running time of Union/Find differs from linear only by a minuscule
amount, which is something like the inverse of the Ackermann function.
But in general anything beyond level 3.5 of the Ackermann hierarchy is
irrelevant for practical computation.

Exercise
Read an algorithms text that analyzes the run time of the Union/Find
method.

But Is It Computable? 10

Here is an entirely heuristic argument: we can write a tiny bit of C code
that implements the Ackermann function (assuming that we have infinite
precision integers).

int acker(int x, int y)
{

return(x ? (acker(x-1, y ? acker(x, y-1) : 1)) : y+1);
}

All the work of organizing the nested recursion is easily handled by the
compiler and the execution stack. So this provides overwhelming
evidence that the Ackermann function is intuitively computable.

Proofs by Hashing 11

We could memoize the values that are computed during a call to A(a, b):
build a hash table H such that H[x, y] = z whenever an intermediate
result A(x, y) = z is discovered during the computation.

In practice, this helps in computing a few small values of A, but does not
go very far.

More interesting is the following: suppose we call A(a, b) and obtain
result c, producing a hash table H as a side effect.

Claim: H provides a proof that A(a, b) = c.

Not a proof in the classical sense, but an object that makes it possible to
perform a simple coherence check and conclude that the value c is indeed
correct.

Checking 12

We have to check the following properties everywhere in H:

H[0, y] = z implies z = y + 1

H[x+, 0] = z implies H[x, 1] = z

H[x+, y+] = z implies H[x, z′] = z where z′ = H[x+, y]

This comes down to performing O(N) table lookups where N is the size
of H.

Once the table is verified, we check H[a, b] = c. Done.

PR versus Computable 13

Obvious Question: how much do we have to add to prim-
itive recursion to capture the Ackermann function?

As it turns out, we need just one modification: we have to allow
unbounded search: a type of search where the property we are looking for
is still primitive recursive, but we don’t know ahead of time how far we
have to go.

Unbounded Search vs. Ackermann 14

Proposition
There is a primitive recursive relation R such that

A(a, b) =
(
min

(
z | R(a, b, z)

))
0

Recall that (s)0 is just the first element of a coded sequence s.

Sketch of proof. Think of z as a pair 〈c, h〉 where h encodes the hash
table H from above, and c = H[a, b].
R performs the coherence test described above and is clearly primitive
recursive. 2

Here is a more direct, computational description.

Ackermann and Lists 15

The computation of, say, A(2, 1) can be handled in a very systematic
fashion: always unfold the rightmost subexpression.

A(2, 1) = A(1, A(2, 0)) = A(1, A(1, 1)) = A(1, A(0, A(1, 0))) = . . .

Note that the A’s and parens are just syntactic sugar, a better
description would be

2, 1 1, 2, 0 1, 1, 1 1, 0, 1, 0 1, 0, 0, 1 1, 0, 2 1, 3 0, 1, 2
 0, 0, 1, 1 0, 0, 0, 1, 0 0, 0, 0, 0, 1 0, 0, 0, 2 0, 0, 3 0, 4 5

We can model these steps by a list function ∆ defined on sequences of
naturals (or, we could use a stack).

List Operation 16

∆(. . . , 0, y) = (. . . , y+)

∆(. . . , x+, 0) = (. . . , x, 1)

∆(. . . , x+, y+) = (. . . , x, x+, y)

Since A is total, there is some time t for any a and b such that

∆t(a, b) = (c)

Clearly this condition is primitive recursive in (a, b, c, t).

A(3, 4) 17

The computation takes 10307 steps, the plot shows the lengths of the list.

1 General Recursion

2 Eval

3 Insane Growth

4 Register Machines

5 Universality

Evaluation 19

Very rapidly growing functions such as the Ackermann function are one
reason primitive recursion is not strong enough to capture computability.
Here is another obstruction: we really need to deal with partial functions.
Recall the evaluation operator for our PR terms:

eval(τ,x) = value of τ? on input x

It is clear that eval is intuitively computable (take a compilers course). In
fact, it is not hard to implement in eval in any modern programming
language.

Question: Could eval be primitive recursive?

A useless answer would be to say no, the types don’t match.

