
Checking Semantic Usage of Frameworks

Ciera Jaspan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213

cchristo@cs.cmu.edu

Jonathan Aldrich
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213

jonathan.aldrich@cs.cmu.edu

ABSTRACT
Software frameworks are difficult for plugin developers to
use, even when they are well designed and documented.
Some of these difficulties stem from the many constraints
that frameworks impose on plugin code. These constraints
might restrict operations from being called on certain ob-
jects, or they might restrict how long an object is available.
Additionally, the constraints are relative to the current con-
text of the plugin, and they can involve multiple, interacting
framework objects. This paper proposes a lightweight speci-
fication system and analysis to check plugins from a semantic
perspective, rather than a purely structural view.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Ver-
ification—Class invariants; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks

General Terms
Design,Verification

Keywords
framework constraint, object relationship

1. INTRODUCTION
Software frameworks allow developers to reuse not just an
implementation, but a complete architecture and design. By
abstracting and reusing the architecture, the programmer
also receives the benefit of architectural solutions to difficult
issues such as scalability, concurrency, security, and perfor-
mance. However, there is a cost to using a framework; soft-
ware frameworks are complex and difficult to learn [1]. Plu-
gins that use frameworks must adhere to many underlying
constraints of the framework. These constraints typically
concern multiple objects that interact together, and they
may change based upon the state of the plugin or frame-
work.

It is easy for an application developer to unknowingly break
a constraint, and it is difficult for application developers to
determine what occurred when a constraint breaks. The
framework documentation may explain the constraint, but
the plugin developer would only discover the documentation
if he knew which constraint he broke. Unfortunately, many
framework constraints cause errors which either do not occur
within the plugin code, or they cause unusual runtime be-
havior that occurs long after the constraint was first broken.
For this reason, even experienced developers have difficulty
keeping track of all the constraints that they must comply
with.

We propose to ease this burden by creating a specification
and analysis to discover mismatches between the plugin code
and the declared constraints of the framework. Our proposal
is guided by the following principles:

1. No up-front effort for the plugin developer The plugin
developers should not have to make any additional ef-
fort to use the framework. In particular, they do not
add any specifications to their plugin code.

2. Minimal effort for the framework developer The frame-
work developer will have to specify how to use the
framework and what constraints exist. This should
not require a complete specification of the framework’s
internals.

3. Localized errors Frameworks require developers to use
many objects from different places in the framework.
The constraints are inherently distributed across all of
these objects. In order for this solution to be adopt-
able, errors from incorrect usage cannot simply state
that there was an error in a constraint; errors should be
specific to the plugin code and should give a localized
description.

4. Modularity of constraints Framework constraints work
across many objects, and some objects are governed
by many constraints. It should be possible to spec-
ify each constraint separately. Framework developers
should not be forced to specify the entire framework,
or even an entire class. Since these constraints must be
modular, it also follows that they cannot interfere with
each other during enforcement. That is, if the frame-
work developer adds or removes a constraint specifica-
tion, it should only add or remove plugin errors caused



by that constraint. The results from other constraints
should not be affected.

This work contains three contributions. First, we propose
a way to capture the semantic knowledge of the framework
without the plugin developer adding any specifications to his
code. Second, we propose a mechanism for the framework
developer to specify the framework constraints in a modu-
lar and incremental manner. Finally, we have proposed a
local analysis that will use the relationship and constraint
specifications to discover defects in the plugin code. This
analysis will also provide localized, understandable errors to
the plugin developer.

2. EXAMPLE CONSTRAINTS
To better understand framework constraints, we will explore
two examples from the ASP.NET framework. We will use
these examples to motivate a specification language for se-
mantic constraints and an analysis of plugin code. The first
example, DropDownList Selection, is from the author’s own
experiences with ASP.NET. The other example, Login Sta-
tus, was mined from the ASP.NET help forums [2].

ASP.NET is a web application framework. Developers can
create web pages that work together to form a complete
web application. There are two parts to every web page in
ASP.NET, an ASPX file and a code-behind file. The ASPX
file represents the user interface for the web page and uses an
XML-based language. Developers may use tags specific to
ASP.NET web controls, or they may use HTML tags. The
code-behind file stores the event handling code for the page.
This file is typically written in either C# or VB.NET, and it
interfaces directly with the ASP.NET framework. A .NET
server will read the ASPX file and run the code-behind file
to produce HTML to transmit back to the client.

2.1 DropDownList Selection
The ASP.NET framework allows developers to create web
pages with user interface controls on them. These controls
can be manipulated programatically through the callbacks
provided by the framework. Developers can respond to con-
trol events, add and remove controls, and change the state
of controls.

One task that a developer might want to do is programmati-
cally change the selection of a drop down list. The ASP.NET
framework provides us with the relevant pieces as shown in
Figure 1. 1 Notice that if we want to change the selec-
tion of a DropDownList (or any other derived ListControl),
we have to access the individual ListItems through the
ListItemCollection and change the selection using Set-

Selected. Based on this information, a developer might
naively change the selection as shown in Program 1. Our
expectation is that the framework will see that we have se-
lected a new item, and it will change the selection accord-
ingly.

This code breaks an important framework constraint. A
DropDownList must have one and only one item selected.

1To make this code more accessible to those unfamiliar with
C#, I am using traditional getter/setter syntax rather than
properties.

Program 1 Incorrect selection for a DropDownList

DropDownList list;

private void Page_Load(object sender, EventArgs e)

{

string searchVal = ...

