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Abstract. Most state-of-the-art SAT solvers are based on DPLL search and re-
quire the input formula to be in clausal form (cnf). However, typical formulas that
arise in practice are non-clausal. We present a new non-clausal SAT-solver based
on General Matings instead of DPLL search. Our technique is able to handle
non-clausal formulas involving A, V, — operators without destroying their struc-
ture or introducing new variables. We present techniques for performing search
space pruning, learning, non-chronological backtracking in the context of a Gen-
eral Matings based SAT solver. Experimental results show that our SAT solver
is competitive to current state-of-the-art SAT solvers on a class of non-clausal
benchmarks.

1 Introduction

The problem of propositional satisfiability (SAT) is of central importance in various
areas of computer science, including theoretical computer science, artificial intelli-
gence, hardware design and verification. Most state-of-the-art SAT procedures are
variations of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm and require the
input formula to be in conjunctive normal form (cnf). Typical formulas generated by
the previously mentioned applications are not necessarily in cnf. As argued by Thiffault
et al. [17] converting a general formula to cnf introduces overhead and may destroy the
initial structure of the formula, which can be crucial in efficient satisfiability checking.

We propose a new propositional SAT-solving framework based on the General Mat-
ings technique due to Andrews [6]. It is closely related to the Connection method dis-
covered independently by Bibel [8]. Theorem provers based on these techniques have
been used successfully in higher order theorem proving [3]]. To the best of our knowl-
edge, General Matings has not been used in building SAT-solvers for satisfiability
problems arising in practice. This paper presents techniques for building an efficient
SAT-solver based on General Matings.

When applied to propositional formulas the General Matings approach can be sum-
marized as follows [7]. The input formula is translated into a 2-dimensional format
called vertical-horizontal path form (vhpform). In this form disjuncts (operands of V)
are arranged horizontally and conjuncts (operands of A) are arranged vertically. The
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formula is satisfiable if and only if there exists a vertical path through this arrangement
that does not contain two opposite literals ( [ and —[). The input formula is not required
to be in cnf.

We have designed a SAT procedure for non-clausal formulas based on the General
Matings approach. At a high level our search algorithm enumerates all possible vertical
paths in the vhpform of a given formula until a vertical path is found which does not
contain two opposite literals. If every vertical path contains two opposite literals, then
the given formula is unsatisfiable. The number of vertical paths can be exponential in
the size of a given formula. Thus, the key challenge in obtaining an efficient SAT solver
is to prevent the enumeration of vertical paths as much as possible. We present several
novel techniques for preventing the enumeration of vertical paths. Our contributions
can be summarized as follows:

e The vhpform of a given formula succinctly encodes: 1) disjunctive normal form
(dnf) of a given formula as a set of vertical paths 2) conjunctive normal form (cnf)
of a given formula as a set of horizontal paths. Our solver employs a combination of
both vertical and horizontal path exploration for efficient SAT solving. The choice
of which variable to assign next (decision making) is made using the vertical paths
which are similar to the terms (conjunction of literals) in the dnf of a given formula.
Conflict detection is aided by the use of horizontal paths which are similar to the
clauses (disjunction of literals) in the cnf of a given formula.

e We show how to adapt the techniques found in the current state-of-the-art SAT
solvers in our algorithm. We describe how to perform search space pruning, conflict
driven learning, non-chronological backtracking by using the vertical paths and
horizontal paths present in the vhpform of a given formula.

e We present graph based representations of the set of vertical paths and the set of
horizontal paths which makes it possible to implement our algorithms efficiently.

Related Work: Many SAT solvers have been developed, most employing some com-
bination of two main strategies: the DPLL search and heuristic local search. Heuristic
local search techniques [[12] are not guaranteed to be complete, that is, they are not guar-
anteed to find a satisfying assignment if one exists or prove unsatisfiability. As a result,
complete SAT solvers (such as GRASP [[L1]], SATO [18], zChaff [[14], BerkMin [10],
Siege [4], MiniSat [2]) are based almost exclusively on the DPLL search. While most
DPLL based SAT solvers operate on cnf, there has been work on applying DPLL di-
rectly to circuit [9] and non-clausal [17] representations. The key differences between
existing work and our approach are as follows:

— Unlike heuristic local search based techniques, we propose a complete SAT solver.

— Unlike DPLL based SAT solvers (operating on either cnf, circuit or non-clausal rep-
resentation), the basis of our search procedure is General Matings. There is a crucial
difference between the two techniques. In DPLL the search space is the set of all
possible assignments to the propositional variables, whereas in General Matings
the search space is the set of all possible vertical paths in the vertical-horizontal
path form of a given formula. We give an example illustrating the difference in
Section [2 In contrast to current cnf SAT solvers which produce a complete satis-
fying assignment (all variables are assigned), our solver produces partial satisfying
assignments when possible.
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— The General Matings technique is designed to work on non-clausal forms. In par-
ticular, any arbitrary propositional formula involving A, V, — is handled naturally,
without introduction of new variables or loss of structural information.

