Action Language Verifier, Extended*

Tuba Yavuz-Kahveci!, Constantinos Bartzis2, and Tevfik Bultan®

! University of Florida
2 Carnegie Mellon University
3 UC, Santa Barbara

1 Introduction

Action Language Verifier (ALV) is an infinite state model checker which specializes
on systems specified with linear arithmetic constraints on integer variables. An Action
Language specification consists of integer, boolean and enumerated variables, param-
eterized integer constants and a set of modules and actions which are composed us-
ing synchronous and asynchronous composition operators [3,7]. ALV uses symbolic
model checking techniques to verify or falsify CTL properties of the input specifica-
tions. Since Action Language allows specifications with unbounded integer variables,
fixpoint computations are not guaranteed to converge. ALV uses conservative approxi-
mation techniques, reachability and acceleration heuristics to achieve convergence.

Originally, ALV was developed using a Polyhedral representation for linear arith-
metic constraints [4]. In the last couple of years we extended ALV by adding an au-
tomata representation for linear arithmetic constraints [2]. ALV also uses BDDs to en-
code boolean and enumerated variables. These symbolic representations can be used in
different combinations. For example, polyhedral and automata representations can be
combined with BDDs using a disjunctive representation. ALV also supports efficient
representation of bounded arithmetic constraints using BDDs [2]. Other extensions to
ALYV include several techniques to improve the efficiency of fixpoint computations such
as marking heuristic and dependency analysis, and automated counting abstraction for
verification of arbitrary number of finite state processes [7].

2 Symbolic Representations

ALV uses the Composite Symbolic Library [8] as its symbolic manipulation engine.
Composite Symbolic Library provides an abstract interface which is inherited by every
symbolic representation that is integrated to the library. ALV encodes the transition
relation and sets of states using a disjunctive, composite representation, which uses the
same interface and handles operations on multiple symbolic representations.

Polyhedral vs. Automata Representation: Current version of the Composite Sym-
bolic Library uses two different symbolic representations for integer variables: 1) Poly-
hedral representation: In this approach the valuations of integer variables are repre-
sented in a disjunctive form where each disjunct corresponds to a convex polyhedron

* This work is supported by NSF grant CCR-0341365.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 413-}17, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

414 T. Yavuz-Kahveci, C. Bartzis, and T. Bultan

and each polyhedron corresponds to a conjunction of linear arithmetic constraints. This
approach is extended to full Presburger arithmetic by including divisibility constraints
(which is represented as an equality constraint with an existentially quantified vari-
able). 2) Automata representation: In this approach a Presburger arithmetic formula
on v integer variables is represented by a v-track automaton that accepts a string if it
corresponds to a v-dimensional integer vector (in binary representation) that satisfies
the formula. Both of these symbolic representations are integrated to the Composite
Symbolic Library by implementing the intersection, union, complement, backward and
forward image operations, and subsumption, emptiness and equivalence tests, which
are required by the abstract symbolic interface. We implemented the polyhedral rep-
resentation by writing a wrapper around the Omega Library [1]. We implemented the
automata representation using the automata package of the MONA tool [6] and based
on the algorithms discussed in [2].

BDD Representation for Bounded Integers: We also integrated algorithms for con-
structing efficient BDDs for linear arithmetic formulas to ALV [2]. The size of the BDD
for a linear arithmetic formula is linear in the number of variables and the number of
bits used to encode each variable, but can be exponential in the number of and and
or operators [2]. This bounded representation can be used in three scenarios: 1) all
the integer variables in a specification can be bounded, 2) infinite state representations
discussed above may exhaust the available resources during verification, or 3) infinite
state fixpoint computations may not converge. Note that, for cases 2 and 3, verifica-
tion using the bounded representation does not guarantee that the property holds for the
unbounded case, i.e., the bounded representation is used for finding counter-examples.

Polymorphic Verification: Due to the object oriented design of the ALV, implemen-
tation of the model checking algorithms are polymorphic. This enables the users to
choose different encodings without recompiling the tool. For example, one can first try
the polyhedral encoding and if the verification takes too long or the memory consump-
tion is too much the same specification can be checked using the automata encoding.
The user specifies the encoding to be used as a command line argument to the ALV.
When there are no integer variables in the specification or if the bounded BDD repre-
sentation for integers is used, ALV automatically runs as a BDD based model checker.

3 Fixpoint Computations

ALV is a symbolic model checker for CTL. It uses the least and greatest fixpoint char-
acterizations of CTL operators to compute the truth set of a given temporal property. It
uses iterative fixpoint computations starting from the fixpoint for the innermost tempo-
ral operator in the formula. At the end, it checks if all the initial states are included in the
truth set. ALV supports both the {EX, EG, EU} basis and the {EX, EU, AU} basis for
CTL. ALV uses various heuristics to improve the performance of the fixpoint computa-
tions. We discuss some of them below. The reader is referred to [7] for the experimental
analysis of these heuristics.

Marking Heuristic: Since composite representation is disjunctive, during the least fix-
point computations the result of the kth iteration includes the disjuncts from the k& — 1st

Action Language Verifier 415

iteration. A naive approach that applies the image computation to the result of the kth
iteration to obtain the result of the k£ + 1st iteration performs redundant computations,
i.e., it recomputes the image for the disjuncts coming from the result of the £ — 1th
iteration. We alleviate this problem by marking the disjuncts coming from the & — 1st
iteration when we compute the result of the kth iteration [7]. Hence, at the k + 1st it-
eration, we only compute the images of the disjuncts that are not marked, i.e., disjuncts
that were added in the kth iteration. Markings are preserved during all the operations
that manipulate the disjuncts and they are also useful during subsumption check and
simplification. When we compare the result of the current iteration to the previous one,
we only check if the unmarked disjuncts are subsumed by the previous iteration. Dur-
ing the simplification of the composite representation (which reduces the number of
disjuncts) we try to merge two disjuncts only if one of them is unmarked.