ListItemCollection items;

ListItem newSel;

items = list.GetItems();

newSel = items.FindByValue(searchVal);

newSel.SetSelected(true);

}

If this code is run, an interesting error occurs, as shown in
Figure 2. The error message clearly describes the problem;
a DropDownList had more than one item selected. An expe-
rienced developer will realize that setting the selected item
did not deselect the existing one, though an inexperienced
developer might be confused because he did not select mul-
tiple items.

The stack trace is more interesting though; it does not point
to the code where we made the selection. In fact, the entire
stack trace is from framework code; there is no plugin code
referenced at all. The program control flowed through the
plugin developer’s code and then returned to the framework
before the error was discovered. The program flow could
go back and forth several times before finally reaching the
check that triggered the error. Since we don’t know exactly
where the problem occurred or even what object it occurred
on, the developer must search his code by hand to determine
where the erroneous selection occurred.

Program 2 Correctly selecting an item using the API

DropDownList list;

private void Page_Load(object sender, EventArgs e)

{

string searchVal = ...

ListItemCollection items;

ListItem newSel, oldSel;

oldSel = list.GetSelectedItem();

oldSel.SetSelected(false);

items = list.GetItems();

newSel = items.FindByValue(searchVal);

newSel.SetSelected(true);

}

Program 2 shows correct code for this task. We must de-
select the current selection before making a new selection.
We must also perform the tasks in this order, otherwise,
GetSelectedItem() may return the newly selected item,
rather than the old selected item.

There is also unusual behavior when no item is selected. If
there is no item selected by the time the DropDownList is
rendered, the framework will be forced to choose an item to



Figure 1: ListControl Class Diagram

Figure 2: Error with partial stack trace from ASP.NET

display. By default, this is the first item in the list. In many
cases, this is the correct behavior, but it can also signal a
mistake by the developer to explicitly select an item. To be
safe, a developer should explicitly select after deselecting.

Program 3 Selecting on the wrong DropDownList

DropDownList listA;

DropDownList listB;

private void Page_Load(object sender, EventArgs e)

{

string searchVal = ...

ListItemCollection items;

ListItem newSel, oldSel;

oldSel = listA.GetSelectedItem();

oldSel.SetSelected(false);

items = listB.GetItems();

newSel = items.FindByValue(searchVal);

newSel.SetSelected(true);

}

A user might also make the correct sequence of calls, but on
the wrong objects. It is not unusual for there to be multiple,
related DropDownLists. Program 3 looks very similar to the
correct program, but it makes the calls on the wrong objects.

Why didn’t the SetSelected call just assert if something
was already selected? The problem is that ListItem does
not know about its parent control, so it cannot be responsi-
ble for enforcing this constraint. Even if it had a reference
to the parent, it would have to change the selection based

upon the type of the control. A DropDownList required one
and only one item to be selected, but a CheckboxList allows
zero, one, or more items to be selected. Other lists, such as
the ListBox, might even change their constraint according
to how it is being used. The selection constraint is eventu-
ally checked by the derived ListControl, but only in a much
later callback, just before the DropDownList is rendered on
the web page.

There are alternate designs that avoid this problem. For ex-
ample, the selection could be controlled by the ListControl

and the mechanism could change for each derived class, or
a separate class could define the selection mechanism for a
ListItemCollection. Each of these designs have tradeoffs
in other places though; they either limit extensibility or add
complexity to the design. Without speaking to the design-
ers, it is difficult to guess why they chose this particular set
of tradeoffs. Finally, it is possible that the designers sim-
ply overlooked this problem. This type of issue is frequently
overlooked, but it is difficult to rectify the problem after the
framework has become an industry standard.

2.2 Login Status
On the ASP.NET forums, a developer reported that he was
attempting to retrieve a DropDownList from his page, but
his code was throwing a NullReferenceException [3]. This
page was meant to display some controls if the user is not
logged in, but other controls if the user is logged in. The
developer’s intention was to set up the controls with all their
data, and then for the DropDownList to display only when a
user was logged in. The LoginView control provides devel-
opers with this functionality by having two states. One state
displays when the user is logged in, and one state displays
when the user is not logged in.



The developer properly set up a LoginView and then at-
tempted to set up a subcontrol with data. The typical way
to get a subcontrol is to call Control.FindControl with the
appropriate name; FindControl will return null only if there
is no subcontrol with that name. His ASPX file declared the
DropDownList properly, and it had the correct name. How-
ever, he could not access his list in order to fill it with data.
An abbreviated version of the ASPX file is in Program 4,
and the code snippet causing the error is in Program 5.

Another developer responded to the post and explained this
unusual error. The LoggedInTemplate allows the developer
to declare which controls are shown when the user is logged
in. However, until the user is logged in, these controls
do not even exist. If the developer wishes to set up data
in these controls, he must do so before the control is dis-
played, but after the user has logged in. This constraint
make more sense from a security perspective; we do not
want any chance of the control leaking out of the system.
The solution proposed was to first check the login status
from Request.IsAuthenticated, as shown in the corrected
Program 6.

The LoginView also allows us to show different controls to
different users by creating many LoginTemplates and asso-
ciating each with a group of users. If we also want this func-
tionality, we must check the properties of the logged-in user
to determine whether a control is accessible. This adds a
great deal of complexity to the plugin, and it is compounded
if a user is specified in more than one LoginTemplate.

Program 4 ASPX with a LoginView

<asp:LoginView ID="LoginScreen" runat="server">

<AnonymousTemplate>

You can only set up your account

when you are logged in.

