
Int J Softw Tools Technol Transfer (2006) 8: 26–36 / Digital Object Identifier (DOI) 10.1007/s10009-004-0171-8

EfficientBDDs for bounded arithmetic constraints

Constantinos Bartzis, Tevfik Bultan

Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
e-mail: bar@cs.ucsb.edu

Published online: 7 October 2005 – © Springer-Verlag 2005

Abstract. Symbolic model checkers use BDDs to rep-
resent arithmetic constraints over bounded integer vari-
ables. The size of such BDDs can in the worst case be
exponential in the number and size (in bits) of the integer
variables. In this paper we show how to construct linear-
sized BDDs for linear integer arithmetic constraints. We
present basic constructions for atomic equality and in-
equality constraints and generalize our complexity results
for arbitrary linear arithmetic formulas. We also present
three alternative ways of handling out-of-bounds transi-
tions and discuss heterogeneous bounds on integer vari-
ables. We experimentally compare our approach to other
BDD-based symbolic model checkers and demonstrate
that the algorithms presented in this paper can be used to
improve their performance significantly.

Keywords: BDD – Model checking –
Integer arithmetic – SMV

1 Introduction

The performance of a symbolic model checker depends
on the efficiency of the algorithms for the BDD con-
struction and the sizes of the generated BDD represen-
tations. In this paper we address both these issues for
linear arithmetic constraints on bounded integer vari-
ables. BDD-based model checkers represent bounded in-
teger variables by mapping them to a set of Boolean
variables using a binary encoding. Our experiments show
that the state-of-the-art BDD-based model checkers [1–
3, 12, 16] use inefficient algorithms for BDD construction

This work is supported in part by NSF Grant CCR-9970976
and NSF CAREER award CCR-9984822.
The preliminary results from this paper were presented in the

9th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2003) [6].

from linear arithmetic constraints and fail to generate
compact BDD representations for them. Handling linear
arithmetic constraints efficiently is an important prob-
lem since such constraints are common in reactive system
specifications. For example, the distribution files for the
BDD-based model checker NuSMV [2, 12] contain spe-
cifications with linear arithmetic constraints; however,
the verification time for these specifications for NuSMV
does not scale when the bounds on integer variables are
increased. The algorithms and complexity results pre-
sented in this paper demonstrate that this inefficiency
is not inherent to the BDD data structure and can be
avoided.
We present algorithms for constructing efficient BDD

representations from atomic arithmetic constraints of the
form

∑v
i=1 ai ·xi# a0, where # ∈ {=, �=, >,≥,≤, <}. We

show that the size of the resulting BDD is linear in the
number of variables and the number of bits used to en-
code each variable. We also show that the time complex-
ity of the construction algorithm is the same.We also give
bounds for BDDs for linear arithmetic formulas that can
be obtained by combining atomic arithmetic constraints
with Boolean connectives. We show that the resulting
BDDs for linear arithmetic formulas are still linear in the
number of variables and the number of bits used to en-
code each variable.
We extend the construction algorithms to handle

transitions that can take the bounded integer variables
out of bounds. We present three different approaches for
handling out-of-bounds transitions and show that all of
them preserve our complexity results. We also generalize
the construction algorithms to multiple bounds on inte-
ger variables. We show that as long as all the bounds are
powers of two, the complexity results are preserved. One
interesting result is that multiple bounds that are not
powers of two cause the BDD size to be exponential in the
number of variables in the worst case.

C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints 27

The rest of the paper is organized as follows. In
Sect. 1.1 we discuss the related work. In Sects. 2 and 3 we
give the BDD construction algorithm for atomic equal-
ity and inequality constraints, respectively, and prove
its time and space complexity. In Sect. 4 we generalize
our results for arbitrary linear arithmetic formulas con-
sisting of atomic constraints and Boolean connectives.
In Sects. 5–7 we discuss modifications to the basic con-
struction algorithm in order to handle constraints that
involve multiplication of variables, transitions that result
in out-of-bounds errors, and the presence of distinct arbi-
trary bounds on integer variables, respectively. Finally, in
Sect. 8 we present experimental results that demonstrate
the advantages of our approach.

1.1 Related work

The problem of inefficient BDD representation of arith-
metic constraints in symbolic model checkers has been
pointed out in [11, 21]. In [11], the problem for SMV is
handled by writing a preprocessor and fixing the BDD
variable order. However, as we show in this paper, this
extra step is not necessary since efficient BDDs can be
directly constructed from a set of linear arithmetic con-
straints. In [21], the problem is solved only for constraints
of the form x+y = z, where x, y, and z can be variables
or constants. Even though such constraints arise very of-
ten in practice, our algorithms are more general without
sacrificing efficiency.
Multiterminal BDDs (MTBDDs) [13], or Arithmetic