Indices 20

The first argument of eval is a term τ in our PR language, so our first
step will be to replace τ by an index τ̂ ∈ N.

The index τ̂ will be constructed in a way that makes sure that all the
operations we need on indices are clearly primitive recursive.

The argument vector x ∈ Nn will also be replaced by its sequence number
〈x1, . . . , xn〉. Hence we will be able to interpret eval as a function of type

N× N→ N

and this function might potentially be primitive recursive.

Coding PR 21

Here is one natural way of coding primitive recursive terms as naturals:

term code
0 〈0, 0〉

Pn
i 〈1, n, i〉
S 〈2, 1〉

Prec[h, g] 〈3, n, ĥ, ĝ〉
Comp[h, g1, . . . , gn] 〈4,m, ĥ, ĝ1, . . . , ĝn〉

Thus for any index e, the first component (e)0 indicates the type of
function, and (e)1 indicates the arity.

There is nothing sacred about this particular way of coding PR terms,
there are many other, equally natural ways.

Diagonalization 22

Now suppose eval is p.r., and define the following function

f(x) := eval(x, x) + 1

This may look weird, but certainly f is also p.r. and must have an index
e. But then

f(e) = eval(e, e) + 1 = f(e) + 1

and we have a contradiction.

So eval is another example of an intuitively computable function that
fails to be primitive recursive.

This example may be less sexy than the Ackermann function, but it
appears in similar form in other contexts.

Partial Functions 23

How do we avoid the problem with eval?

The only plausible solution appears to be to admit partial functions,
functions that, like eval, are computable but may fail to be defined on
some points in their domain. In this case, eval(e, e) is undefined.

For a CS person, this is a fairly uncontroversial idea: everyone who has
ever written a sufficiently sophisticated program will have encountered
divergence: on some inputs, the program simply fails to terminate.

What may first seem like a mere programming error, is actually a
fundamental feature of computable functions.

General Computability 24

We presented the last argument in the context of primitive recursive
functions, but note that the same reasoning also works for any clone of
computable functions—as long as

successor and eval both belong to the clone, and
each function in the clone is represented by an index.

But then eval must already be partial, no matter what the details of our
clone are.

General computability requires partial functions, basta.

Notation Warning 25

We write
f : A9 B

for a partial function from A to B.

Terminology:
domain dom f = A

codomain cod f = B

support spt f = { a ∈ A | ∃ b f(a) = b }

Warning: Some misguided authors use “domain of definition” instead of
support, and then forget the “of definition” part.

Faking It 26

Suppose we have a partial function f : N 9 N . We could try to turn f
into a total function F : N 9 N by setting

F (x) =
{
f(x) + 1 if f(x) ↓
0 otherwise.

F clearly is total, and we can easily recover f from it.

But this it is not very useful for us: as we will see shortly, there are
computable f such that F fails to be computable—though, of course, in
set theory la-la land there is no problem at all.

Kleene’s Notation 27

Given a clone of computable functions, such as the primitive recursive
ones, we write

{e}

for the eth function in the collection, e ≥ 0. Here the index e is a
sequence number, but it is helpful to think of it as a program (in some
suitable language).

Since these functions are partial in general we have to be a bit careful
and write

{e}(x) ' y

to indicate that {e} with input x returns output y. This notation is a bit
sloppy, arguably we should also indicate the arity of the function–but for
us that’s overkill.

More Convergence 28

To express convergence we also write
{e}(x) ↓

if {e} on input x terminates and produces some output, and
{e}(x) ↑

when the computation fails to terminate.

For example, Kleene equality {e}(x) ' {e′}(x) should be interpreted as:

either {e}(x) ↓ and {e′}(x) ↓ and the output is the same; or

{e}(x) ↑ and {e′}(x) ↑.

1 General Recursion

2 Eval

3 Insane Growth

4 Register Machines

5 Universality

Insane Growth 30

Informally, the Ackermann function cannot be primitive recursive because
it grows far too fast. On the other hand, it does not really have a
particular purpose other than that.

We will give another example of mind-numbing growth based on an
actual counting problem. To this end, it is easier to use a slight variant
of the Ackermann function.

