
The JAVELIN Question-Answering System at TREC 2003:
A Multi-Strategy Approach with Dynamic Planning

E. Nyberg, T. Mitamura, J. Callan, J. Carbonell, R. Frederking,
K. Collins-Thompson, L. Hiyakumoto, Y. Huang, C. Huttenhower, S. Judy, J. Ko,

A. Kupść, L. V. Lita, V. Pedro, D. Svoboda and B. Van Durme

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Abstract

The JAVELIN system evaluated at TREC 2003
is an integrated architecture for open-domain
question answering. JAVELIN employs a mod-
ular approach that addresses individual aspects
of the QA task in an abstract manner. The Sys-
tem implements a planner that controls the ex-
ecution and information flow, as well as a mul-
tiple answer seeking strategies used differently
depending on the type of question.

1 System Overview

JAVELIN is an object-oriented architecture that separates
the processing details of individual operations (e.g. tag-
gers, parsers) from the contexts in which they are used.
JAVELIN is a flexible and extensible platform which sup-
ports component-level evaluation, so that different strate-
gies can be tested individually and then integrated into
the system in a straightforward manner.

The current system (Figure 1) brings together a large
number of modular components that perform various
question-answering tasks, such as: question analysis,
document and passage retrieval, answer candidate extrac-
tion, answer selection, answer justification, and planning.
The Planner module uses abstract interface definitions for
each component to select and order the execution of indi-
vidual components, allowing the system to dynamically
generate multiple processing strategies and replan when
necessary.

The details of execution are handled by the Execution
Manager, a component which uses a Data Repository for
storing session data (process steps, intermediate and final
results). JAVELIN incorporates a user interaction com-
ponent (GUI) for question input and user clarification.
The system also includes an Answer Justification module,
which provides a browsable view of the process history,
intermediate data structures and final results.

1.1 Question Analysis

The Question Analyzer (QA) produces a programmatic
representation of each input question for use by the rest
of the JAVELIN system. This representation (referred to
as a Request Object or RO) contains three major features:
the answer type, keyword sets, and a logical representa-
tion of the question. Although many systems generate
the first two features through surface analysis of the in-
put question, JAVELIN also attempts to apply natural lan-
guage processing to obtain a logical representation of the
question. The logical representation attempts to capture
the semantics (meaning) of the question; a similar repre-
sentation has been reported for question node templates
in (Harabagiu et al., 2000).

In the QA module, natural language processing occurs
in two steps: lexical and syntactic parsing. Since the in-
puts to be analyzed are open-domain questions, most spe-
cific dictionaries provide inadequate coverage. Instead,
we use several external tools designed for open-domain
text:

• Brill tagger (Brill, 1995) for part-of-speech tagging;

• BBN IdentiFinder (Bikel et al., 1999) for named en-
tity tagging (people, organizations, locations, etc.);

• WordNet (Fellbaum, 1998) for use in finding hyper-
nym relationships for semantic categorization and
for extracting the root form of a word;

• KANTOO Lexifier (Nyberg and Mitamura, 2000)
for finding verb valencies.

The QA module uses the KANTOO parser (Nyberg
and Mitamura, 2000) and hand-built grammar for syn-
tactic analysis. The module extract semantic informa-
tion produced by KANTOO’s lexical processing rules,
and specific rule-based patterns are inserted as needed.
Specialized grammar rules are used on a per-answer-
type basis to recognize syntactic and semantic similar-
ities among questions. The grammars of fundamental



Domain

Model

Planner

Data

Repository

JAVELIN

GUI

Execution

Manager

process history 

& data
JAVELIN operator 

(action) models

Question 

Analyzer

Retrieval

Strategist

Answer

Generator

FST

Extractor

Light

Extractor

SVM

Extractor

KNN

Extractor

question

ack

response

dialog

answer

store

exe

results

modify

exe

results

exe

results

..
.

Information

Extractors

Answer

Justification

Web

Browser

NLP

Extractor

Figure 1: The JAVELIN architecture. The Planner operates as a service for the user interface and controls execution of
the individual components via the Execution Manager. The Planner selects from a set of 5 different extraction modules
according to its domain model of the QA process.

constituents are modularized (e.g. NPs and VPs) to sup-
port straightforward combination of different constituent-
level grammars into sentence-level grammars.

1.2 Retrieval Strategist

The main purpose of the Retrieval Strategist (RS) mod-
ule is to retrieve likely answer documents from the doc-
ument repository in response to a query. The RS module
also acts as a document server for other parts of JAVELIN
which trigger lookup requests for specific documents or
passages. The RS module operates on the Request Object
produced by the Question Analyzer. The salient subparts
of the Request Object are a) the set of keywords produced
for the question, and b) a set of constraints associated
with the retrieval process.