Decision Diagrams (ADDs) [18], are structures similar to
BDDs but with multiple terminal nodes and are used to
represent functions with integer ranges. Given an equa-
tion or inequation, one can first construct ADDs for the
right- and left-hand side of the (in)equation and then
transform them to BDDs by matching terminal nodes. It
is known that ADDs are very inefficient for representing
functions with large ranges. In fact, this is the method
used in NuSMV, and our experiments demonstrate its
inefficiency.
BinaryMoment Diagrams (BMDs) [9] and Hybrid De-

cision Diagrams (HDDs) [14] are data structures designed
to represent arithmetic expressions and handle arithmetic
operations in word-level verification where an array of bi-
nary bits can be referred to as an integer variable. These
data structures can also be used to construct linear-sized
BDDs from linear arithmetic constraints. However, in
this paper, we show that one can construct linear-sized
BDDs from linear arithmetic constraints directly, with-
out using these data structures. Hence, the algorithms we
present can be easily integrated into a BDD-based model
checker.
The problem of constructing finite-state automata to

represent linear arithmetic constraints on unbounded in-
teger variables has been studied in [5, 7, 20]. We use simi-
lar ideas to construct BDDs for constraints on bounded
variables. In fact, BDDs can be seen as finite-state auto-

mata with a binary alphabet, whose only accepting state
is the terminal node 1.

2 Atomic equality constraints

In this section we discuss the construction of BDDs for
atomic equality constraints on bounded integer variables.
Given a set of v integer variables xi, 1≤ i ≤ v such that
0≤ xi < 2b and a linear equation of the form

v∑

i=1

ai ·xi = a0 ,

we construct a BDD with v · b Boolean variables xi,j , 1≤
i≤ v, 0≤ j < b, which evaluates to 1 iff

v∑

i=1

ai ·

⎛

⎝
b−1∑

j=0

xi,j ·2
j

⎞

⎠= a0 .

In other words, the BDD variables xi,j represent the bi-
nary digits of the integer variables and the BDD eval-
uates to 1 iff the equation is satisfied by the valuation
xi =

∑b−1
j=0 xi,j ·2

j for 1≤ i≤ v. We show that such a BDD
has O (v · b ·

∑v
i=1 |ai|) nodes, i.e., the size of the BDD is

linear in the number of Boolean variables. Note that in
general the size of a BDD can be exponential in the num-
ber of Boolean variables, and experimental results show

Fig. 1. BDD construction algorithm for equations

28 C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints

that state-of-the-art model checkers often produce expo-
nentially large BDDs.
The construction algorithm is given in Fig. 1. The con-

structed BDD consists of b layers of v levels each. The jth
layer corresponds to the jth least significant bit of each
integer variable and the ith level in a layer corresponds to
the ith integer variable. Every node in a level is labeled
with an integer c between −

∑v
i=0 |ai| and

∑v
i=0 |ai|. In

particular, the label of a node in the first level of the jth
layer corresponds to a value of the carry c resulting from
the computation of the expression

v∑

i=1

ai ·

(
j−1∑

n=0

xi,j ·2
n

)

−a0 ,

where xi,js are the values of the BDD variables along one
of the paths from the root to that node. Furthermore, the
label of a node in the kth level, 2≤ k ≤ v, of the jth layer
is the value c+

∑k−1
i=1 ai ·xi,j , where xi,js are the values of

the BDD variables along one of the paths from the node
in the first level of the jth layer with label c to that node.
As an example consider the linear equation 2x−3y=1.

Figure 2 shows the structure of a complete intermediate
layer (inside the dashed rectangle) of the corresponding
BDD, regardless of the length of x and y. The nodes
outside the rectangle comprise the first level of the next
layer. The complete BDD, when x and y are 4 bits long,
is shown in Fig. 3. For all figures, edges not shown point
to the 0 terminal node. Note that the BDDs constructed
by the algorithms in this paper are not necessarily re-
duced. Standard BDD reduction needs to be applied after
the construction. It is known that BDD reduction can be
done in linear time [19].

Theorem 1. The algorithm given in Fig. 1 constructs
a BDD representing the linear equation

∑v
i=1 ai ·xi = a0

on b-bit nonnegative integer variables. The time complex-
ity of the algorithm and the size of the resulting BDD is
O (v · b ·

∑v
i=1 |ai|).

Proof. For the purposes of the proof we can think of
a BDD as a bit-serial processor as described in [8]. Such
a processor computes a Boolean function by examining
the arguments x1, x2, and so on in order, producing out-
put 0 or 1 after the last bit has been read. It requires
internal storage to store enough information about the

Fig. 2. Layer of a BDD for 2x−3y = 1

Fig. 3. BDD for 2x−3y = 1 for 4-bit variables

arguments it has already seen to correctly deduce the
value of the function from the values of the remaining
arguments. Trivially it can store all the values of the ar-
guments it has already seen by using exponentially large
storage. In our case we can show that linear storage is
needed. The size of the storage consumed by the processor
translates to the number of nodes in the BDD.
The ordering of the Boolean variables xi,j is lexico-

graphical primarily on j and secondarily on i, or, equiv-
alently, the index of variable xi,j is j · v+ i. The index
of the root is 1. One can easily verify that any inter-
nal node with index index points to a node with index
index+1, except for the nodes with index b ·v that point
to the terminal nodes. Thus the constructed BDD is con-
sistent with the ordering mentioned above. The bit-serial
processor corresponding to the BDD first processes the
least significant bit of the integer variables x1, x2, . . ., xv
in this order, then it processes the second least signifi-
cant bits, and so on. In the end the processor needs to
verify whether or not