Semantic Tableaux [16] is a popular theorem proving technique. The basic idea is to
expand a given formula in the form of a tree, where nodes are labeled with formulas. If
all the branches in the tree lead to contradiction, then the given formula is unsatisfiable.
The tableau of a given propositional formula can blowup in size due to repetition of sub-
formulas along the various paths. In contrast, when using General Matings a vertical-
horizontal path form of a given formula is built first. This representation is a directed
acyclic graph (DAG) and polynomial in the size of the given formula.

2 Preliminaries

A propositional formula is in negation normal form (nnf) iff it contains only the propo-
sitional connectives A, V and — and the scope of each occurrence of — is a proposi-
tional variable. It is known that every propositional formula is equivalent to a formula
in nnf. Furthermore, a negation normal form of a formula can be much shorter than
any dnf or cnf of that formula. The internal representation in our satisfiability solver
is nnf. More specifically, we use a two-dimensional format of a nnf formula, called a
vertical-horizontal path form (vhpform) as described in [7. In this form disjunctions
are written horizontally and conjunctions are written vertically. For example Fig. [[(a)
shows the formula ¢ = (((p V ¢) A =r A —=q) V (-p A (r V =s) A q)) in vhpform.

Vertical path: A vertical path through a vhpform is a sequence of literals in the
vhpform that results by choosing either the left or the right scope for each occurrence
of V. For the vhpform in Fig.[[la) the set of vertical paths is {(p, =7, =q), (g, =7, ~q),

<_'p7 Ty q>7 <_'p7 -, q>}

Horizontal path: A horizontal path through a vhpform is a sequence of literals in the
vhpform that results by choosing either the left or the right scope for each occurrence
of A. For the vhpform in Fig.[I(a) the set of horizontal paths is {(p, ¢, =p), (p, q, r, =s),
<p7 q, Q>7 <_'Ta _‘p>’ <_‘T7 T, _'S>’ <_‘T7 Q>’ <_‘Qa _‘p>’ <_‘Qa Ty _‘S>7 <_'Q7 Q>}

The following are two important results regarding satisfiability of negation normal
formulas from [7]]. Let F' be a formula in negation normal form and let o be an assign-
ment (o can be a partial truth assignment).

Theorem 1. o satisfies F iff there is a vertical path P in the vhpform of F' such that o
satisfies every literal in P.

Theorem 2. o falsifies F iff there is a horizontal path P in the vhpform of F' such that
o falsifies every literal in P.

UIn [7]) the term vertical path form (vpform) is used in place of vertical-horizontal path form (vh-
pform). We use vertical-horizontal path form (vhpform) in this paper for clarity.
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Fig. 1. We show the negation of a variable by a — sign. (a) vhpform for the formula (((p V ¢) A
=r A=q)V (=p A (rV-s)Aq)) (b) the corresponding vpgraph (c) the corresponding hpgraph.

The vhpform in Fig.[Ta) has a vertical path (p, —r, =q) whose every literal can be satis-
fied by an assignment o which sets p to true and 7, ¢ to false. It follows from Theorem/[]
that o satisfies ¢. Thus, ¢ is satisfiable. An example of a vertical path whose every lit-
eral cannot be satisfied by any assignment is (g, —r, —¢) (due to opposite literals g and
—q). An assignment ¢’ which sets p, r to true, falsifies every literal in the horizontal
path (—r, —p) in the vhpform of ¢. Thus, from Theorem 2 it follows that ¢ falsifies ¢.
Let VP(¢) and HP(¢) denote the set of vertical paths and the set of horizontal paths
in the vhpform of ¢, respectively. We use [ € 7 to denote the occurrence of a literal [ in
a vertical/horizontal path 7. The following result from [7] states that the set of vertical
paths encodes the dnf and the set of horizontal paths encodes the cnf of a given formula.

Theorem 3. (a) ¢ is equivalent to the dnf formula \/Treva) Nicx I (b) ¢ is equivalent
to the cnf formula N\ cq.p(5) Viex I

Theorem [I forms the basis of a General Matings based SAT procedure. The idea is
to check the satisfiability of a given nnf formula by examining the vertical paths in
its vhpform. For the vhpform in Fig. [[(a) the search space is {(p, =7, ~q), (g, =7, ~q),
(—-p, 7, q), {(-p, s, q)}. In contrast, the search space for a DPLL-based SAT solver is
the set of all possible truth assignments to the variables p, ¢, , s. We use Theorem[2] for
efficient Boolean constraint propagation in two ways: 1) For detecting when the current
candidate for a satisfying assignment falsifies the given formula (conflict detection). 2)
For obtaining a unit literal rule (Section[3) similar to the one used in cnf SAT solvers.

3 Graph Representations

Our SAT procedure operates on the graph based representations of the vhpform of a
given formula. These graph based representations are described below.

Graphical encoding of vertical paths (vpgraph): A graph containing all vertical paths
present in the vhpform of a nnf formula is called a vpgraph. Given a nnf formula ¢,
we define the vpgraph G, (¢) as a tuple (V, R, L, E, Lit), where V is the set of nodes
corresponding to all occurrences of literals in ¢, R C V is a set of root nodes, L C V'
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is a set of leaf nodes, E C V' x V is the set of edges, and Lit(n) denotes the literal
associated with node n € V. A node n € R has no incoming edges and anoden € L
has no outgoing edges.