The keywords are words or phrases which the QA
module has deemed likely to be present in the answer.
Each keyword is one of three types: a) a single word; b)
a short phrase, e.g. ’electoral college’; c) a proper name,
e.g. ’Elvis Presley’. No query expansion is currently per-
formed by the RS module on the keywords. However, the
QA module may specify a set of alternates for any given
keyword, which are treated as synonyms for retrieval.

The set of constraints present in the Request Object
includes:

• upper and lower limits on the number of ranked doc-
uments to be retrieved;

• the likely answer type;

• one or more subtypes for the given answer type;

• the total time allowed for processing.

Since TREC 2002, we have switched from using the
proprietary Inquery retrieval system to the Lemur 2.0
toolkit (Oglivie and Callan, 2002). Lemur is open-source
and supports a variety of retrieval models, including sup-
port for Inquery-style structured queries.

Stemming is done at indexing time using the Lemur
Porter stemmer. Before indexing, our source documents
are preprocessed with the BBN Identifinder (v1.7) named
entity tagger (Bikel et al., 1999) to identify named en-
tities such as ’Organization’, ’Time’, ’Date’, ’Person’,
’Place Name’, ’Currency Amount’, ’Number’, ’Percent-
age’, and object types such as ’Animal’, ’Plant’, ’Prod-
uct’, ’Game’, etc. This analysis attempts to focus re-
trieval on documents containing not only the relevant
keywords, but also relevant data types. At indexing time,
any terms within a span of text identified as a named en-
tity are stored in the index using a set of corresponding
special fields.

To process a query at runtime, if a likely answer type
is specified, it is mapped to a set of named entity types.
For example, an answer expected to be of ’temporal’
type might map to either a ’Time’ or ’Date’ named en-
tity field. These named entity fields are treated as special
’keywords’ to be included in the terms passed to Lemur.

The current search algorithm is similar to the algorithm
used in TREC 2002, and proceeds using an incremental
query relaxation technique; starting from an initial query
that is highly constrained, the algorithm searches for all
the keyword terms and data types in close proximity to



each other. However, last year’s algorithm (TREC 2002)
always included all keywords at every relaxation step,
while this year’s algorithm attempts to be more flexible
by assigning a priority to each keyword. This priority
is based on a function of the likely answer type, keyword
type (word, proper name, or phrase) and the inverse docu-
ment frequency (idf) value of the keyword term(s). Key-
words deemed more likely to exist near the answer are
given higher priority. At each iteration, a priority thresh-
old is adjusted which may result in lower-priority key-
words being discarded from the query.

As before, at each relaxation step, the algorithm also
relaxes other parameters in the query such as the word
proximity window. This assumes that more likely an-
swer documents will have clusters of relevant question
keywords and data types in closer proximity. Another
new feature of this year’s algorithm is the use of a hybrid
IR model in which earlier, more constrained query steps
use the structured query retrieval model, while later steps
switch to a tf.idf model. The algorithm terminates once
the requested document list is full, or there are no more
relaxation steps possible. The complete set of relaxation
parameters includes:

1. The Inquery-style proximity/belief operator used to
combine keywords. At each relaxation step, we ei-
ther keep the same operator but expand the window
size, or start with a new, more general operator. The
operator applies to all keywords given in the query.
For example, initially all keywords must be found
within a proximity of three words. We then relax the
operator to consider unordered 20-, 100-, and 250-
word windows, followed by document-wide proba-
bilistic AND, and so on.

2. Phrase proximity, for any phrase keywords. This
is usually kept at 3 words or less, until later in the
relaxation regime, when the window is slightly ex-
panded.

3. Proper name proximity, for any proper name key-
words. Like phrase keywords, this is usually kept
at 3 words or less until very late in the relaxation
regime, when the window is slightly expanded.

4. The inclusion or exclusion of the special named en-
tity ’keywords’ corresponding to the answer type.
This alternates between ’on’ and ’off’ at every re-
laxation step.

5. The keyword priority threshold, which starts low
and is slowly increased with further steps.

The iterative relaxation technique may be considered
as an implicit scoring strategy in which the relevance of
a document relative to the question is inversely propor-
tional to its window span size, and directly proportional

to the tf.idf sum of keywords appearing in the window.
The final RS module output is a ranked list of document
IDs.

1.3 Information Extractor

The Information Extractor (IX) module extracts candi-
date answers from relevant documents retrieved by the
RS module. JAVELIN implements a multi-strategy ap-
proach to answer extraction (Czuba et al., 2003), and in-
cludes several different implementations of the IX mod-
ule. The assumption is that optimal performance in ex-
tracting different answer types may require a number
of separate strategies, ranging from simple finite state
transducers to classifiers trained to separate correct an-
swers from incorrect answers. Each information extrac-
tion method scores candidate answers (with their corre-
sponding passages) and passes them down the pipeline to
the Answer Generator for canonicalization and cluster-
ing. Scoring functions differ among the IX modules, and
their scores are not normalized individually.