∑v
i=1 ai ·xi = a0 or, equivalently,∑v

i=1 ai ·
(∑b−1

j=0 xi,j ·2
j
)
= a0, or

−a0+
b−1∑

j=0

2j ·

(
v∑

i=1

ai ·xi,j

)

= 0 . (1)

To accomplish this the processor gradually computes the
left-hand side of (1) bit by bit and compares it against
zero. If at any point the comparison fails, it immedi-
ately evaluates to 0; otherwise it continues. It starts with
an initial value of −a0 and then gradually adds to it

C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints 29

ai ·xi0 as it reads the values of x1,0 up to xv,0 and stores
the intermediate result −a0+

∑l
i=1 ai ·xi,0 every time

(lines 15–16 of the algorithm). Note that the value stored
is shown as the label of each BDD node in the figures.
At the end of processing layer 0, if the result is an odd
number (i.e, the resulting bit is 1), the processor immedi-
ately evaluates to 0, since what remains to add, namely,∑b−1
j=1 2

j · (
∑v
i=1 ai ·xi,j), is an even number; therefore,

the final result cannot be zero. Otherwise, the intermedi-
ate result at this point divided by 2 is equal to the remain-
ing carry c, i.e., c= (−a0+

∑v
i=1 ai ·xi,0) /2. The value of

the carry is the only piece of information that needs to be
stored at this point (lines 9–13). If we divide both sides of
(1) by 2, we will get:

c+
b−1∑

j=1

2j−1 ·

(
v∑

i=1

ai ·xi,j

)

= 0 . (2)

Now the processor needs to verify (2), and this task is
similar to the initial one, so the processor continues to op-
erate in a similar manner. In the end, in order for the final
result to be 0, the final carry also has to be 0. In that case
the processor evaluates to 1; otherwise it evaluates to 0
(lines 4–8). This concludes the proof of correctness of our
construction algorithm.
For the proof of termination and complexity, the fun-

damental question that needs to be answered is howmany
different intermediate results need to be stored at any
point during the operation of the bit-serial processor or,
in other words, how many BDD nodes there are at any
level. The number of nodes at any level is bounded by the
size of the range defined by the least and the greatest la-
bel in that level. If the labels of the nodes at level j ·v+1
belong to a range of size n1,j , then level j ·v+2 has at
most n2,j = n1,j+ |a1| nodes, level j · v+3 has at most
n3,j = n1,j + |a1|+ |a2| nodes, and so on. Finally, level
j ·v+ v+1 = (j+1) ·v+1 has at most n1,j+1 = (n1,j+∑v
k=1 |ak|)/2 nodes because that many are the differ-

ent values of the carry that need to be stored, as de-
scribed earlier. Initially n1,0 = 1, and by induction one
can prove that no n1,j is larger than

∑v
k=1 |ak|. As men-

tioned above, n2,j = n1,j+ |a1|. Therefore, all n2,j are at
most

∑v
k=1 |ak|+ |a1|, and in general ni,j ≤

∑v
k=1 |ak|+∑i−1

k=1 |ak|. In total, the number of nodes in layer j is at
most

v∑

i=1

ni,j =
v∑

i=1

|ai| · (2v− i) . (3)

There are b layers, so the total number of nodes in the
BDD is at most b ·

∑v
i=1 |ai| · (2v− i) orO(v ·b ·

∑v
i=1 |ai|),

i.e., the size of the constructed BDD is linear on both v
and b. Each node is created once if we store each of them
in a hash table indexed by i, j, and c, and the creation of
a node requires a fixed amount of work, so the complexity
of our algorithm is O (v · b ·

∑v
i=1 |ai|).

Fig. 4. Layer of a BDD for 2x−3y = 1, when the order of x and y
is reversed

The bound on the number of nodes in any layer shown
in (3) leads us to another interesting conclusion. The
size of the constructed BDD is minimized if the inte-
ger variables are ordered in increasing order of the ab-
solute values of their coefficients. For example, consider
the BDD for the equation 2x−3y = 1, a layer of which is
shown in Fig. 2. If we change the ordering of the variables
so that yi appears before xi, each layer will have one more
node, as shown in Fig. 4.

3 Atomic inequality constraints

Next, we show how to construct BDDs for inequations of
the form

v∑

i=1

ai ·xi < a0, 0≤ xi < 2
b .