The vpgraph containing all vertical paths in the vhpform of Fig. [[(a) is shown in
Fig. [I(b). For the vpgraph in Fig. [lb), we have V = {1,2,3,4,5,6,7,8}, R =
{1,2,5}, L = {4,8}, £ = {(1,3),(2,3),(3,4),(5,6),(5,7),(6,8),(7,8)} and for
eachn € V, Lit(n) is shown inside the node labeled n in Fig.[Ib). Each path in the
vpgraph G, (¢), starting from a root node and ending at a leaf node, corresponds to a
vertical path in the vhpform of ¢. For example, path (1, 3,4) in Fig.[[(b) corresponds
to the vertical path (p, —r, —¢q) in Fig.[I(a) (obtained by replacing node n on path by
Lit(n)). Using this correspondence one can see that vpgraph contains all vertical paths
present in the vhpform shown in Fig. [Ika).

Given nnf formula ¢, we can construct the vpgraph G, (¢) = (V, R, L, E, Lit) di-
rectly without constructing the vhpform of ¢. This is done inductively as follows:

e If ¢ is aliteral [, then we create a graph containing just one node fv, where fv is a
fresh identifier. The literal stored inside fuv is set to [.

Gy(9) = {fv}, {fv}, {fv},0, Lit) and Lit(fv) = I, fv is a fresh identifier.

o If ¢ = ¢1 V ¢a, then the vpgraph for ¢ is obtained by taking the union of the vp-
graphs of ¢1 and ¢o. Let G (1) = (V4, Ry, L1, Eq, Lity) and G, (¢p2) = (V2, Ra,
Lo, E5, Lity). Then G, (¢) is the union of G, (¢1) and G, (¢2).

Gv((b) = (V1 UVa, R1U Ry, L1 U Ls, E1 U Ey, Lity U Litg)

o If ¢ = ¢1 A ¢, then the vpgraph for ¢ is obtained by concatenating the vpgraph
of ¢; with the vpgraph of ¢o. Let G, (¢1) = (V1, Ry, L1, Eq, Lit1) and G, (¢2) =
(Va, Ra, Lo, Eo, Lits). Then G, (¢) contains all the nodes and edges in G, (¢1)
and G, (¢2). But G, (¢) has additional edges connecting leaves of G, (¢1) with the
roots of G, (¢2). The set of additional edges is denoted as L1 x Rs below. The set
of roots of G, (¢) is Ry, while the set of leaves is Lo.

Gv(¢) = (Vl U VQ, R17L27E1 U E2 U (Ll X Rz),Litl U Litz)

Graphical encoding of horizontal paths (hpgraph): A graph containing all horizontal
paths present in the vhpform of a nnf formula is called a Apgraph. We use G}, (¢) to
denote the hpgraph of a formula ¢. The procedure for constructing a hpgraph is similar
to the above procedure for constructing the vpgraph. The difference is that the hpgraph
for ¢ = @1 A @2 is obtained by taking the union of hpgraphs for ¢; and ¢5 and the
hpgraph for ¢ = ¢1 V ¢- is obtained by concatenating the hpgraphs of ¢; and ¢-.

The hpgraph containing all horizontal paths in the vhpform in Fig. [[(a) is shown
in Fig. [[lc). For the hpgraph in Fig. [[(c), we have V' = {1,2,3,4,5,6,7,8}, R =
(1,34}, L = {5,7,8}, E = {(1,2),(2,5),(2,6),(2,8),(3,5), (3,6), (3,8), (4,5),
(4,6),(4,8),(6,7)} and for each n € V, Lit(n) is shown inside the node labeled n.

Using vpgraph/hpgraph: We use G(¢) to refer to either a vpgraph or hpgraph of ¢. It
can be shown by induction that the vpgraph and hpgraph of a nnf formula are directed
acyclic graphs (DAGs). This fact allows obtaining more efficient versions of standard
graph algorithms (such as shortest path computation) for vpgraph/hpgraph. The con-
struction of vpgraph/hpgraph takes O(k?) time in the worst case where  is the size of
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the given formula. This is mainly due to the L; X Rs term in the handling of ¢1 A ¢2
(for vpgraph construction) and ¢ V ¢ (for hpgraph construction).

Given a vpgraph or hpgraph G(¢) = (V, R, L, E, Lit), the following definitions will
be used in subsequent discussion.

r-path: A path m = (ng, ..., ng) in G(¢) is said to be a r-path (rooted path) iff it starts
with a root node (ng € R). In Fig.[l(b), (2, 3) is a r-path while (3, 4) is not a r-path.
rl-path: A path m = (ng,...,ng) in G(¢) is said to be a rl-path iff it starts at a root
node and ends at a leaf node (ng € R and ny, € L). In Fig.[I(b), both (2, 3,4), (5,6, 8)
are rl-paths, but (3, 4) is not a rl-path.

Conflicting nodes: Two nodes nq,ne € V are said to be conflicting iff Lit(ni) =
—Lit(ns). In Fig.[[(b), nodes 2,4 are conflicting.

— We say an assignment o satisfies (falsifies) a node n € V iff o satisfies (falsifies)
Lit(n). An assignment which sets ¢ to true satisfies nodes 2, 8 and falsifies node 4
in Fig. [I(b).