</AnonymousTemplate>

<LoggedInTemplate>

<h4>Location</h4>

<asp:DropDownList ID="LocationList"

runat="server"/>

<asp:Button ID="ContinueButton"

runat="server" Text="Continue"/>

</LoggedInTemplate>

</asp:LoginView>

Program 5 Incorrect way of retrieving controls in a
LoginView

LoginView LoginScreen;

private void Page_Load(object sender, EventArgs e)

{

DropDownList list = (DropDownList)

LoginScreen.FindControl("LocationList");

list.DataSource = ...;

list.DataBind();

}

2.3 Properties of Framework Constraints
In both of these examples, the plugin developers broke an
unknown framework constraint. They had used the frame-

Program 6 Correct way of retrieving controls in a
LoginView

LoginView LoginScreen;

Request request;

private void Page_Load(object sender, EventArgs e)

{

if (request.IsAuthenticated()) {

DropDownList list = (DropDownList)

LoginScreen.FindControl("LocationList");

list.DataSource = ...;

list.DataBind();

}

}

work in a way which seemed intuitive because they had a
slightly misshapen view of what the framework was doing.
Additionally, the problem was not always clear from the
runtime error. In the first example, the message might have
helped, but the stack trace did not come from the plugin
code. In the second example, the stack trace pointed to the
correct location, but the error message was a side effect of
the real issue. We cannot realistically expect that a plugin
developer will understand all of the internals of a framework,
so we propose a framework specification that will discover
these issues without specifications from the plugin developer.
The framework developer would specify these constraints in
framework code, and an analysis will look for inconsistencies
between the specifications and the plugin code.

Based on these examples and several others mined from the
ASP.NET developer forum, we have identified four inter-
esting properties of framework constraints. These proper-
ties are specific to framework constraints and imply a set of
challenges that a solution must overcome. Previous work,
as discussed in Section 5, does not cover all four of these
properties.

Framework constraints involve multiple classes and objects.
Unlike library and protocol constraints, which typically in-
volve only one object, framework constraints frequently span
across several objects. These objects may know about their
fellow objects, but in some cases, they do not know about
other objects which they share a constraint with. The Drop-
DownList Selection example had four relevant runtime ob-
jects, and the code was split across four classes. In this case,
the DropDownList was at least indirectly aware of the other
objects, but the ListItems had no knowledge about the
DropDownList, the other ListItems, or even the ListItem-

Collection that they belonged to. In the Login Status ex-
ample, the RadioButtonList was completely unaware of the
constraint surrounding it, which template it was in, or even
that it was inside of a LoginView in the first place.

Framework constraints have semantic properties. They are
not only about method naming conventions, which methods
to override, or the structural nature of the plugin code. In
each of these examples, the developer had to be aware of the
order of operations and the relationships objects had with
each other. The DropDownList Selection example required
the developer to deselect an item before selecting a new one.



Additionally, the items had a specific set of relationships:
they were both children of the same control, the one being
deselected was already selected, and they were items within
a DropDownList. The Login Status example certainly had
structural aspects; the call to Control.FindControl had to
exist within a particular if-statement. However, there were
also many semantic properties. The Request object had
to be the same Request that governed the LoginView, and
a control with the requested name had to exist within the
LoggedInTemplate.

Framework constraints are non-local. In both of these ex-
amples, the method that triggers the error is defined in a
class that has no knowledge of the framework constraint. In
the DropDownList Selection, the constraint is specific to the
DropDownList, but the operations that the constraint covers
are in ListItem. The Login Status example had a similar
problem, though it was across more objects. The constraint
is in the LoginView, but the Request class affected whether
the RadioButtonList was accessible, and the getControl()

method is defined in the base class Control.

Framework constraints are independent of other framework
constraints. The same class may be involved in multi-
ple constraints; for example, the DropDownList also con-
strains which ListItems can be enabled and disabled, and
it could even be inside of a LoginView itself. However, the
constraints operate on the same set of objects and opera-
tions. For example, the constraints for selection and en-
abling both need to know which ListItems are children of
the DropDownList. Constraints must be allowed to operate
on the same objects and operations, but they must be en-
forced separately. By enforcing them separately, we ensure
that adding or removing a framework constraint does not
affect what defects other constraints are finding against the
plugin code.

3. RELATIONSHIPS AND CONSTRAINTS
We propose two constructs to specify and enforce framework
constraints. These constructs, along with a planned static
analysis, will allow us to discover defects within plugin code.
In addition to handling the specific properties of framework
constraints, our proposed constraint specifications are mod-
ular, the plugin developer does not add any specifications,
and the errors produced from the analysis will point to a
specific error in the plugin code. We will use the DropDown-
List Selection example to motivate this section, though the
specifications and analysis have also been completed for the
other example.

The first construct we create specifies the relationships
among objects. Relationships statically describe the dy-
namic associations between objects. We will statically track
these relationships through plugin code to produce a seman-
tic context for every expression. This context will represent
the relationships of framework objects before the expression
is evaluated.

The second construct, constraint, will represent a single
framework constraint. This specification combines the se-
mantic information from relationships with syntactic speci-
fications. We define a constraint as a path of code through
the plugin, with a specified start and end point. Within

these paths, new operations may be available, or old op-
erations may be disabled. Additionally, some objects may
not be read outside of this path. This is a handy feature
for frameworks that reclaim objects or do not guarantee a
returned object to be valid after a certain point.

3.1 Relationships
Relationships are facts that we learn after calling a frame-
work method. We annotate the framework methods
with information about how the calling object, parame-
ters, and return value are related after the method call.
These relationships can be thought of as a side-effect of
the method. The attribute [Add("Child", item, ctrl)]

creates a “Child” relationship between item and ctrl,
while [Remove("Child", item, ctrl)] removes this re-
lationship. Object parameters can be wild-carded, so
[Remove("Child", _, ctrl)] removes all the “Child” rela-
tionships between ctrl and any other object. Relationships
may refer to the parameters, primitive values, the receiver
object, and the return value of a method.2 These relation-
ships are user-defined; the relationship“Child”has no mean-
ing other than what the framework developer intends for it
to mean. Program 7 shows some sample relationships on the
ListControl API.