B1(x) = 2x

Bk+(x) = Bx
k (1)

Bx
k (1) means: iterate Bk x-times on 1. So B1 is doubling, B2

exponentiation, B3 super-exponentiation and so on.
In general, Bk is closely related to Ak+1.

Subsequence Order 31

Recall the subsequence ordering on words where u = u1 . . . un precedes
v = v1v2 . . . vm if there exists a strictly increasing sequence
1 ≤ i1 < i2 < . . . in ≤ m of positions such that u = vi1vi2 . . . vin .
In symbols: u v v.

In other words, we can erase some letters in v to get u. Note that it is
easy to check for subsequences in linear time.

Subsequence order is never total unless the alphabet has size 1.

Subsequence order is independent of any underlying order of the alphabet
(unlike, say, lexicographic or length-lex order).

Warmup: Antichains 32

An antichain in a partial order is a sequence x0, x1, . . . , xn, . . . of
elements such that xi and xj are incomparable for i < j.

Example
Consider the powerset of [n] = {1, 2, . . . , n} with the standard subset
ordering. How does one construct a long antichain?

For example, x0 = {1} is a bad idea, and x0 = [n] is even worse.

What is the right way to get a long antichain?

Higman’s Lemma 33

Theorem (Higman’s 1952)
Every antichain in the subsequence order is finite.

Sketch of proof. Here is the Nash-Williams proof (1963): assume there
is an infinite antichain.

For each n, let xn be the length-lex minimal word such that
x0, x1, . . . , xn starts such an antichain, producing a sequence x = (xn).

Construct a new sequence y = (yi) by choosing a letter a that appears
infinitely often as the first letter in (xn) and copying the words up to the
first occurrence of one of these a-words. Follow by all the a-words, but
with the first letter removed.

Proof, contd. 34

One can check that the new sequence (yi) is also an infinite antichain.
But it violates the minimality constraint on (xi), contradiction.

2

Note that this proof is highly non-constructive. A lot of work has gone
into developing more constructive versions of the theorem, but things get
a bit complicated.

See Seisenberger.

Friedman’s Self-Avoiding Words 35

We are using 1-indexing. For a finite or infinite word x write

x[i] = xi, xi+1, . . . , x2i

Note this makes sense only for i ≤ |x|/2 when x is finite.

Bizarre Definition: A word is self-avoiding if for all 1 ≤ i < j ≤ |x|/2
the block x[i] is not a subsequence of x[j].

The following is an easy consequence of Higman’s theorem.

Theorem
Every self-avoiding word is finite.

How Long? 36

Write Σk for an alphabet of size k.

By the last theorem and König’s lemma, the set Sk of all finite
self-avoiding words over Σk must itself be finite.

But then we can define the following function:
α(k) = max

(
|x| | x ∈ Sk

)

So α(k) is the length of the longest self-avoiding word over Σk.

So α is strictly increasing. The question is how quickly α grows.

The Algorithm 37

Here is the obvious brute-force algorithm.

At round 0, define the list of words L = {ε}.
In each round, extend all words in L by all letters in Σk.
Remove non-self-avoiding words from L.
Stop at round n+ 1 when L becomes empty. Then α(k) = n.

Each step is easily primitive recursive.

Termination is guaranteed by the theorem: we are essentially growing a
tree (actually: a trie). If the algorithm did not terminate the tree would
be infinite and thus have an infinite branch, which branch would be a
infinite self-avoiding word.

How Big? 38

Trivially, α(1) = 3.

A little work shows that α(2) = 11, as witnessed by abbbaaaaaaa.

But

α(3) > B7198(158386),

an incomprehensibly large number.

Smelling salts, anyone?
It is truly surprising that a function with as simple a definition as α
should exhibit this kind of growth.

It’s a Feature 39

At this point one might wonder whether our whole approach to
computability is perhaps a bit off—we certainly did not intend to deal
with monsters like α.

Alas, as it turns out this is a feature, not a bug: all reasonable definitions
of computability admit things like α, and worse.

It is a fundamental property of computable functions that some of them
have absurd growth rates.