The first and most straightforward extraction approach
(Light IX) implements a non-linear weighted proximity
metric that spans a passage of three sentences. This ap-
proach identifies candidate answers of the appropriate
type and assigns a score based on proximity to question
terms and their synonyms. This IX module implements
specific strategies for definition questions, relationship
questions, and person biography questions.

Another strategy is to combine statistical features
emerging from a passage and an answer, and train a clas-
sifier to separate correct answers from incorrect ones for
each specific answer type. The classifiers were trained
on Trec9 and Trec10 datasets, and include a support vec-
tor machine (SVM IX) classifier as well as a k-nearest
neighbors (KNN IX) classifier. The positive versus nega-
tive data ratio was tuned for best performance.

The final strategy is based on traditional informa-
tion extraction and implements a finite state transducer
(FST IX). This approach is modeled after each ques-
tion type/relationship that the Question Analyzer identi-
fies. The FST IX is based on lexical features, Wordnet
features, and surface form flags. It is most appropriate
for question types where answers can be extracted us-
ing a handful of simple patterns (Ravichandran and Hovy,
2002)1.

1.4 Answer Generator

The Answer Generator (AG) module is responsible for
producing a ranked list of answers from the set of answer
candidates produced by the IX modules. The AG also

1We are also working to add an Information Extractor based
on NLP analysis of answer passages (NLP IX); although this
module is shown in Figure 1, it was not integrated into the sys-
tem evaluated for TREC 2003.



makes use of the Request Object produced by the QA
module. The AG performs several normalization func-
tions, such as combining similar answer candidates and
applying answer type checking to filter out inappropriate
answers.

Type checking is very important when selecting proper
answers from a candidate list. Earlier modules can some-
times produce irrelevant answers, leading to candidates
which do not match the question. For example, for the
question, ”What continent is Egypt on?” the AG might
receive the candidates, ”Middle East”, ”Arab”, ”Islam”,
and ”Africa”. The answer type is location (continent), so
the AG should select ”Africa” as the final answer.

Currently, the AG uses WordNet, the Tipster Gazetteer
(TIPSTER, 1992), the Web, and type-specific patterns to
support answer type checking. WordNet provides hyper-
nym and meronym relationship information used by the
AG to determine the relationships between candidate an-
swers and the target answer type (Cardie et al., 2000).
The Web is also used as a resource to see how strongly
these relationships are supported: the AG creates valida-
tion patterns from the answer type and answer candidates,
sends a request to the Web, and generates a score from the
number of retrieved documents (Magnini et al., 2002).
For location questions, the AG examines both WordNet
and the Gazetteer; the latter provides extensive informa-
tion on various city, state, and country names.

When no adequate answer can be found, the AG com-
municates this information to the Planner. This allows
a new strategy to be applied to the question, potentially
resulting in a correct answer.

1.5 Execution Manager and Repository

The Execution Manager (EM) module coordinates com-
munication between the Planner and all other modules.
Additionally, it communicates with the Repository, a cen-
tralized SQL database containing all of the information
and analysis generated by JAVELIN during question an-
swering. Aside from creating a complete history of sys-
tem behavior, this allows analysis data to be collected
in a manner such that the Answer Justification module
can easily create justification results for display to the
user. The EM’s runtime coordination and communica-
tion with the Repository provide fundamental support for
JAVELIN’s object-oriented, modular architecture.

1.6 Planner

The Planner module is responsible for controlling the
question-answering process. It selects and issues se-
quences of module calls to maximize the expected util-
ity of the information JAVELIN produces, taking into ac-
count the current information state and system resources.
This increases the system’s flexibility to generate dif-
ferent strategies at run-time, exploit different modules’

strengths for specific question types, and more robustly
handle module failures as they arise.

Figure 2 presents a high-level view of the Planner’s
architecture. The Planner operates as a service for the
JAVELIN GUI, and communicates with the rest of the
system via the Execution Manager.2 Upon receiving a
new question, the Planner calls the Question Analyzer
(via the EM) and uses the resulting question analysis to
generate a planning problem describing the initial state
(features of the question analysis), and an information
goal based on the expected answer type.

EMInterface

Object

Database

JAVELIN GUI

Problem
session storage for 

numeric & symbolic 

features of state 

objects

State,

Action
State

Execution Manager

Results XMLExecute XML

BeliefState & State 

plan representation

..
.