Program 7 Partial API of the ListControl

public class ListControl {

[Add("Items", ret, this)]

ListItemCollection GetItems();

[Add("Child", ret, this)]

[Add("Selected", ret, true)]

ListItem GetSelectedItem();

}

public class ListItem {

[Add("Selected", this, true)]

boolean IsSelected();

[Remove("Selected", this, _)]

[Add("Selected", this, select)]

void SetSelected(boolean select);

}

We propose to track relationships through the plugin code
using a dataflow analysis. After calling a method, we acquire
or kill a set of relationships, according to the relationships
defined on that method. As an example, we have tracked
the relationships (with predicates in curly braces) on the
correct code from the DropDownList Selection example in
Program 8. Notice that even the absence of a relationship
is tracked with ‘!’; it may be important to know that two
objects are not associated with a relationship. Relationship
predicates can also be in a third state, “unknown”. This is
the default state for relationship predicates when we start a
method, and it is also used after a branch.

By tracking the relationships through the code, we gain ad-
ditional knowledge about the framework on every line of
2C# attributes and Java annotations do not fully support
our notation currently, but we can use longer notation to
capture the same information.



Program 8 Tracking relationships on the correct example

DropDownList list;

private void Page_Load(object sender, EventArgs e) {

string searchVal = ...

ListItemCollection items;

ListItem newSel, oldSel;

{}

oldSel = list.GetSelectedItem();

{Child(oldSel, list), Selected(oldSel, true)}

oldSel.SetSelected(false);

{Child(oldSel, list), !Selected(oldSel, true), Selected(oldSel, false)}

items = list.GetItems();

{Child(oldSel, list), !Selected(oldSel, true), Selected(oldSel, false), Items(items, list)}

newSel = items.FindByValue(searchVal);

{..., Item(newSel, items), Child(newSel, list)}

newSel.SetSelected(true);

{..., Child(newSel, list), Selected(newSel, true)}

}

code. Each line now has a context for the current state of
the framework.

3.2 Constraints
Once we can track relationships, we can describe the frame-
work constraints and use the relationship predicates to de-
scribe semantic aspects of the constraint. We will define a
constraint as a path through the plugin code in which some
operations are allowed or disallowed. A path can start and
end on any expression or language construct. As we will
see, the constraint for the DropDownList Selection defines
a path that exists between two method calls. On the other
hand, the Login Status defines a constraint where the path
exists within an if statement. We call these places where
constraint paths can start and end program points.

As we noted earlier, constraints also have semantic parts.
We must be able to declare not just a syntactic expression
where the path starts, but also a context that the framework
is in at that expression. Therefore, a program point must
depend on set of relationships which we must have for the
program point to apply.

The constraint specification for the DropDownList Selection
constraint appears in Program 9. We will use this example
to describe the parts of a constraint specification

• declared objects These objects are used in the pro-
gram points and relationships. Each declared ob-
ject is bound to a runtime object. A constraint in-
stance is unique if it is bound to a unique set of
objects. In our example, we only declare three ob-
jects: the DropDownList, the ListItem we are dese-
lecting, and the ListItem we are selecting. The plu-
gin code might reference other objects, such as the
ListItemCollection or other ListItems, but they are
not relevant here.

• start A list of program points and relationships that

start the path. The program points are syntactic ex-
pressions while the relationships provide the semantic
context that is required. Both parts are required to
trigger a new constraint instance. In this example, the
constraint starts when we deselect a ListItem and that
ListItem is a child of a DropDownList and it is cur-
rently selected. The Selection example only declares
one program point for start, but we can list several
program points and relationship sets.

• end A list of program points and relationships that
end the path. Like start, end requires relation-
ships; the program point by itself does not end the
path. The Selection constraint will only end if we call
ListItem.SetSelected(false) on a ListItem which
is in a Child relationship with the DropDownList. This
enforces that both ListItems are children of the same
DropDownList.

• enable A list of program points and relationships that
are allowed to occur along the path. If the plugin
has these relationships and attempts to use the plu-
gin point without a constraint instance, the analysis
will trigger an error. In the Selected constraint, we
only allow ListItem.SetSelected() to be called with
a value of true while we are on the constraint path.
If this is called off the constraint path, we expect an
error.

• forbid A list of program points and relationships that
are not allowed to occur along the path. These pro-
gram points are not allowed if there is a matching con-
straint instance; they may only be used off of the path.
The Selected constraint forbids the ability to end the
method while a constraint path is still active. By for-
biding the end of the method, a developer cannot only
deselect and leave the DropDownList without any item
selected.

• scoped A subset of the declared objects that are tem-
porary inside this path. They are not valid off the path



Program 9 The Selected constraint specification

constraint Selected {

DropDownList ctrl

ListItem oldSel

ListItem newSel

start: oldSel.SetSelected(false) with {Child(oldSel, ctrl), Selected(oldSel, true)}

end: newSel.SetSelected(true) with {Child(newSel, ctrl)}

enable: newSel.SetSelected(true) with {Child(newSel, ctrl)}

forbid: eom

scoped: -

}

and cannot be stored for later use. This feature is not
used in the Selection constraint, but it is used in the
Login example.

We will not create the constraint for our other exam-
ple here, but the path would travel through the if block.
Within this block, the constraint will allow the call to
Control.FindControl("LocationList"). Additionally, the
objects within the LoggedInTemplate would only be acces-
sible within that block of code; they cannot be stored for
later use.