1 General Recursion

2 Eval

3 Insane Growth

4 Register Machines

5 Universality

A Different Model 41

What now? We will turn our problems into a solution: concoct a model
of computation that, by design, can handle Ackermann, Friedman’s α
(and other perverse examples of computable functions) and partial
evaluation.

We will do this by using a machine model, another critical method to
define computability and complexity classes. There are many plausible
approaches, we will use a model that is slightly reminiscent of assembly
language programming, only that our language is much, much simpler
than real assembly languages.

Functions computed by these machines will turn out to be partial in
general, so this might fix all our problems.

Why Not Turing Machines? 42

The class of functions defined by register machines is the same as the
class of functions defined by Turing machines, so in a sense the choice
does not matter.

However, Turing machines are exceedingly tedious to construct, even
simple tasks like testing primality are ridiculously complicated. Building a
universal machine (see below) is a mess. Register machines are much
better behaved in this case.

Full disclosure: for complexity theory, Turing machines are the
gold-standard. But for us, that does not matter so much.

Register Machine 43

Definition
A register machine (RM) consists of a finite number of registers and a
control unit.

We write R0, R1, . . . for the registers and [Ri] for the content of the ith
register: a single natural number.

Note: there is no bound on the size of the numbers stored in our
registers, any number of bits is fine. This is where we break physics.

The control unit is capable of executing certain instructions that
manipulate the register contents.

Instruction Set 44

Our instruction set is very, very primitive:

inc r k
increment register Rr, goto k.

dec r k l
if [Rr] > 0 decrement register Rr and goto k, otherwise goto l.

halt
well . . .

The gotos refer to line numbers in the program; note that there is no
indirect addressing. These machines are sometimes called counter
machines.

RM Programs 45

Definition
A register machine program (RMP) is a sequence of RM instructions
P = I0, I1, . . . , I`−1.

For example, the following program performs addition:

// addition R0 R1 --> R2
0: dec 0 1 2
1: inc 2 0
2: dec 1 3 4
3: inc 2 2
4: halt

Hardware versus Software 46

Since we have no intentions of actually building a physical version of a
register machine, this distinction between register machines and register
machines programs is slightly silly.

Still, it’s good mental hygiene: we can conceptually separate the physical
hardware that supports some kind of computation from the programs
that are executed on this hardware. For real digital computers this makes
perfect sense. A similar problem arises in the distinction between the
syntax and semantics of a programming language.

And, it leads to the juicy question: what is the relationship between
physics and computation? We’ll have more to say about this in a while.

RM-Computability 47

Definition
A function is RM-computable if there is some RMP that implements the
function.

This is a bit wishy-washy: we really need to fix

a register machine program P ,
input registers I, and
an output register O.

Then (P, I,O) determines a partial function f : Nk 9 N where k = |I|.

A Reasonable I/O Convention 48

Given input arguments a = (a1, . . . , ak) ∈ Nk, set the input
registers: [Ri] = ai.

All other registers are initialized to 0.

Then run the program.

If it terminates, read off the value of R0, producing the result
b = f(a).

If the program does not terminate, f(a) is undefined.

Run the Program? 49

To describe a computation of a RMP P we need to explain what a
snapshot of a computation is, and how get from one snapshot to the
next. Clearly, for RMPs we need two pieces of information:

the current instruction, and

the contents of all registers.

Definition
A configuration of P is a pair C = (p,x) ∈ N× Nn.

Steps in a Computation 50

Here is a very careful definition of what it means that a configuration
(p,x) evolves to the next configuration (q,y) in one step under P :

Ip = inc r k:
q = k and y = x[xr 7→ xr + 1]

Ip = dec r k l:
xr > 0, q = k and y = x[xr 7→ xr − 1] or
xr = 0, q = l and y = x

Notation: (p,x) P

1 (q,y).

Note that if (p,x) is halting (i.e. Ip = halt) there is no next
configuration. Ditto for p ≥ n.