Dependency Analysis: Typically, in software specifications, the transition relation cor-
responds to a disjunction of a set of atomic actions. Since the image computation dis-
tributes over disjunctions, during fixpoint computation one can compute the image of
each action separately. It is common to have pairs of actions a; and a9 such that, when
we take the backward-image of ay with respect to true and then take the backward-
image of a; with respect to the result, we get false. Le., there are no states s and s’ such
that s’ is reachable from s by execution of a; followed by execution of as. This implies
that, during the kth iteration of a backward (forward) fixpoint computation, when we
take the backward-image (forward-image) of a; (a3) with respect to the result of the
backward-image (forward-image) of as (a;) from the k£ — 1st iteration, the result will
be false. We use a dependency analysis to avoid such redundant image computations
[7]. First, before we start the fixpoint computation, we identify the dependencies among
the actions using the transition relation. Then, during the fixpoint computation, we tag
the results of the image computations with the labels of the actions that produce them,
and avoid the redundant image computations using the dependency information.

Approximations, Reachability, and Accelerations: For the infinite state systems that
can be specified in Action Language, model checking is undecidable. Action Language
Verifier uses several heuristics to achieve convergence: 1) Truncated fixpoint compu-
tations to compute lower bounds for least fixpoints and upper bounds for greatest fix-
points, 2) Widening heuristics (both for polyhedra and automata representations) to
compute upper bounds for least fixpoints (and their duals to compute lower bounds
for greatest fixpoints), 3) Approximate reachability analysis using a forward fixpoint
computation and widening heuristics, 4) Accelerations based on loop-closures which
extract disjuncts from the transition relation that preserve the boolean and enumerated
variables but modify the integer variables, and then compute approximations of the
transitive closures of the integer part.

4 Counting Abstraction

We integrated the counting abstraction technique [5] to ALV in order to verify prop-
erties of parameterized systems with arbitrary number of finite state modules. When a
module is marked to be parameterized, ALV generates an abstract transition system in

416 T. Yavuz-Kahveci, C. Bartzis, and T. Bultan

which the local states of the parameterized module are abstracted away (by removing
all the local variables) but the number of instances in each local state is counted by
introducing an auxiliary integer variable for each local state. An additional parameter-
ized constant is introduced to denote the number of instances of the module. Counting
abstraction preserves the CTL properties that do not involve the local states of the ab-
stracted processes. When we verify properties of a system using counting abstraction
we know that the result will hold for any number of instances of the parameterized mod-
ule and if we generate a counter-example it corresponds to a concrete counter-example.
Note that counting abstraction technique works only for modules with finite number of
local states.

S An Example

Here, we will briefly describe the verification of the concurrency control component
of an airport ground traffic control simulation program (this and other examples and
the ALV tool are available at http://www.cs.ucsb.edu/ bultan/composite/).
The simulation program uses an airport ground network model which consists of two
runways (16R, 16L) and 11 taxiways. The Action Language specification has one main
module and two submodules representing departing and arriving airplanes. We use in-
teger variables to denote the number of airplanes in each runway and taxiway. A local
enumerated variable for each submodule denotes the locations of the airplanes. A set of
actions for each submodule specifies how the airplanes move between the runways and
taxiways based on the airport topology. The specification has 13 integer variables and
2 and 4 boolean variables for each instantiation of the departing and arriving airplane
modules, respectively (these boolean variables are generated by the ALV compiler to
encode the enumerated variables).

The property “At any time there is at most one airplane in either runway,” is ex-
pressed as AG (numl16R<=1 and numl6L<=1). ALV verified this property on an in-
stance with 8 departing and 8 arriving airplanes (13 integer variables, 48 boolean vari-
ables) in 1.20 seconds using 46.5 MBytes of memory (on a 2.8 GHertz Pentium 4
processor with 2 GBytes of main memory). We also verified this property on the pa-
rameterized specification for arbitrary number of arriving and departing airplanes using
automated counting abstraction (which generates 20 additional integer variables and 2
parameterized integer constants). ALV verified the property above on the parameterized
instance in 9.38 seconds using 6.7 MBytes of memory using the option to compute an
approximation of the reachable states (using widening) and the marking heuristic.

References

1. The Omega project. Available at http://www.cs.umd.edu/projects/omega/

2. C. Bartzis. Symbolic Representations for Integer Sets in Automated Verification. PhD thesis,
University of California, Santa Barbara, 2004.

3. T.Bultan. Action language: A specification language for model checking reactive systems. In
Proc. ICSE 2000, pages 335-344, June 2000.

4. T. Bultan and T. Yavuz-Kahveci. Action language verifier. In Proc. of ASE 2001, pages
382-386, November 2001.

Action Language Verifier 417

. G. Delzanno. Automatic verification of parameterized cache coherence protocols. In Proc.
CAV 2000, pages 53-68, 2000.

. J. G. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund, R. Paige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. In Proc. TACAS 1995, 1995.

. T. Yavuz-Kahveci. Specification and Automated Verification of Concurrent Software Systems.
PhD thesis, University of California, Santa Barbara, 2004.

. T. Yavuz-Kahveci and T. Bultan. A symbolic manipulator for automated verification of reac-
tive systems with heterogeneous data types. STTT, 5(1):15-33, November 2003.

	Introduction
	Symbolic Representations
	Fixpoint Computations
	Counting Abstraction
	An Example
	References