— We say an assignment o safisfies (falsifies) a path 1 € G(¢) iff o satisfies (fal-
sifies) every node on 7. For example, in Fig. [[(b) path (5,6, 8) is satisfied by an
assignment which sets p to false and r, g to true. The same path is falsified by an
assignment which sets p to true and r, ¢ to false. We say that a path = € G is satis-
fiable iff there exists an assignment which satisfies 7. In Fig. [I(b), path (5, 6, 8) is
satisfiable, while the path (2, 3, 4) is not satisfiable due to conflicting nodes 2,4.

Recall, that an rl-path in a vpgraph G,,(¢) corresponds to a vertical path in the vh-
pform of ¢. Similarly, an rl-path in a hpgraph G} (¢) corresponds to a horizontal path
in the vhpform of ¢. The following corollaries adapt Theorem[Il and Theorem 2l to the
graph representations of the vhpform of a given formula ¢.

Corollary 1. An assignment o satisfies ¢ iff there exists a rl-path 7 in G, (¢) such that
o satisfies .

Corollary 2. An assignment o falsifies ¢ iff there exists a rl-path 7 in G1,(¢) such that
o falsifies .

The following corollary is a re-statement of corollary[l
Corollary 3. ¢ is satisfiable iff there exists a rl-path 7 in G, () which is satisfiable.

The following corollary connects the notion of conflicting nodes with the satisfiability
of a path.

Corollary 4. A path 7 in G(¢) is satisfiable iff no two nodes on m are conflicting.

Discovery of unit literals from hpgraph: Modern SAT solvers operating on a cnf rep-
resentation employ a unit literal rule for efficient Boolean constraint propagation. The
unit literal rule states that if all but one literal of a clause are set to false, then the
un-assigned literal in the clause must be set to true under the current assignment. In
our context the input formula is not necessarily represented in cnf, however, it is still
possible to obtain the unit literal rule via the use of the hpgraph of a given formula. The
following claim states the unit literal rule for the non-clausal formulas.
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Input: vpgraph G, (¢) = (V, R, L, E, Lit) and hpgraph G (¢) = (V',R', L', E’, Lit)
Output: If G, (¢) has a satisfiable rl-path return SAT, else return UNSAT

Algorithm:

l:st — R /Ipush all roots in G, (¢) on stack st
2010 /finitial truth assignment is empty

3:Vn €V :mrk(n) < false //all nodes are un-marked to start with
4: while (st # 0) /Istack st is not empty

5. m « st.top() // top element of stack st

6: if (mrk(m) == false) /lcan we extend current r-path CRP with m,
7. if (conflict == prune()) /Icheck if taking m causes conflict

8: learn() /lcompute reason for conflict and learn
9: backtrack () //non-chronological backtracking

10: continue //goto while loop (line 4)

11: end if

12: mrk(m) «— true /lextend current satisfiable r-path with m
13: o «— o U{Lit(m)} /fadd Lit(m) to current assignment

14: if((m € L) //node m is a leaf

15: return SAT /Iwe found a satisfiable rl-path in G, (¢)
16: else

17: push all children of m on st /ltry extending CRP(m) to reach a leaf
18: end if

19: else //backtracking mode

20: backtrack () /Inon-chronological backtracking

21: endif

22: end while

23: return UNSAT /o satisfiable rl-path exists in G, (¢)

Fig. 2. Searching a vpgraph for a satisfiable rl-path

Corollary 5. Let an assignment o falsify all but a subset of nodes Vs on an rl-path
in Gy, (@). If all nodes in V contain the same literal | and 1 is not already assigned by
o, then | must be set to true under o in order to obtain a satisfying assignment.

The above corollary follows from Theorem[3[b). Intuitively, each rl-path in the hpgraph
corresponds to a clause in the cnf of a given formula. Thus, at least one literal from each
rl-path in G}, (¢) must be satisfied in order to obtain a satisfying assignment.

Example: Consider the hpgraph shown in Fig.[Ilc) and an assignment ¢ which sets p, ¢
to false and s to true. o falsifies all but node 6 on the rl-path (1,2, 6,7) in the hpgraph.
It follows from Corollary 5] that Li#(6) which is r must be set to true under o.

4 Top Level Algorithm

In order to check the satisfiability of a nnf formula ¢, we obtain a vpgraph G, (¢).
From Corollary [3 it follows that ¢ is satisfiable iff G,,(¢) has a satisfiable rl-path. At
a high level our search algorithm enumerates all possible rl-paths until a satisfiable
rl-path is found. If no satisfiable rl-path is found, then ¢ is unsatisfiable. For dnf (or
dnf-like) formulas the number of rl-paths in vpgraph is small, linear in the size of the
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Fig. 3. (a) Current r-path or CRP in a vpgraph. (b) Can CRP be extended by node m? (c) Back-
tracking from node m. (d) vpgraph for formula (a V ¢) A (bV —a) A (-a V —c¢).

formula, and therefore the basic search algorithm is efficient. However, for formulas
that are not in dnf form, the algorithm of just enumerating all rl-paths in G, (¢) does not
scale. We have adapted several techniques found in modern SAT solvers such as search
space pruning, conflict driven learning, non-chronological backtracking to make the
search efficient. Search space pruning and conflict driven learning will be described in
detail in the following sections. Due to space restriction we present non-chronological
backtracking in a detailed version of this paper available at [3]].