Whole Computation 51

Define

(p,x) P

0 (q,y) :⇔ (p,x) = (q,y)

(p,x) P

t (q,y) :⇔ ∃ q′,y′ (p,x) P

t−1 (q′,y′) P

1 (q,y)

(p,x) P (q,y) :⇔ ∃ t (p,x) P

t (q,y)

A computation (or a run) of P is a sequence of configurations C0, C1,
C2, . . . where Ci P

1
Ci+1. A computation may be finite or infinite.

Finite versus Infinite 52

Note that a computation may well be infinite: the program

0: inc 0 0

has no terminating computations at all. More generally, for some
particular input a computation on a machine may be finite, and infinite
for other inputs.

Also, computations may get stuck. The program

0: inc 0 1

cannot execute the first instruction since there is no goto label 1.

Cleaning Up 53

Note that we may safely assume that P = I0, I1, . . . , I`−1 uses only
registers Ri, i < `. Similarly, we may assume that all the goto targets k
lie in the range 0 ≤ k < `. Hence all numbers in the instructions are
bounded by `.

Wlog, I`−1 is a halt instruction, and there are no others.

It follows that these clean RMs cannot get stuck, every computation
either ends in halting, or is infinite. From now on, we will always assume
that our programs are syntactically correct in this sense.

Exercise
Write a program transformer that converts an arbitrary RMP into an
“equivalent” one that has these extra properties.

Termination 54

Again, we have two kinds of computations: finite ones (that necessarily
end in a halt instruction), and infinite ones. We will write

(Ci)i<n and (Ci)i<ω

for finite versus infinite computations.

Here ω denotes the first infinite ordinal. If you don’t like ordinals, replace
ω by some meaningless but pretty symbol like ∞.

Computing a Function 55

Suppose P is an RMP of length ` where and I`−1 = halt. The initial
configuration for input a ∈ Nk is Ea = (0, (0,a,0)).

Definition
A RMP P computes the partial function f : Nk 9 N if for all a ∈ Nk:

If a is in the support of f , then the computation of P on C0 = Ea

terminates in configuration Cn = (`−1, b,y) where f(a) ' b.

If a is not in the support of f , then the computation of P on Ea

fails to terminate.

A Subtlety 56

Recall that according to our convention, it is not admissible that an RM
program could get stuck (because a goto uses a non-existing label).
What if we allowed arbitrary RM programs instead of only clean ones?

The class of computable functions would not change one bit, our
definitions are quite robust under (reasonable) modifications. This is a
good sign, fragile definitions are usually of little interest.

Exercise
Modify the definition so “getting stuck” is allowed and show that we
obtain exactly the same class of partial functions this way. Invent RMs
without a halt instruction.

It’s A Clone 57

Clearly we can generalize the notion of a clone from total functions to
partial ones.

Proposition
Register machines computable functions form a clone, containing the
clone of primitive recursive functions.

Exercise
Figure out the details.

Aside: Time Complexity 58

The number of steps in a finite computation provides a measure of
complexity, in this case time complexity.

Given a RM P and some input x let (Ci)i<N , where N ≤ ω, be the
computation of P on x.
We write the time complexity of P as

TP (x) =
{
N if N < ω,
ω otherwise.

If you are worried about ω just read it as ∞. Alternatively, we could use
N − 1 as our step-count.

This may sound trivial, but it’s one of the most important ideas in all of
computer science.

Named Registers 59

To make RMPs slightly easier to read we use names such as X, Y , Z
and so forth for the registers.

This is just a bit of syntactic sugar, if you like you can always replace X
by R0, Y by R1 and so forth.

And we will be quite relaxed about distinguishing register X from its
content [X].

Digression: Notation 60

There is actually something very important going on here: we are trying
to produce notation that works well with the human cognitive system.

Humans are exceedingly bad at dealing with fully formalized systems; in
fact, we really cannot read formal mathematics except in the most trivial
(and useless) cases. Try reading Russell-Whitehead’s Principia
Mathematica if you don’t believe me.

The current notation system in mathematics evolved over centuries and
is very carefully fine-tuned to work for humans.

Computers need an entirely different presentation and it is very difficult
to move between the two worlds.

Example: Multiplication 61

Here is a program that multiplies registers X and Y , and places the
product into Z. U is auxiliary.