3.3 Proposed Analysis
We propose a static analysis to check for mismatches be-
tween plugin code and the framework specifications. The
proposed analysis is a simple flow analysis which depends
on several other analyses, including an alias analysis and a
constant analysis. We have chosen to make the constraint
analysis unsound, though we strive for as much soundness
as possible if there are only minor tradeoffs for annotation
cost and false positives. We should be able to use any alias
or constant analysis, though we prefer analyses which have
tradeoffs that are consistent with our own.

In Section 3.1, we described how relationships track through
the code. We build upon that concept by treating con-
straints as predicates which flow through the code. Like
the relationship predicates, constraint predicates can be in
three states: true, false, or unknown. A constraint predicate
is true on paths between the declared start and end points
of the constraint.

Constraint predicates are parameterized by the variables
that are used in the start program point and relationships.
The Selected constraint defined in Section 3.2 uses a single
Listitem and single DropDownList in the start program
point and relationships, so the constraint predicate appears
as Selected(oldSel, ctrl).3 While the constraint speci-
fication declares a second ListItem, it is not used until later
and will not be part of the constraint predicate.

The analysis works by assuming the presence of two logi-
cal formulas for each expression signature.4 The first logical

3We will use small caps to represent constraint predicates
and regular capitalization for relationship predicates.
4By expression signature, we mean a kind of operation

formula is a validation check; the validation check is evalu-
ated for truth to determine whether an expression is valid
in the current context. The second formula is an analysis
transfer function. It can change the state of the relationship
and constraint predicates if certain conditions hold.

These two logical formulae are generated from the constraint
and relationship specifications declared by the framework
developer. Each piece of a constraint specification is trans-
lated into part of a logical formula. The enable, disable,
and scoped parts of the specification will generate the val-
idation check, while the start and end parts will generate
the transfer function.

We will examine the validation check first. In the Selected
constraint, the enabled specification states:

enable: newSel.SetSelected(true) with

{Child(newSel, ctrl)}

This will map ListItem.SetSelected(boolean) to the log-
ical formula below.

λ newSel : ListItem. λ b : boolean.
∀ ctrl : DropDownList. ∃ oldSel : ListItem.

b = true ∧ Child(newSel, ctrl) =⇒
Selected(oldSel, ctrl)

This logical formula states that, given a ListItem and a
boolean, if b is true and newSel has a Child relationship
with a DropDownList, then we must be currently in a Se-
lected constraint. This constraint must be bound to our
DropDownList and a ListItem.

The logical formula for the forbid specification is much
shorter, as there are no relationship requirements and the
expression takes no parameters. It must simply check that
there are no open constraint paths by the end of the method.
Therefore, the forbid specification maps the validation
check for the end of method to:

∀ ctrl : DropDownList. ∀ oldSel : ListItem.

with a unique typing signature. That is, a method call to
Listitem.SetSelected(boolean) is distinct from a method
call to DropDownList.GetItems(). Likewise, an assignment
of the form ListItem = ListItem is different from an as-
signment of DropDownLists.



¬Selected(oldSel, ctrl)

We will now examine the specification parts that contribute
to the transfer functions. The start piece of the Selected
constraint will cause a constraint predicate to change state
to true. The start specification

start: oldSel.SetSelected(false) with

{Child(oldSel, ctrl), Selected(oldSel, true)}

will map ListItem.SetSelected(boolean) to a logical for-
mula that uses a new operator, generates. This operator
will evaluate the left hand side first, and it will only gener-
ate the predicates on the right if the left side is true.5 The
formula below will bind a constraint predicate to the objects
oldSel and ctrl and will set this predicate to be true, but
only if we have the correct relationship predicates.

λ oldSel : ListItem. λ b : boolean.
∀ ctrl : DropDownList.

b = false ∧ Child(oldSel, ctrl) ∧ Selected(oldSel, true)
generates Selected(oldSel, ctrl)

The end specification will set a Selected predicate to
false if it was already true and we have the right relation-
ships. The translation of the end specification will map
ListItem.SetSelected(boolean) to the transfer function
below.

λ item : ListItem. λ b : boolean.
∀ ctrl : DropDownList. ∀ oldSel : ListItem.

b = true ∧ Child(item, ctrl) ∧ Selected(oldSel, ctrl)
generates ¬Selected(oldSel, ctrl)

Of course, now we have multiple logical formulae for the
operator ListItem.SetSelected(boolean). We combine
these formulae together so that the transfer function for
Listitem.SetSelected() is:

λ item : ListItem. λ b : boolean.
(∀ ctrl : DropDownList.

b = false ∧ Child(item, ctrl) ∧ Selected(item, true)
generates Selected(item, ctrl))

∧
(∀ ctrl : DropDownList.∀ oldSel : ListItem.

b = true ∧ Child(item, ctrl) ∧ Selected(oldSel, ctrl)
generates ¬Selected(oldSel, ctrl))

We use a similar methodology to combine formula from dif-
ferent constraint specifications. Our rules for translating
constraint specifications into logical formula guarantee that
the constraints do not interfere.

We also translate the relationship specifications into logical
formulae, though they are much simpler to translate. The

5The right hand side of this operator is restricted to only
conjuncted and negated predicates. Disjunction and impli-
cation are not allowed on the right hand side of a generates
operator.

specification

[Add("Child", ret, this)]

[Add("Selected", ret, true)]

ListItem GetSelectedItem();

will map the operation DropDownList.GetSelectedItem()

to the transfer function

λ ret : ListItem. λ this : DropDownList.
true generates Child(ret, this) ∧ Selected(ret, true)

These are combined into the same transfer function gener-
ated from the constraint specifications. The only difference
is that the relationship predicates are allowed to interfere, as
changing a relationship specification is expected to change
the analysis results for many constraints.