Fig. 5. BDD construction algorithm for inequations

30 C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints

Note that we can transform all other kinds of linear in-
equations (≤, >,≥) to this form by changing the signs
of the coefficients and/or adding 1 to the constant term
a0. The algorithm is similar to the one for equations and
is shown in Fig. 5. There are only two differences. First,
after having processed an equal number of bits from all
integer variables (lines 9–13 of the algorithm), we do
not require the resulting bit to be 0. The bit-serial pro-
cessor only computes the correct value of the remaining
carry and proceeds to the next level. Second, in order for
the inequality to hold after all bits have been processed
(lines 4–8 of the algorithm), the remaining carry has to
be negative. To see the correctness of the algorithm, let
r be the b-bit number formed by the resulting bits and
c be the final carry. Then −a0+

∑v
i=1 ai ·xi = 2

b · c+ r
and 0≤ r < 2b. It follows that

∑v
i=1 ai ·xi < a0⇔ c < 0.

Obviously, these two modifications do not change the
bound on the number of nodes in the BDD, which is again
O (v · b ·

∑v
i=1 |ai|). This proves the following theorem.

Fig. 6. Layer of a BDD for 2x−3y < 1

Fig. 7. BDD for 2x−3y < 1 for 4-bit variables

Theorem 2. The algorithm given in Fig. 5 constructs
a BDD representing the linear inequation

∑v
i=1 ai ·xi < a0

on b-bit nonnegative integer variables. The time complex-
ity of the algorithm and the size of the resulting BDD is
O (v · b ·

∑v
i=1 |ai|).

As an example consider the linear inequation 2x−
3y < 1, where x and y are 4 bits long. Figures 6 and 7 show
the structure of an intermediate layer and the complete
BDD before being reduced.

4 Linear arithmetic formulas

In symbolic model checking BDDs are subjected to opera-
tions such as intersection, union, negation, etc., as well as
subsumption and equivalence tests. The time and space
complexity of these operations depends on the size of
the operands. The complexity of negation is O(1), as it
involves only swapping the terminal nodes 0 and 1, but
the complexity of intersection and union, which are fre-
quently used operations in symbolic model checking, is
O(n1 ·n2), where n1 and n2 are the sizes of the operands.
Suppose that one performs an intersection or union

operation on two BDDs representing the constraints∑v
i=1 ai ·xi = a0 and

∑v
i=1 bi ·xi = b0 whose sizes are

O (v · b ·
∑v
i=1 |ai|) andO (v · b ·

∑v
i=1 |bi|), respectively, as

proved earlier. One would expect the size of the resulting
BDD to be O

(
v2 · b2 ·

∑v
i=1 |ai| ·

∑v
i=1 |bi|

)
. Actually, this

is a pessimistic estimation. The resulting BDD will have
again v · b layers, corresponding to a bit-serial processor
that examines each of the xi,js one by one as before. The
only difference is that now it needs to remember the in-
termediate results from both BDDs and thus every layer
will have O (

∑v
i=1 |ai| ·

∑v
i=1 |bi|) nodes and there will

be O (v · b ·
∑v
i=1 |ai| ·

∑v
i=1 |bi|) nodes in total. Clearly

the same argument holds for more than two linear con-
straints, which proves the following theorem.

Theorem 3. Given a linear arithmetic formula on b-bit
nonnegative integer variables consisting of n atomic con-
straints of the form

∑v
i=1 ai,j ·xi = a0,j or

∑v
i=1 ai,j ·xi <

a0,j, 1 ≤ j ≤ n and Boolean connectives ¬,∧,∨, one can

construct a BDD of size O
(
v · b ·

∏n
j=1

∑v
i=1 |ai,j |

)
repre-

senting the formula in time O
(
v · b ·

∏n
j=1

∑v
i=1 |ai,j |

)
.

The conclusion is that when basic operations are per-
formed by a model checker on BDDs representing linear
arithmetic constraints on bounded integers, the size of
intermediate BDD representations remains linear in the
number and size of the integer variables, i.e., the space
and time complexity of operations does not blow up with
respect to these two parameters. This is very important
since such “blowups” are a common drawback of BDD-
based model checking.
It is known that satisfiability checking for BDDs

can be performed in constant time. Given an instance

C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints 31

of integer programming concerning the satisfiability of
a conjunction of n linear constraints on v b-bit inte-
ger variables, one can solve the problem in the fol-
lowing manner. First, construct a BDD for those con-
straints by using our construction algorithm in time

O
(
v · b ·

∏n
j=1

∑v
i=1 |ai,j |

)
. Then check for satisfiability

in constant time. Hence, such instances of integer pro-
gramming are solvable in time polynomial in v, b, and
max(|ai,j |) but exponential in n. Note that integer pro-
gramming is NP-complete in the strong sense even if
b= 1 [15], which implies that there is no algorithm that is
polynomial in v, b, and n, unless P =NP . On the other
hand, in [17] it is shown that if n is fixed, then a pseu-
dopolynomial algorithm exists. Our complexity results
serve as an alternative proof for the same fact.