The high level description of the algorithm is given in Fig.[2l The input to the algo-
rithm is a vpgraph G, (¢) = (V, R, L, E, Lit) and a hpgraph Gy, (¢) = (V',R', L', F’,
Lit") corresponding to a formula ¢. If G,(¢) contains a satisfiable rl-path, then the
algorithm returns SAT as the answer. Otherwise, ¢ is unsatisfiable and the algorithm
returns UNSAT. The algorithm uses the hpgraph G}, (¢) in various sub-routines such as
prune and learn. The following data structures are used:

e st is a stack. It stores a subset of nodes from V that need to be explored when
searching for a satisfiable rl-path in G, (¢). Initially, the roots in G, (¢) are pushed
on the stack st (line 1). Let st.top() return the top element of st. We write st as
[no, . .., ni] where the top element is nj, and the bottom element is ng.

e o stores the current truth assignment as a set. Each element of o is a literal which is
true under the current assignment. It is ensured that o is consistent, that is, it does
not contain contradictory pairs of the form [ and —I. Initially, o is the empty set
(line 2). For example, an assignment which sets variables a, b to true and c to false
will be denoted as {a, b, —c}.

e mrk maps a node in V' to a Boolean value. It identifies an r-path in G, (¢) which
is currently being considered by the algorithm to obtain a satisfiable rl-path (see
Fig.[B(a)). We refer to this r-path as the current r-path (CRP for short). Intuitively,
mrk(n) is true for nodes that lie on CRP (n € CRP) and false for all other nodes
in G,(¢). More precisely, the CRP is obtained by removing every node n from
the stack st for which mrk(n) is false. The remaining nodes constitute the CRP.
Initially, mrk(n) is set to false for every node n (line 3), thus, CRP is empty.
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Example: The vpgraph for the formula ¢ = (a V ¢) A (bV —a) A (—a V —¢) is shown
in Fig. Bl(d). Initially, we have st as [2,1] where the top element of the stack is 1,
o = 0, mrk(n) = false for all n € {1,2,3,4,5,6}. Suppose during the execu-
tion of the algorithm we have st as [2,1,4, 3,6, 5], and mrk(1), mrk(3) are true and
mrk(n) = false forn € {2,4,5,6}. Thus, CRP is (1,3). Observe that CRP is an
r-path. Intuitively, the algorithm tries to extend CRP by one node at a time, to obtain a
satisfiable rl-path. In this case CRP can be extended to obtain two rl-paths 71 = (1, 3, 5)
or my = (1,3, 6). However, only 5 is satisfiable (by 0 = {a, b, ~c}) and is enough to
show that ¢ is satisfiable.

The main part of the algorithm is the whi 1 e loop (lines 4-22) which executes as long
as st is not empty and the algorithm has not returned SAT on line 15. The algorithm
maintains the following loop invariant.

Loop invariant: At the beginning of iteration number ¢ of the while loop: let the
current r-path (CRP) be (ng, ..., ny). Then the assignment o is equal to { Lit(n;)|n; €
CRP}. That is, o satisfies each node on CRP and thus, o satisfies CRP. For example,
suppose CRP is (1, 3) in the vpgraph shown in Fig.[3(d), then o will be {a, b}.

If st is not empty, then the top element of the stack (denoted by m) is considered in
line 5. There are two possibilities for node m according to the i f statement in line 6.

e mrk(m) is false : In this case the algorithm checks if the current r-path CRP can be
extended by node m as shown in Fig.[3l(b). This check is carried out by a call to prune
(line 7). If prune returns conflict, then the current r-path extended by node m
cannot lead to a satisfiable rl-path. Thus, the solver needs to backtrack from node m,
and if possible extend CRP by some other node. This is done by calling backtrack
on line 9 and going back to while loop (line 4) by using continue (line 10). Before
backtracking a call to 1earn (line 8) is made which summarizes the reason for the con-
flict when CRP is extended by m. This reason is learned in form of a clause and is used
later to avoid similar conflicts. We denote CRP concatenated with m as CRP(m). De-
pending upon the reason why there is no satisfiable rl-path with CRP(m) as prefix, the
backtrack routine can pop several nodes from st (non-chronological backtracking)
instead of just popping m from st.

If a call to prune results in no-conflict (line 7), then m can extend CRP. In
this case execution reaches line 12. At line 12 mrk(m) is set to true, which means that
the new current r-path is CRP concatenated with m, that is, CRP(m). The algorithm
maintains the loop invariant that the assignment o satisfies the current r-path. In order
to maintain this invariant ¢ now needs to satisfy node m which is on the current r-path
CRP(m). This is done by adding Lit(m) to o (line 13). If m is a leaf in the vpgraph,
then CRP(m) is a satisfiable rl-path. In this case SAT is returned (lines 14-15). If m is
not a leaf, then the children of m are pushed on the stack (line 17). The algorithm will
next attempt to extend the current r-path CRP(m).

e mrk(m) is true : This happens when the current r-path is of the form (nq, . .., ng, m).
Intuitively, the algorithm has explored all possible rl-paths with (nq, . .., ng, m) as pre-
fix, but none of them leads to a satisfiable rl-path as shown in Fig. B(c). The algorithm
now backtracks from node m by calling backtrack on line 20 . Depending upon the
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Fig.4. (a) vpgraph for formula (a V ¢) A (b V —a) A (—a V —c). (b,c) vpgraph and hpgraph
for formula (a V ¢) A (b Au) V (d Av)) A (—aV —b), respectively. (d) vpgraph for formula
(avVe)A((BAuA (maV —b))V (dAv)).

reason why there is no satisfiable rl-path with (no, ..., ng, m) as prefix, the algorithm
can pop several nodes from st instead of just popping m.