By translating constraint specifications into logical formulae,
we have produced validation checks and transfer functions
for a simple flow analysis. The analysis must depend on a
constant analysis to determine the truth of expressions such
as b == true. It must also depend upon an alias analysis
so that it can track objects as labels rather than variable
names. Labels allow the analysis to keep track of relation-
ship predicates after the variables go out of scope, and they
allow the analysis to track objects which are only indirectly
referenced, such as elements within arrays.

Program 10 shows how the DropDownList Selection con-
straint properly allows the correct plugin code. At each
expression, we first use the validation check to make
sure that the expression is allowed in the current con-
text. Once we know the expression is allowed, we
use the transfer function to propagate any changes pro-
duced from the expression. Upon finding the call to
oldSel.SetSelected(false), we will run the transfer func-
tion for ListItem.SetSelected(boolean) and the con-
straint predicate Selected(oldSel, ctrl) will be set
to true. Later, the analysis will find the call to
newSel.SetSelected(true). The validation check for this
expression will pass since we meet the relationship require-
ments and we currently are on the constraint path. The
transfer function for this expression will also end the con-
straint, thus allowing us to end the method properly.

When we revisit our incorrect plugin code, the analysis will
find the defect and produce a local error. Program 11 is
our incorrect code that shows the results of the relationship
analysis. As in the previous example, the constraint analysis
will check whether newSel.SetSelected(true) is accessible.
However, the logical formula generated by enable will fail,
so the analysis will produce an error on the last line.

Program 12 showcases how constraints can create instances
to separately check many objects. In this example, we have
the same problem as the previous example, except now we
have two DropDownLists. We deselect correctly from listA,
but instead of then selecting a listA, we select a listB item.
Had we specified constraints in a purely syntactic manner,
the analysis would not have caught this error. However, the
analysis recognizes that these are different objects. When



Program 10 The Selected scope on correct code

DropDownList list;

private void Page_Load(object sender, EventArgs e) {

string searchVal = ...

ListItemCollection items;

ListItem newSel, oldSel;

oldSel = list.GetSelectedItem();

{Child(oldSel, list), Selected(oldSel, true)}

oldSel.SetSelected(false);

//selected constraint instance begins

{Child(oldSel, list), !Selected(oldSel, true), Selected(oldSel, false), SELECTED(oldSel, list)}

items = list.GetItems();

{Child(oldSel, list), ..., SELECTED(oldSel, list), Items(items, list)}

newSel = items.FindByValue(searchVal);

{Child(oldSel, list), ..., SELECTED(oldSel, list), ..., Item(newSel, items), Child(newSel, list)}

//calling this operation with the current relationships is allowed by the selected constraint

newSel.SetSelected(true);

//selected constraint ends

{Child(oldSel, list), ..., !SELECTED(oldSel, list), Child(newSel, list), Selected(newSel, true)}

//the end-of-method can be used because we exited the selected scope

}

Program 11 Detecting a selection error

DropDownList list;

private void Page_Load(object sender, EventArgs e) {

string searchVal = ...

ListItemCollection items;

ListItem newSel, oldSel;

items = list.GetItems();

{Items(items, list)}

newSel = items.FindByValue(searchVal);

{Items(items, list), Item(newSel, items), Child(newSel, list)}

//ERROR

newSel.SetSelected(true);

}

Program 12 Detecting an error with multiple DropDownLists

DropDownList listA, listB;

private void Page_Load(object sender, EventArgs e) {

string searchVal = ...

ListItemCollection items;

ListItem newSel, oldSel;

oldSel = listA.GetSelectedItem();

{Child(oldSel, listA), Selected(oldSel, true)}

oldSel.SetSelected(false);

//selected constraint instance begins with listA and oldSel bound

{Child(oldSel, listA), !Selected(oldSel, true), Selected(oldSel, false), SELECTED(oldSel, listA)}

items = listB.GetItems();

{Child(oldSel, listA), ..., SELECTED(oldSel, listA), Items(items, listB)}

newSel = items.FindByValue(searchVal);

{Child(oldSel, listA), ..., SELECTED(oldSel, listA), ..., Item(newSel, items), Child(newSel, listB)}

//ERROR

newSel.SetSelected(true);

}



Suggestion: Insert before newSel.SetSelected(true)

ListItem listItem1 = listB.GetSelectedItem();

listItem1.SetSelected(false);

Figure 3: Suggestion based upon the current context

the constraint region starts at oldSel.SetSelected(false),
it will bind listA to the constraint variable list. Later on,
the analysis checks the line newSel.SetSelected(true), but
it also fails on the logical formula generated by enable. Since
we do not have a constraint predicate Selected(oldSel,
listB), the analysis generates an error.

It is possible for the analysis to produce false positives. Our
preliminary investigations show that the false positives typ-
ically come from code which is extremely difficult to read;
refactoring the code into a cleaner state appears to remove
the false positives. We will be investigating the extent of
false positives in real codebases in later work, along with
how to minimize them further.

4. FUTURE WORK
The work on formalizing the analysis is ongoing, though we
described the preliminary direction in Section 3.3. Once the
formalization is complete, we will implement the analysis
and use it to check several more examples from frameworks
such as ASP.NET, EJB, and Eclipse.

Currently, the specifications for constraints are not as con-
cise as we would like, and we are exploring ways to condense
the constraint abstraction. We are also investigating alter-
nate abstractions, such as pre-/post- conditions and multi-
object typestates.