5 Handling multiplication

An inherently unavoidable shortcoming of BDDs is their
inability to efficiently represent arithmetic constraints in-
volving multiplication between variables. In [8] it was
proved that the size of such BDDs has a lower bound ex-
ponential on b, the size of the integer variables, regardless
of the variable ordering.
The good news is that, by choosing the variable or-

dering we defined earlier and by slightly modifying our
construction algorithm one can accommodate multiplica-
tion and keep the size of the produced BDD exponential
only in b and the number of integer variables involved in
multiplications, which is in many cases less than v, the
total number of integer variables.
The idea supporting this argument is the following.

Supposewewant to construct aBDD for an arithmetic for-
mula on v =m+ l integer variables, in which onlym vari-
ables are multiplied with other variables in the formula
(which we will callm-variables) and the remaining l vari-
ables (which we will call l-variables) are only multiplied
with constants, forming the “linear part” of the formula.
In the worst case, the bit-serial processor corresponding to
the BDDwill need to remember the exact values of them-
variables and the intermediate results c of the computation
of the “linear part”, as described earlier. Therefore, each
node is now labeled by an (m+1)− tuple containing the
current values of them-variables and c. The number of lev-
els remains the same v · b. At any level, when anm-variable
is processed, all nodes are doubled in the next level, thus
remembering the new bit of them-variable, and the vari-
ous cs are propagated properly.When an l-variable is pro-
cessed, the processor behaves exactly as in the linear case.
At the end of layer k, the processor knows the first k bits of
the m-variables and the carry from the “linear part” and
is able to compute the corresponding bit of the result and
the carry for the next layer. The number of nodes is dou-
bledm · b times, and consequently the size of the BDDwill
beO

(
2m·b · l · b ·

∑v
i=1 |ai|

)
. Of course, this is still an expo-

nential boundbutnevertheless indicates a complexity that

is exponentially dependent onm and not v. In many prac-
tical cases, if m is nonzero, it is at least much less than v.
Note that by choosing a different variable ordering one can
end up with BDDs of exponential size in both b and v.

6 Handling overflows

When constructing BDDs to represent the transition rela-
tion of a system, special care is needed in order to handle
possible overflows. For example, consider a transition la-
beled by x′ = x+1, where x is the current state variable
and x′ is the next state variable. They are both 2-bit non-
negative integers ranging between 0 and 3. When x= 3
and the transition is taken, what is an appropriate value
of x in the next state, since it cannot be 4? We consider
three alternatives:

1. The transition cannot be taken, i.e., there is no next
state.

2. Modular arithmetic is performed and x= 0 in the next
state.

3. An “out-of-bounds” error is detected and reported.

BDD construction for the transition relation depends
on the choice of one of these three alternative approaches.
For our example, an intermediate layer and the complete
BDDs for all three approaches are shown in Fig. 8. The
construction algorithm described earlier follows the first
approach.

Fig. 8. Alternative ways to handle overflows

32 C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints

Fig. 9. Modifications of the BDD construction algorithm
in order to handle overflows

The difference between the three approaches is in the
edges generated by lines 4–8 of the construction algo-
rithm in Fig. 1, which correspond to the case where the b
least significant bits of the variables (in our example b=
2) satisfy the equation but there is a remaining nonzero
carry indicating an overflow. Figure 9 shows the modifi-
cations to the algorithm for each of the three approaches.
The first approach points all such edges to the 0 termi-
nal node, thus making the BDD evaluate to 0 whenever
an overflow occurs. The second approach points all such
edges to 1, thus ignoring overflows and performing modu-
lar arithmetic. The third approach is a bit more involved.
There is an extra global Boolean variable error at the end
of the variable ordering. All edges that indicate an over-
flow point to a node with the index of error′ and low = 0
and high= 1. Initially error is false. When an overflow oc-
curs, error will become true in the next state. Note that
for all three approaches Theorems 1, 2, and 3 still hold.
The three alternative BDDs shown in Fig. 8 correspond to
the following constraints, respectively:

1. x < 3∧x′ = x+1
2. x′ = (x+1) mod 4
3. x′ = (x+1) mod 4∧ ((x+1)> 3⇒ error′ = true)

In all versions of SMV [1–3], out-of-bounds errors are
checked statically. This means that even out-of-bound
transitions that are not reachable are reported as out-

of-bounds errors. By using alternative 3 presented above
one can check if an out-of-bounds error is reachable and
report an out-of-bounds error only when one occurs on
some execution path. One can also implement the static
out-of-bounds error check used in SMV by reporting a po-
tential out-of-bounds error if a node with the index of the
Boolean variable error′ appears in the transition relation
BDD.
When overflows are not considered errors, one can use

alternative 1 or 2, depending on the nature of the sys-
tem being modeled. For example, when creating a finite-
state model of an infinite-state system by restricting un-
bounded variables to finite domains, alternative 1 is the
most appropriate one.