For each node n removed from the stack during backtracking (lines 9, 20) mrk(n)
is set to false again. This enables the removed nodes to be examined again on rl-paths
which have not yet been explored.

5 Search Space Pruning

This section describes the procedure prune called in the non-clausal SAT algorithm
shown in Fig. 2] (line 7). A call to prune checks if the current r-path CRP can be ex-
tended by node m or not, as shown in Fig.[3(b). Intuitively, prune returns conflict
if there cannot be a satisfiable rl-path in vpgraph G, (¢) with CRP(m) as prefix. When
prune is called, the current r-path CRP is satisfied by assignment o, which is equal to
{Lit(n)|n € CRP} (maintained as a while loop invariant in the top level algorithm
shown in Fig.[2)). The three cases when conflict is returned are as follows:

Case 1: When CRP(m) is not satisfiable. This happens when there is a node n on CRP
such that Lit(n) = —Lit(m). In this case no assignment can satisfy the r-path CRP(m)
(Corollary ). For example, in the vpgraph shown in Fig.[d{a) this conflict arises when
the CRP is (1, 3) and m is node 5.

Otherwise, CRP(m) is satisfiable and o’ = o U {Lit(m)} satisfies CRP(m). How-
ever, it is still possible that there is no satisfiable rl-path in G, (¢) with CRP(m) as
prefix. These cases are described below.

Case 2 (Global conflict): When o' falsifies ¢. In this case no satisfiable rl-path in
G, (¢) can be obtained with CRP(m) as prefix. We prove this claim by contradiction.
Assume that there is an rl-path 7 in G, (¢) which has CRP(m) as prefix and is satisfi-
able. By definition there exists an assignment ¢’ which satisfies 7. From Corollary [II
we know that o’ satisfies ¢. In order to satisfy m, o’/ must satisfy CRP(m). That is,
o’ must contain Lit(n) for every n € CRP(m). Since ¢’ = {Lit(n)|n € CRP(m)}, it
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follows that o/ C ¢”. But ¢ falsifies ¢ and hence ¢” must falsify ¢. This leads to a
contradiction.

Example: In Fig. d(b) vpgraph for formula ¢ := (aVe) A ((bAw)V (dAv)) A (—aV —b)
is given. Consider the case when CRP is (1) and ¢ = {a}. The algorithm checks if
CRP can be extended by node 3 (m = 3). Using our notation o/ = {a, b}. Observe
that ¢’ falsifies ¢ by substituting a = true,b = true in ¢. There are two rl-paths
m = (1,3,5,7),m = (1,3,5, 8) in the vpgraph shown in Fig.[d{(b) which have (1, 3)
as prefix. Neither of these rl-paths is satisfiable: 71 is not satisfiable due to conflicting
nodes 1, 7 and 79 is not satisfiable due to conflicting nodes 3, 8.

Detection of global conflict: We use Corollary Rlto check if o’ falsifies ¢. We check if
there is an rl-path 7 in G}, (¢) such that ¢’ falsifies 7. Continuing the above example,
the hpgraph corresponding to ¢ is shown in Fig.[(c). Observe that o’ = {a, b} falsifies
the rl-path (7, 8) in Fig.[{c). Thus, using Corollary[2] it follows that ¢’ falsifies ¢.

If there is no global conflict, then the set of implied assignments can be found by the
application of unit literal rule on G}, (¢) as described in Corollary

Case 3 (Local conflict): This conflict arises when every rl-path in G, (¢) with CRP(m)
as prefix contains two nodes which are conflicting and one of the conflicting nodes
lies on CRP(m). Formally, this conflict arises when for every rl-path 7 in G, (¢) with
CRP(m,) as prefix there exist two nodes k,! € 7 and k € CRP(m) such that Lit(k) =
= Lit(l). From Corollary @] it follows that any rl-path 7 containing conflicting nodes is
not satisfiable. Thus, when a local conflict occurs no rl-path in G, (¢) with CRP(m) as
prefix is satisfiable. Whenever there is a global conflict (case 2 above) there is also a
local conflict, however, the reverse need not hold as shown by the example below.

Example: In Fig.[d(d) the vpgraph for formula ¢ := (aVe)A((bAuA(—aV—b))V(dAv))
is shown. Consider the case when CRP is (1) and m is node 3 (m = 3). Using our earlier
notation o’ = {a,b}. Note that o’ does not falsify ¢, which means there is no global
conflict. There are two rl-paths (1,3, 5,7), (1,3, 5, 8) in the vpgraph shown in Fig.[d(d)
which have (1, 3) as prefix. Both of these rl-paths contain two conflicting nodes, nodes
1,7 are conflicting on (1, 3, 5, 7) and nodes 3,8 are conflicting on (1, 3, 5, 8). Thus, there
is a local conflict and the solver needs to backtrack from node m = 3.