If possible, we would also like the analysis to suggest steps to
fix the plugin. For example, if an operation cannot be called
because it is controlled by a constraint, then the analysis will
suggest operations to trigger the constraint. The suggestion
would be based upon the plugin context right before the
error and the specification of the constraint that caused the
error. A suggestion for Program 11 might read as shown in
Figure 3. Notice that the suggestion refers to listB, which
it retrieved from the relationship context at the error site.

We will also explore how this abstraction enhances existing
abstractions for library constraints. Libraries and frame-
works are very similar, and many industrial codebases, such
as Swing and ASP.NET, are actually both. The difference
is merely in how the developer uses the codebase, and devel-
opers must frequently switch back and forth. The ability to
describe both framework and library constraints, in one sys-
tem, would be extremely beneficial. In future work, we will
look at how to integrate this specification system with spec-
ifications meant primarly for libraries. Typestates[4] and
tracematches[5] are both likely candidates for future inter-
action with library constraints.

5. RELATED WORK
Some of the original work in frameworks [6] discussed using
design patterns as a way of describing frameworks. Later
research has looked at formalizing design patterns and ex-

tracting design patterns from code[7, 8, 9]. Patterns alone
cannot completely specify a framework. While they provide
information about high-level interaction mechanisms, they
do not describe the temporal framework constraints shown
in our examples.

SCL [10, 11] allows framework developers to create a specifi-
cation for the structural constraints for using the framework.
The specifications we propose focus on semantic constraints
rather than structural constraints. Some of the key ideas
from SCL could be used to drive the more structural focused
parts of the specifications.

Object typestates [4, 12] provide a mechanism for specifying
a protocol between a library and a client. The client sees
the library to be in a particular state, and calling methods
on the library transitions it into a new state. This gen-
eral concept can also be applied to frameworks and plugins.
However, due to inversion of control, the protocol is now on
the plugin; in a framework setting, we call this a lifecycle.
If we continue to use typestates to represent lifecycles, then
the plugin methods are the state transitions. This is not
how a plugin developer thinks of the code; we would prefer
to think of the framework as transitioning the state and the
plugin doing specialized code within the current framework
state. Additionally, framework states involve multiple inter-
acting objects; this is awkward to model with typestates.
While the proposed work may be inherently different from a
typestate-based protocol, it might be possible to reuse some
of the underlying theory.

Some typestate work has explored inter-object typestate.
This work still considers each object to have an individual
typestate, though it can be affected by other objects [13] or
manipulated through participation in data structures [14].
The proposed specifications differ in that they view multiple
heterogeneous objects as having a shared state.

Scoped Methods [15] are another mechanism for enforcing
protocol. They create a specialized language construct that
requires a protocol to be followed within it. Like SCL, this
is structural and does not take context into account.

Tracematches have also been used to enforce protocol, and
they take semantic knowledge into account. Tracematches
provide a user-friendly way to specify a temporal sequence
of events that involve multiple objects. They have been
used to change the program execution with a dynamic anal-
ysis [5], and they have been used to check protocols with a
static analysis [16]. Tracematches also allow global check-
ing when paired with a dynamic analysis. Unlike the pro-
posed work, tracematches have no restrictions about inter-
actions between tracematches. Additionally, a tracematch
does not separate the general knowledge about the frame-
work from the constraint itself. In cases where multiple ex-
ecution traces lead to the same constraint, a tracematch
would have to specify each possibility. Since the proposed
solution depends on relationships, the constraint only needs
to specify which relationships it requires for each program
point. This separation of the constraints from the relation-
ship definitions allows the specifications to be more flexible
to future changes.



Like the proposed framework language, Contracts [17] also
view the relationships between objects as a key factor in
specifying systems. A contract also declares the objects in-
volved in the contract, an invariant, and a lifetime where
the invariant is guaranteed to hold. Contracts allow all
the power of first-order predicate logic and can express very
complex invariants. Contracts differ from the proposed spec-
ifications because they do not make the tie directly back to
the plugin code and have a higher complexity for the writer
of the contract.

Other research projects [18, 19, 20, 21] help plugin devel-
opers by finding or encoding known good patterns for using
frameworks. The proposed work differs significantly in that
it does not suggest a way to complete the task, but it finds
defects once a task has been started. We see the two bodies
of research as complimentary.

This work also has some overlap with formal methods, par-
ticularly in describing the relationships and invariants of
code [22, 23]. These formal methods verify that the specified
code is correct with respect to the specification. Instead, we
are checking the unspecified plugin code against the frame-
work’s specification. Other formal methods [24, 25] focus
on a detailed description of the entire system. These sys-
tems also allow developers to model the invariants between
objects, and some of the notation could be reused for the
translated logical formulae. However, the checkers for these
systems are meant to stand on their own, without any ties
to executable code. Additionally, the checkers work at a
more global level and expect to verify global properties and
invariants of the system. The proposed analysis intends to
check framework constraints in a local manner, and it plans
in the ability for constraints to hold true only for a period
of time.

The analysis itself is similar to shape analysis, with the clos-
est working being TVLA [26]. This work allows custom
shape analyses to create new predicates between objects.
The custom analysis writer must provide logic that states
whether the predicate is true or false for each type of expres-
sion; this logic is similar to a transfer function. It is possible
to translate the constraint specifications into logic that can
be used by TVLA. However, TVLA needs to reevaluate ev-
ery predicate at every expression; this makes it difficult to
automatically generate a logic which holds true even when
unchanged by the expression. The proposed analysis only
changes specific predicates which are mentioned in the con-
straint specification, so it is easier to automatically generate
a logical formula from it.