// multiplication X Y --> Z
0: dec X 1 6
1: dec Y 2 4
2: inc Z 3
3: inc U 1
4: dec U 5 0
5: inc Y 4
6: halt

A Computation 62

0 (2, 2, 0, 0) 1 (0, 2, 2, 0)
1 (1, 2, 0, 0) 2 (0, 1, 2, 0)
2 (1, 1, 0, 0) 3 (0, 1, 3, 0)
3 (1, 1, 1, 0) 1 (0, 1, 3, 1)
1 (1, 1, 1, 1) 2 (0, 0, 3, 1)
2 (1, 0, 1, 1) 3 (0, 0, 4, 1)
3 (1, 0, 2, 1) 1 (0, 0, 4, 2)
1 (1, 0, 2, 2) 4 (0, 0, 4, 2)
4 (1, 0, 2, 2) 5 (0, 0, 4, 1)
5 (1, 0, 2, 1) 4 (0, 1, 4, 1)
4 (1, 1, 2, 1) 5 (0, 1, 4, 0)
5 (1, 1, 2, 0) 4 (0, 2, 4, 0)
4 (1, 2, 2, 0) 0 (0, 2, 4, 0)
0 (1, 2, 2, 0) 6 (0, 2, 4, 0)

// multiplication X Y --> Z
0: dec X 1 6
1: dec Y 2 4
2: inc Z 3
3: inc U 1
4: dec U 5 0
5: inc Y 4
6: halt

Time Complexity? 63

2 4 6 8 10

100

200

300

400

500

Exercise
Determine the time complexity of the multiplication RM.

Flowgraph for Multiplication 64

X- Y- Z+ U+

H U- Y+

0 00

Example: Binary Digit Sum 65

The following RMP computes the number of 1’s in the binary expansion
of X, the so-called binary digit sum of x.

// binary digitsum of X --> Z
0: dec X 1 4
1: dec X 2 3
2: inc Y 0
3: inc Z 4
4: dec Y 5 8
5: inc Y 6
6: dec Y 7 0
7: inc X 6
8: halt

Flowgraph for DigitSum 66

X-

X-

Y+

Y-

Z+

Y+ Y-

X+

H

0

0

0

0

Digit Sum 67

The (binary) digit sum is actually quite useful in some combinatorial
arguments.

100 200 300 400 500

2

4

6

8

Exercises 68

Exercise
Show that every primitive recursive function can be computed by a
register machine. Implement a p.r. to RM compiler.

Exercise
Suppose some register machine M computes a total function f .
Why can we not conclude that f is primitive recursive?

Recall: Coding 69

Recall the three coding functions from last time:

〈.〉 : N? → N

dec : N× N→ N

len : N→ N

Note that len is just the binary digit-sum.

One can check that dec can be computed by a fairly small register
machine. As usual, for 〈.〉 we would have to fix the number of arguments.

Flowgraph dec(x, i) 70

X-

X-

Y+

Z+

I-

Y-

Z-

H

X+
0

0

0

0

0

Prepend b to x 71

X-

Y+

Y+

Y-

X+

X+

Y+

B-

X-

Y+

H

Y-

X+

0 0 0

0

0

Self-Reference 72

As Gödel has shown devastatingly in his incompleteness theorem,
self-reference is an amazingly powerful tool.

On occasion, it wreaks plain havoc: his famous incompleteness theorem
takes a wrecking ball to first-order logic.

However, in the context of computation, self-reference turns into a
genuine resource. We developed our coding machinery to show that
standard discrete structures can be expressed as natural numbers and
thus be used in an RPM. But an RPM is itself a discrete structure, so
RPMs can compute with (representations of) RPMs.

This leads to the fundamental concept of universality.

Coding RMPs 73

A single instruction of an RMP can easily be coded as a sequence
number:

halt 〈0〉

inc r k 〈r, k〉

dec r k l 〈r, k, l〉

And a whole program can be coded as the sequence number of these
numbers.

Example: Addition 74

For example, the simplified addition program

// addition R0 + R1 --> R1
0: dec 0 1 2
1: inc 1 0
2: halt

has code number

〈〈0, 1, 2〉, 〈1, 0〉, 〈0〉〉 = 88098369175552.

Note that this code number does not include I/O conventions, but it is
not hard to tack these on if need be.