Detection of global and local conflicts can be done in linear time as described in a
more detailed version of this paper available at [3]]. Depending upon the type of conflict
(global or local) we perform global or local learning as described below.

6 Learning

Learning records the cause of a conflict. This enables the preemption of similar conflicts
later on in the search. In the following, a clause will refer to a disjunction of literals. A
clause C'is conflicting under an assignment o iff all literals in C' are falsified by o. If a
clause C' is not conflicting under an assignment o, we say C' is consistent under o. We
distinguish between two types of learning:

Global learning: A globally learned clause is a clause whose consistency must be
maintained irrespective of the current search state, which is given by the current
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r-path CRP (and assignment o = {Lit(n)|n € CRP}). That is, whenever a globally
learned clause becomes conflicting under o the solver abandons the current search state
and backtracks. A globally learned clause is generated from a conflicting clause. A
conflicting clause C' arises in two cases as described below.

1) When analyzing global conflicts as described in the previous section. When a global
conflict occurs there is an rl-path 7 in hpgraph G}, (¢) which is falsified by the assign-
ment o currently under consideration. The set of literals corresponding to the nodes on
7 gives us a clause C' :=\/, . (Lit(n)). Observe that C is a conflicting clause, that is,
all literals occurring in C' are set to false under the current assignment.

Example: The hpgraph corresponding to ¢ := (aVc) A ((bAw)V (dAv))A(—aV —b) is
shown in Fig.H{c). A global conflict occurs when the current assignment is o = {a, b},
that is, o falsifies ¢. In this case the rl-path in the hpgraph which is falsified by o is
(7,8). Thus the required conflicting clause is —a V —b.

2) When all literals of an existing globally learned clause C' become false.

Once a conflicting clause C'is obtained, we perform a 1-UIP (first unique implication
point) analysis [19] to obtain a learned clause C”. Clause C” is added to the database
of globally learned clauses. In order to perform 1-UIP analysis we maintain a notion of
a decision level. We associate a decision level dec(n) with each node n in the current
r-path CRP. We also maintain a set of implied literals at each node (or decision level)
along with the reason (set of variable assignments) which led to the implication. We
follow the same algorithm as in [[19] to perform the 1-UIP learning.

Local learning: A locally learned clause is associated to a node n in the vpgraph when
a local conflict occurs at n. Suppose C' is a locally learned clause at node n. Then the
consistency of C needs to be maintained only when n is part of the current search state,
that is, n € CRP. If n does not lie on CRP, then the consistency of C'is irrelevant. This is
in contrast to a globally learned clause whose consistency must always be maintained.

Example: Consider the local conflict which occurs in the vpgraph in Fig. @(d) when
CRP is (1) and it is checked if CRP can be extended by m = 3. In this case every
rl-path in vpgraph with (1, 3) as prefix contains two conflicting nodes one of which lies
on (1, 3). The rl-path (1, 3, 5, 7) has conflicting nodes 1,7 and the rl-path (1, 3, 5, 8) has
conflicting nodes 3,8. In this case a clause Lit(7) V Lit(8) = —a V —b can be learned
at node 3. Intuitively, when we consider extending the CRP with node m the (locally)
learned clauses at node m must be consistent with the assignment o = {Lit(n)|n €
CRP(m)}. Otherwise, a local conflict will occur at m causing the solver to backtrack.
Having learned clauses at node m avoids repeating the work done in detecting the same
local conflict. For the vpgraph in Fig. [(d), when CRP is (2) and m = 3, 0 = {¢,b}
is consistent with the learned clause —a V —b at node 3, thus, the solver cannot get the
same local conflict at node 3 as before (when CRP was (1) and m = 3).

If a local conflict occurs when extending CRP by node m, then a clause is learned at
node m as follows: For each rl-path 7 having CRP(m) as prefix let wy (7), wa(7) denote
the pair of conflicting nodes on 7. Without loss of generality assume that wy () lies on
CRP(m). Then the learned clause C' at node m is given by \/ _ Lit(w(7)). Consistency
of C' must be maintained only when considering rl-paths passing through m.
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Table 1. Comparison between SatMate, MiniSat, BerkMin, Siege, zChaff. "Time” gives total
time in seconds and Solved” gives #problems solved within timeout of 600 seconds/problem.

Bench #Probs  SatMate MiniSat BerkMin Siege zChaff
-mark Time Solved Time Solved Time Solved Time Solved Time Solved
QGo6 256 23266 235 49386 179 46625 184 46525 184 47321 180
QGo6* 256 23266 235 37562 211 15975 239 30254 225 45557 186
Mboard 19 4316 12 4331 12 4947 11 4505 12 5029 11
Pigeon 19 5110 11 6114 9 5459 10 6174 9 5483 11

7 Experimental Results

The experiments were performed on a 1.5 GHZ AMD machine with 3 GB of memory
running Linux. The techniques described in the paper have been implemented in a SAT
solver called SatMate [3]. The non-clausal input formula is given in EDIMACS [1] or
ISCAS format. SatMate also accepts cnf inputs in DIMACS format. We compare Sat-
Mate against four state-of-the-art cnf SAT solvers MiniSat version 1.14 [2], BerkMin
version 561 [[10]], Siege version 4 [4]], and zChaff version 2004.5.13 [14].