6. CONCLUSION
Frameworks place constraints on plugins that are relative to
a semantic context of the plugin code. These constraints can
be dependent upon many interacting objects, and they can
affect the operations and objects which the plugin code can
access.

We have proposed a lightweight and modular way to specify
framework constraints and check plugins for broken frame-
work constraints. The plugin developers will not have to do
anything other than run a tool, and the proposed specifi-
cations are written entirely by framework developers. The

framework developer uses relationships to define associations
between framework objects at runtime. An analysis uses
these relationships to keep track of the semantic knowledge
a plugin has based upon its previous framework interactions.
This semantic knowledge is also used by the framework
developer to add semantic aspects to the framework con-
straints. A framework developer can specify the constraints
as valid paths through plugin code, and she can specify op-
erations and objects which are allowed or disallowed on the
path. The constraints are specified and checked separately
from each other, so that adding or removing constraints will
not affect how the other constraints are enforced. In fu-
ture work, we plan to implement the analysis which reads
these specifications to discover defects in plugins, and we
will apply the specifications and analysis to several industry
frameworks.

7. ACKNOWLEDGMENTS
This work was supported in part by NSF grant CCF-
0546550, DARPA contract HR00110710019, the Depart-
ment of Defense, and the Software Industry Center at CMU
and its sponsors, especially the Alfred P. Sloan Foundation.

8. REFERENCES
[1] Johnson, R.E.: Frameworks = (components +

patterns). Commun. ACM 40(10) (1997)

[2] (none): (The ASP.NET forums)
http://forums.asp.net.

[3] (none): Binding to a DropDownList membership roles
(2006) http://forums.asp.net/thread/1415249.aspx.

[4] DeLine, R., Fahndrich, M.: Typestates for objects. In:
Proceedings of the European Conference on Object
Oriented Programming. (2004)

[5] Walker, R.J., Viggers, K.: Implementing protocols via
declarative event patterns. In: Proceedings of the 12th
International symposium on Foundations of Software
Engineering, New York, NY, USA, ACM Press (2004)
159–169

[6] Johnson, R.E.: Documenting frameworks using
patterns. In: conference proceedings on
Object-oriented programming systems, languages, and
applications. (1992)

[7] G. Florijn, M. Meijers, P.v.W.: Tool support for
object-oriented patterns. In: Proceedings of the
European Conference on Object Oriented
Programmming. (1997)

[8] D. Heuzeroth, S. Mandel, W.L.: Generating design
pattern detectors from pattern specifications. In: 18th
IEEE International Conference on Automated
Software Engineering. (2003)

[9] Soundarajan, N., Hallstrom, J.O.: Responsibilities and
rewards: Specifying design patterns. In: Proceedings
of the 26th International Conference on Software
Engineering. (2004)

[10] Hou, D., Hoover, H.J.: Towards specifying constraints
for object-oriented frameworks. In: Proceedings of the
2001 conference of the Centre for Advanced Studies on
Collaborative research. (2001)

[11] Hou, D., Hoover, H.J.: Using SCL to specify and
check design intent in source code. IEEE Trans. Softw.
Eng. 32(6) (2006)



[12] Bierhoff, K., Aldrich, J.: Modular typestate checking
of aliased objects. In: To appear at OOPSLA ’07,
Montreal, Canada (2007)

[13] Nanda, M.G., Grothoff, C., Chandra, S.: Deriving
object typestates in the presence of inter-object
references. In: OOPSLA. (2005)

[14] Lam, P., Kuncak, V., Rinard, M.: Generalized
typestate checking for data structure consistency. In:
Verification, Model Checking, and Abstract
Interpretation. (2005)

[15] Tan, G., Ou, X., Walker, D.: Enforcing resource usage
protocols via scoped methods (2003) Appeared in the
10th International Workshops on Foundations of
Object-Oriented Languages.

[16] Martin, M., Livshits, B., Lam, M.S.: Finding
application errors and security flaws using PQL: a
program query language. In: Proceedings of the 20th
Conference on Object oriented Programming,
Systems, Languages, and Applications. (2005)

[17] Helm, R., Holland, I.M., Gangopadhyay, D.:
Contracts: specifying behavioral compositions in
object-oriented systems. In: Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages, and Applications. (1990)

[18] Froehlich, G., Hoover, H.J., Liu, L., Sorenson, P.:
Hooking into object-oriented application frameworks.
In: Proceedings of the 19th International Conference
on Software engineering. (1997)

[19] Riehle, D.: Framework Design: A Role Modeling
Approach. PhD thesis, Zurich (2000)

[20] Mandelin, D., Xu, L., Bod, R., Kimelman, D.:
Jungloid mining: helping to navigate the API jungle.
In: Proceedings of the 2005 ACM SIGPLAN
conference on Programming Language Design and
Implementation. (2005)

[21] Fairbanks, G., Garlan, D., Scherlis, W.: Design
fragments make using frameworks easier. In:
Proceedings of the 21st Conference on Object-oriented
programming systems, languages, and applications,
New York, NY, USA, ACM Press (2006) 762–763

[22] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson,
G., Saxe, J.B., Stata, R.: Extended static checking for
Java. In: Proceedings of the Conference on
Programming Language Design and Implementation.
(2002)

[23] Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary
design of JML: a behavioral interface specification
language for Java. SIGSOFT Softw. Eng. Notes 31(3)
(2006)

[24] Jackson, D.: Alloy: a lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol. 11(2)
(2002) 256–290

[25] Spivey, J.: The Z Notation: A Reference Manual.
Prentice Hall (1992)

[26] Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape
analysis via 3-valued logic. ACM Trans. Program.
Lang. Syst. 24(3) (2002) 217–298