1 General Recursion

2 Eval

3 Insane Growth

4 Register Machines

5 Universality

Turing and Universality 76

This special property of digital computers, that they can
mimic any discrete state machine, is described by saying
that they are universal machines. The existence of ma-
chines with this property has the important consequence
that, considerations of speed apart, it is unnecessary to de-
sign various machines to do various computing processes.
They can all be done with one digital computer, suitably
programmed for each case. It will be seen that as a conse-
quence of this all digital computers are in a sense equivalent.

Alan Turing (1950)

Turing 1936 77

Computational universality was established by Turing in 1936 as a purely
theoretical concept.

Surprisingly, within just a few years, practical universal computers (at
least in principle) were actually built and used:

1941 Konrad Zuse, Z3

1943 Tommy Flowers, Colossus

1944 Howard Aiken, Mark I

1946 Prosper Eckert and John Mauchley, ENIAC

WTF? 78

Let’s define the state complexity of a RMP to be its length, the number
of instructions used in the program.

An RMP of complexity 1 is pretty boring, 2 is slightly better, 3 better
yet; a dozen already produces some useful functions. With 1000 states
we can do even more, let alone with 1000000, and so on.

Except that the “so on” is plain wrong: there is some magic number N
such that every RMP can already by simulated by a RMP of state
complexity just N : we can hide the complexity of the computation in one
of the inputs. As far as state complexity is concerned, maximum power is
already reached at N .

This is counterintuitive, to say the least.

Simulating Random Access Memory 79

How does one construct a universal computer? According to the last
section, we can code a RMP P = I0, I1, . . . , I`−1 as an integer e, usually
called an index for P in this context.

Moreover, we can access the instructions in the program by performing a
bit of arithmetic on the index. Note that we can do this non-destructively
by making copies of the original values.

So, if index e and some line number p (for program counter) are stored in
registers we can retrieve instruction Ip and place it into register I.

Simulating a RM 80

Suppose we are given a sequence number e that is an index for some
RMP P requiring one input x.

We claim that there is a universal register machine (URM) U that, on
input e and x, simulates program P on x.

Alas, writing out U as a pure RMP is too messy, we need to use a few
“macros” that shorten the program.

Of course, one has to check that all the macros can be removed and
replaced by corresponding RMPs, but that is not very hard.

Macros 81

copy r s k
Non-destructively copy the contents of Rr to Rs, goto k.
zero r k l
Test if the content of Rr is 0; if so, goto k, otherwise goto l.
pop r s k
Interpret Rr as a sequence number a = 〈b, c〉; place b into Rs and c
into Rr, goto k. If Rr = 0 both registers will be set to 0.
read r t s k
Interpret Rr as a sequence number and place the Rtth component
into Rs, goto k. Halt if Rt is out of bounds.
write r t s k
Interpret Rr as a sequence number and replace the Rtth component
by Rs, goto k. Halt if Rt is out of bounds.

The Pieces 82

Here are the registers used in U :

x input for the simulated program P

E code number of P

R register that simulates the registers of P

I register for instructions of P

p program counter

Hack: x is also used as an auxiliary variable to keep the whole program
small.

Universal RM 83

0: copy E R 1 // R = E
1: write R p x 2 // R[0] = x
2: read E p I 3 // I = E[p]
3: pop I r 4 // r = pop(I)
4: zero I 13 5 // if I was halt
5: pop I p 6 // p = pop(I)
6: read R r x 7 // x = R[r]
7: zero I 8 9 // check if I was inc/dec
8: inc x 12 // x++; goto 12
9: zero x 10 11 // if(x != 0) goto 11

10: pop I p 2 // p = pop(I)
11: dec x 12 12 // x--
12: write R r x 2 // R[r] = x; goto 2
13: halt

Size? 84

Of course, the 13 lines in this universal machine are a bit fraudulent, we
really should expand all the macros. Still, the resulting honest register
machine would not be terribly large.
And there are lots of ways to optimize.

Exercise
Give a reasonable bound for the size of the register machine obtained by
expanding all macros.

Exercise
Try to build a smaller universal register machine.

A Universal Turing Machine 85

Exercise
Figure out what this picture means.

Exercise (Very Hard)
Prove that this is really a universal Turing machine.