QG6 benchmarks: The authors of [13] provided us with a benchmark set called QG6
which consists of 256 non-clausal formulas of varying difficulty. These benchmarks
were generated during the construction of classification theorems for quasigroups [[13].
The cnf version of these problems was also made available to us by the authors of [13].
The cnf version was obtained by directly expressing the problem of classifying qua-
sigroups into cnf as opposed to the translation of non-clausal formulas into cnf. The
non-clausal versions of these benchmarks have 300 variables and 7500 gates (AND,
OR gates) on average, while the cnf versions have 1700 variables and 7500 clauses
on average. We ran SatMate on the non-clausal formulas and cnf SAT solvers on the
corresponding cnf formulas from QG®6 suite.

QG6* benchmarks: We translated the non-clausal formulas from the QG6 suite into
cnf by introducing new variables [15]. The cnf formulas obtained after translation have
7500 variables and 30000 clauses on average. We ran cnf SAT solvers on the cnf formu-
las obtained after translation. Note that we still ran SatMate on the non-clausal formulas.

Mboard benchmarks: encode the mutilated-checkerboard problem.
Pigeon benchmarks: encode the pigeon hole principle with n holes and n + 1 pigeons.

Both QG6 and QG6* benchmarks contain a mixture of satisfiable and unsatisfiable
problems. All problems in the Mboard and Pigeon benchmarks are unsatisfiable.

The experimental results are summarized in Table[Il The column “#Probs” gives the
number of problems in each benchmark set. There was a timeout of 10 minutes per
problem per solver. For each solver we report two quantities: 1) “Time” is the total
time spent in seconds when solving problems in a given benchmark, including the time
spent (= timeout) for each instance not solved within timeout. 2) ”Solved” gives the
total number of problems that were solved within timeout.



88 H. Jain, C. Bartzis, and E. Clarke

Table 2. Comparison on individual benchmarks. Timeout is 1 hour per problem per solver.
”Time” sub-column gives time taken in seconds.

Problem SatMate MiniSat BerkMin Siege zChaff
Time Local confs Global confs Time  Time Time Time
dnd02 174 23500 15588 1308 1085 1238 TO
brnl3 181 20699 20062 1441 1673 1508 TO
icl39 200 22683 14069 TO TO 2629 TO
icl45 TO 4850 72106 TO 2320 1641 TO
q2.14 237 113 15863 23 24 34 88
cache.invl2 58 659 7131 1 1 1 2

Summary of results in Table[It On QG6 benchmarks SatMate solves around 50 more
problems and it is approximately 2 times faster than the cnf SAT solvers MiniSat, Berk-
Min, Siege, and zChaff. On QG6* benchmarks SatMate performs better than MiniSat,
zChalff, Siege. However, BerkMin outperforms SatMate on QG6* benchmarks. The dif-
ference in the performance of cnf SAT solvers on QG6 and QG6* benchmarks shows
how the differences in the encoding of a given problem to cnf can significantly im-
pact the performance of cnf SAT solvers. The performance of SatMate on Mboard and
Pigeon benchmarks is slightly better than the cnf SAT solvers.

Table [2lsummarizes the performance of SatMate and four cnf SAT solvers on various
individual problems. Problems dnd02, brnl3, icl39, icl45 are from QG6
benchmark suite. Problems g2 .14, cache.inv12 are generated by a verification
tool. The sub-column “Time” gives the time required for SAT solving (in seconds). For
SatMate we report the number of local conflicts and the number of global conflicts (Sec-
tion[3) in the "Local confs” and ”Global confs” sub-columns, respectively. A timeout of
1 hour was set per problem. We denote timeout by “TO”. In case of timeout we report
the number of conflicts just before the timeout for SatMate.

Performance of SatMate is correlated with the number of local conflicts and global
conflicts. A local conflict is a conflict that occurs in a part of a formula and it depends
on the structure of the vpgraph. There is no equivalent of local conflict in cnf SAT
solvers. In cnf SAT solvers a conflict arises when the current assignment falsifies an
original/learned clause which is equivalent to a global conflict. As shown in Table[2]the
number of local conflicts is usually comparable to the number of global conflicts on the
benchmarks where SatMate outperforms cnf SAT solvers. Indeed the performance of
SatMate degrades if no local conflict detection and local learning is done.

8 Conclusion

We presented a new non-clausal SAT solver based on the General Matings approach.
This approach involves the search for a vertical path which does not contain opposite
literals in the vertical-horizontal path form (vhpform) of a given negation normal form
formula. The main challenge in obtaining an efficient SAT solver based on the General
Matings approach is to prevent the enumeration of vertical paths. We presented tech-
niques for preventing the enumeration of vertical paths and graph based representations
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of the vhpform for efficient implementation of these ideas. Experimental results show
that on a class of non-clausal benchmarks our SAT solver has a performance compara-
ble to the current state-of-the-art cnf SAT solvers. Overall, our results show the promise
of the General Matings approach in building SAT solvers.

Acknowledgment. We thank Peter Andrews for his useful comments and Malay Ganai,
Guoqiang Pan, Sanjit Seshia, Volker Sorge for providing us with benchmarks.
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