7 Handling multiple bounds on variables

So far we have studied the construction of BDDs for linear
arithmetic constraints on v integer variables xi, 1≤ i≤ v
such that 0 ≤ xi < 2b, i.e., all variables were nonnega-
tive and bounded by the same power of two. Now con-
sider the case where each variable xi has its own bounds
li ≤ xi < hi, where li and hi are (possibly negative) in-
teger constants that are not necessarily powers of 2. As
a first step we can eliminate the lower bounds by replac-
ing every variable xi in every constraint by the variable
Xi = xi− li. Now, any constraint of the form

∑v
i=1 ai ·

xi# a0, where # ∈ {=, �=, >,≥,≤, <}, becomes
∑v
i=1 ai ·

Xi# a0−
∑v
i=0 ai · li and 0≤Xi < hi− li = di. Now the

lower bound of all variables is again 0 as it was initially,
but the upper bounds are different and not necessarily
powers of two.
Here we will show how to construct BDDs for equa-

tions of the form
∑v
i=1 ai ·xi = a0, where 0≤ xi < di for

1 ≤ i ≤ v. The construction of BDDs for inequations is
similar. Since there are extra constraints 0≤ xi < di that
have to be satisfied in order for the BDD to evaluate to
1, extra information has to be “stored” in the nodes: the
valid range for the part of every variable that has not yet
been processed. Since the lower bound for every variable
is 0, only the upper bound needs to be stored. At the root
node, the upper bound for each variable xi is di. After
the least significant bit xi,0 of variable xi has been pro-
cessed, the upper bound for the rest of xi (i.e., the value of
xi with the least significant bit removed) becomes 	(di−
xi,0)/2
. In general, if the upper bound u for xi at a node
n in level i of layer j is d, then at n.low u= 	d/2
 and at
n.high u= 	(d−1)/2
. As an example, consider the equa-
tion 2x−3y = 1, where 0≤ x < 11 and 0≤ y < 13.
Figure 10 shows the bound information for x and y as

described earlier. Figure 11 shows the complete BDD for
the equation.
We can prove that at any level there are at most

two different upper bounds, which differ by one, for each
variable. Initially, there is only one bound for each vari-
able. If at some level the two different upper bounds

C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints 33

Fig. 10. Bounds information for 0≤ x < 11 and 0≤ y < 13

Fig. 11. BDD for 2x−3y = 1 when 0≤ x < 11 and 0≤ y < 13

for a variable are d and d+1, then in the next layer
those bounds will become 	(d− 1)/2
 and 	(d+1)/2
.
In general, there can be at most 2v different combi-
nations of bounds for all v variables at any level. The
maximum number of layers is log2(max(di)). Conse-
quently, the size of the BDD representing the equation is
O (v · log2(max(di)) ·2

v ·
∑v
i=1 |ai|), which is exponential

in the number of variables v. Remember that when the
upper bounds are powers of two, 2b, the size of the BDD is
only O (v · b ·

∑v
i=1 |ai|). Interestingly, this indicates that

when modeling a system and the choice of bounds for the
integer variables is independent of the input specification,
it is better to choose bounds that are powers of 2.
An equivalent way to handle multiple variable bounds

would be to consider that all variables are bounded by
the same power of 2, 2| log2(max(di))|, and conjoin the given

linear equation with the constraints 0 ≤ xi < di. There
are v+1 atomic constraints now and, as shown in Sect. 4,
the size of a BDD is exponential in the number of atomic
constraints in the worst case. However, in the trivial case
where there is no arithmetic but only constraints of the
form li ≤ xi < hi, the variable ordering used in SMV (bits
of the same variable are grouped together) yields BDDs of
linear size.

8 Experimental results

We integrated our construction algorithms to the Com-
posite Symbolic Library and the Action Language Veri-
fier [10, 22]. The Action Language Verifier is an infinite-
state CTL model checker, and it uses Composite Sym-
bolic Library as its symbolic manipulator. We created
a new version of the Action Language Verifier (ALV) by
using BDDs as symbolic representations for bounded in-
tegers and integrating our BDD construction algorithms
for linear arithmetic constraints.
We experimented with two specification examples,

Bakery and Barber, from the ALV distribution, which
is available at: http://www.cs.ucsb.edu/∼ bultan/
composite/. Bakery is a mutual exclusion protocol for
two processes. Barber is a monitor specification for the
Sleeping Barber problem from [4]. We also verified three

Table 1. Bakery

Bits CMU SMV Cadence SMV NuSMV ALV

4 0.04 0.17 0.07 0.17
5 0.23 0.27 0.26 0.17
6 1.27 0.5 1.71 0.17
7 9.37 1.39 20.52 0.18
8 78.87 6.12 142.82 0.18
9 673.11 21.67 1186.45 0.18
10 ↑ 84.1 ↑ 0.19
11 ↑ 329.93 ↑ 0.19
12 ↑ 1503.83 ↑ 0.19
100 ↑ ↑ ↑ 0.31

Table 2. Barber

Bits CMU SMV Cadence SMV NuSMV ALV

4 0.15 0.36 0.3 0.23
5 0.46 0.86 1.09 0.25
6 2.03 2.97 13.47 0.29
7 14.14 10.42 1185.92 0.3
8 274.89 38.29 ↑ 0.35
9 ↑ 157.58 ↑ 0.39
10 ↑ 721.25 ↑ 0.42
11 ↑ ↑ ↑ 0.44
12 ↑ ↑ ↑ 0.48
100 ↑ ↑ ↑ 5.12

34 C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints

Table 3. Alternating bit protocol. The property checked is independent of the integer data field.
Since Cadence SMV [1] can detect and verify data-independent properties efficiently, we also

verified a data-dependent property. The verification time for the data-dependent
property stays almost the same for the Action Language Verifier

Bits CMU SMV Cadence SMV NuSMV ALV
Data Data Data Data

independent dependent independent dependent

4 0.12 0.21 3.91 2.69 0.23 0.24
5 0.26 0.2 7.56 2.71 0.23 0.25
6 1.26 0.23 24.11 2.63 0.24 0.24
7 30.24 0.18 84.33 3.05 0.23 0.26
8 147.96 0.19 343.47 3.61 0.23 0.24
9 693.67 0.2 ↑ 6.6 0.25 0.26
10 3755.46 0.24 ↑ 24.12 0.23 0.27
11 ↑ 0.27 ↑ 87.62 0.27 0.27
12 ↑ 0.36 ↑ 342.89 0.24 0.27
100 ↑ ↑ ↑ ↑ 0.69 0.72

specification examples, abp, p-queue, and prod-cons, in-
cluded in the NuSMV distribution [2]. Example abp is an
alternating bit protocol, and p-queue and prod-cons are
two different implementations of a buffer where data are
inserted, sorted, and consumed. We were able to verify
safety and liveness properties for these examples. We run
these experiments using three different implementations
of the SMV [1–3], namely, CMU SMV (version 2.5.4.3),
Cadence SMV (version 08-20-01p2), and NuSMV (ver-
sion 2). We obtained the experimental results on a SUN
ULTRA 10 workstation with 768MB of memory, running
SunOs 5.7.
We measured the time required to verify each of the

examples for different sizes of the integer variables from
4 bits to 100 bits. The results are shown in Tables 1–5.
Entries ↑ signify that the corresponding experiment did
not finish in 4000 s. It is clear that for all current imple-

Table 4. Queue

Bits CMU SMV Cadence SMV NuSMV ALV

4 0.3 0.57 0.33 3.21
5 1.75 1.23 1.21 5.63
6 24.47 5.37 12.07 8.14
7 2159.69 38.8 122.3 10.77
8 ↑ 318.39 1125.34 13.06

100 ↑ ↑ ↑ 440.87

Table 5. Producer – Consumer

Bits CMU SMV Cadence SMV NuSMV ALV

2 5.49 4.61 23.27 210.44
3 216.94 73.98 3264.97 698.93
4 ↑ 1430.54 ↑ 2600
5 ↑ ↑ ↑ 6062.34

mentations of SMV, the recorded times are exponential
in the size of the integer variables, while for ALV, which
uses the construction algorithms presented earlier, the
recorded times are linear in the size of the integer vari-
ables. Note that ALV is not a BDD-based model checker,
hence SMVmay be better optimized for BDD-based veri-
fication. However, our point is that the advantages of our
construction algorithms can be exploited by integrating
them to any BDD-based model checker.
Figure 12 illustrates the effect of arbitrary bounds on

variables as described in Sect. 7. We used our construc-
tion algorithm to build a BDD for the equation x1+x2−
x3−x4+x5−x6 = 7, where 0≤ x1, x2, x3, x4, x5, x6 < 28

and recorded the size of the resulting reduced BDD. Then
we gradually changed the upper bound of each of the vari-
ables to some arbitrary unique value less than 28 and
recorded the size of the resulting reduced BDD each time.
The results shown in Fig. 12 demonstrate the exponential
growth of the size of the BDD described in Sect. 7.
We performed the same experiment, this time using

the BDD variable ordering used in SMV, where all bits of
the same integer variable are next to each other. The re-

Fig. 12. Size of the BDD for x1+x2−x3−x4+
x5−x6 = 7 vs. the number of variables with upper
bound different than 28, using the variable ordering

described in this paper

C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints 35

Fig. 13. Size of the BDD for x1+x2−x3−x4+
x5−x6 = 7 vs. the number of variables with upper
bound different than 28, using the variable ordering

used in SMV

Fig. 14. Size of the BDD for x1+x2−x3−x4+x5−x6 = 7 vs.
the number of variables with upper bound different than 2b, for
different lengths of variables b= 4, 5, 6, 7, using our algorithms

(solid lines) and SMV (dotted lines)

sults are shown in Fig. 13. Interestingly, for this ordering
the number of BDD nodes does not grow exponentially
with respect to the number of variables with arbitrary
bounds. However, the lowest value in Fig. 13 is more than
double the maximum value in Fig. 12. Note that the ap-
proach used in SMV produces BDDs with size exponen-
tial in b, the number of bits of each integer variable. To
illustrate the effect of both increasing the length of the in-
teger variables and the presence of arbitrary bounds, for
both approaches, we repeated the same experiment with
b= 4, 5, 6, and 7. The results are shown in Fig. 14. Solid
lines correspond to our method, whereas dotted lines cor-
respond to SMV.

9 Conclusions

In this paper we have shown experimentally that current
implementations of BDD-based symbolic model check-
ers are inefficient in representing linear arithmetic con-

straints on bounded integer variables. We solved this
problem using efficient BDD construction algorithms,
proving their complexity and experimentally demonstrat-
ing their efficiency. These algorithms can be used to im-
prove the performance of existing BDD-based symbolic
model checkers. Finally, we have shown that powers of 2
are a good choice for variable bounds, and choosing arbi-
trary bounds for integer variables can cause exponential
blowup in the BDD size.

References

1. Cadence SMV.
http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv

2. NuSMV. http://nusmv.irst.itc.it/
3. SMV. www.cs.cmu.edu/∼modelcheck/smv.html
4. Andrews GR (1991) Concurrent programming: principles and
practice. Benjamin/Cummings, Redwood City, CA

5. Bartzis C, Bultan T (2003) Efficient symbolic representations
for arithmetic constraints in verification. Int J Found Comput
Sci 14(4):605–624

6. Bartzis C, Bultan T (2003) Construction of efficient BDDs
for bounded arithmetic constraints. In: Proceedings of the
9th international conference on tools and algorithms for the
construction and analysis of systems. Lecture notes in com-
puter science, vol 2619. Springer, Berlin Heidelberg New York,
pp 394–408

7. Boudet A, Comon H (1996) Diophantine equations, Pres-
burger arithmetic and finite automata. In: Kirchner H (ed)
Proceedings of the 21st international colloquium on trees in
algebra and programming (CAAP’96), April 1996. Lecture
notes in computer science, vol 1059. Springer, Berlin Heidel-
berg New York, pp 30–43

8. Bryant RE (1986) Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans Comput 35(8):677–691

9. Bryant RE, Chen YA (1995) Verification of arithmetic func-
tions with binary moment diagrams. In: Proceedings of the
32nd ACM/IEEE conference on design automation, June 1995

10. Bultan T, Yavuz-Kahveci T (2001) Action Language Verifier.
In: Proceedings of the 16th IEEE international conference on
automated software engineering

11. Chan W, Anderson RJ, Beame P, Burns S, Modugno F, Not-
kin D, Reese JD (1998) Model checking large software specifi-
cations. IEEE Trans Softw Eng 24(7):498–520

12. Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore
M, Roveri M, Sebastiani R, Tacchella A (2002) Nusmv 2: An
opensource tool for symbolic model checking. In: Proceedings
of the international conference on computer-aided verification

13. Clarke EM, McMillan KL, Zhao X, Fujita M, Yang J (1993)
Spectral transforms for large boolean functions with appli-
cations to technology mapping. In: Proceedings of the 30th
international conference on design automation. ACM Press,
New York, pp 54–60

14. Clarke EM, Fujita M, Zhao X (2000) Hybrid decision dia-
grams – overcoming the limitations of mtbdds and bmds. In:
Proceedings of the international conference on computer-aided
design, pp 159–163

15. Garey M, Jonson D (1979) Computers and intractability:
a guide to the theory of NP-completeness. Freeman, New York

16. McMillan KL (1993) Symbolic model checking. Kluwer, Nor-
well, MA

17. Papadimitriou CH (1981) On the complexity of integer pro-
gramming. J ACM 28(4):765–768

18. Bahar RI, Frohm EA, Gaona CM, Hachtel GD, Macii E,
Pardo A, Somenzi F (1993) Algebraic Decision Diagrams
and their applications. In: IEEE /ACM international con-
ference on computer-aided design, pp 188–191. IEEE Press,
New York

36 C. Bartzis, T. Bultan: Efficient BDDs for bounded arithmetic constraints

19. Sieling D, Wegener I (1993) Reduction of OBDDs in linear
time. Inf Process Lett 48(3):139–144

20. Wolper P, Boigelot B (2000) On the construction of automata
from linear arithmetic constraints. In: Graf S, Schwartzbach
M (eds) Proceedings of the 6th international conference on
tools and algorithms for the construction and analysis of sys-
tems, April 2000. Lecture notes in computer science, vol 1785.
Springer, Berlin Heidelberg New York, pp 1–19

21. Yang J, Mok AK, Wang F (1997) Symbolic model checking for

event-driven real-time systems. ACM Trans Programm Lang
Syst 19(2):386–412

22. Yavuz-Kahveci T, Tuncer M, Bultan T (2001) Composite
symbolic library. In: Proceedings of the 7th international con-
ference on tools and algorithms for the construction and an-
alysis of systems, April 2001. Lecture notes in computer sci-
ence, vol 2031. Springer, Berlin Heidelberg New York, pp 335–
344

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