Planner
PlannerOutput

QA domain model 

updates

Question 

XML

Server

Domain,

Operators

Answer 

XML

ObjectWithFeatures

QA Components Document Retrieval
Question Analysis

Answer Selection
Pattern Extraction

KNN Extraction

SVM Extraction FST Extraction
Data Repository

Figure 2: Relationship of the Planner to the JAVELIN QA
system. Within the Planner module, a server component
provides the QA domain-specific functionality, while the
Planner component provides domain-independent plan-
ning functionality.

The planning and execution process is based on a
forward-chaining utility-based algorithm that performs a
best-first search across the set of possible information
states (Hiyakumoto and Veloso, 2002). Beginning with
the initial state representation and an empty plan, the
Planner evaluates all actions applicable in the current
state, selecting the one whose projected outcome states
have the highest expected utility. Expected utility is es-
timated using a weighted combination of the states’ in-
formation quality metrics and likelihoods. The internal
planning state is then projected forward to reflect the pos-

2It should be noted that the normal operating mode for the
GUI and Planner includes an option for the Planner to solicit
user-feedback during the QA process. This functionality was
disabled during the TREC evaluation, and a batch-mode script
was used in place of the standard GUI to issue questions to the
Planner module.



sible outcomes of the chosen action, and the selection
process repeats. At each step, the algorithm also decides
between executing the first unexecuted action in the plan
and continuing to plan with the uncertainty of the pro-
jected states. If a module call is executed (e.g., docu-
ments are retrieved), the results are used to update the in-
ternal information state model and a replanning decision
is made. The process continues until the goal is satis-
fied (the system has found an answer with the correct an-
swer type and an expected utility exceeding a predefined
threshold), or available resources have been exhausted.
Upon terminating, the Planner returns the system’s an-
swer or a failure message.

Critical to this decision-making process is the Plan-
ner’s domain model of the QA process, which is defined
in terms of types, literals, metrics and operators. Ta-
ble 1 highlights key features of the QA domain model
used by the Planner for TREC12. Types define the cat-
egories of objects created and transformed by the pro-
cess, including the system’s question and answer type
hierarchy (as subtypes of qtype and atype respectively)
and intermediate data objects (e.g., a docset). Literals
define information features (e.g., the number of question
keywords extracted during question analysis), data rela-
tionships (e.g., the relationship between a set of answer
candidates and the documents used to create them), and
system status (e.g., module availability). Metrics repre-
sent system resources (e.g., system time) and quality es-
timates (e.g., docset quality) for the information objects
present in the current state, and are used in the calculation
of a state’s utility. Together, metrics and literals comprise
the Planner’s internal state representation. Operators (ac-
tions) define the QA processing functions that the Planner
can control, described in terms of their preconditions (lit-
eral and metric conditions that must be true in the current
state in order for the action to be applicable), and a set of
probabilistic effects (possible changes to the information
state that may occur upon execution).

The domain operators implemented for TREC 12 es-
sentially provide a one-to-one mapping to the QA system
components, with the exception of check answers,
which triggers an internal sanity check before the Plan-
ner terminates (to verify the answer confidence is non-
zero). Obviously, these operators are not the only ones
we could have defined: we could have chosen to give the
Planner finer-grained control of the system (e.g., defining
multiple retrieval operators specifying different retrieval
methods) assuming we identify state features that reliably
indicate appropriate contexts for each operator. However,
given the time constraints, we decided to focus solely on
the extraction performance. Thus, the effective role of the
Planner in TREC12 was to dynamically select amongst
the four extraction components.

The IX selection strategy implemented for factoid

types: question, qtype, atype, docset, fillset, anslist, ix-name
subtypes of qtype: entity, activity,...
subtypes of atype: temporal, location,...

literals:
(interactive session)
(satisfies <question> <atype> <anslist>)
(request <question> <qtype>)
(retrieved docs <docset> <qtype>)
(no docs found <qtype>)
(no more docs <qtype>)
(candidate fills <fillset> <qtype> <docset> <ix-name>)
(no fills found <qtype> <docset> <ix-name>)
(ranked answers <anslist> <qtype> <fillset>)
(no answers <qtype> <fillset>)
(displayed <anslist>)

metrics:
system time
request quality
docset quality
fillset quality
answer quality

operators:
retrieve documents
extract KNN candidate fills
extract FST candidate fills
extract SVM candidate fills
extract Light candidate fills
rank candidates
check answers

Table 1: Partial listing of the TREC12 QA domain model.

questions was determined by comparing the performance
of each IX module on the TREC 9 and 10 question sets.
The sole state feature used in our strategy decisions was
the expected answer type, and feedback loops to call
multiple IX modules were considered only as a means
for failure recovery when prior execution (at either the
extraction or answer generation stages) did not identify
any potential answers. The resulting extraction module
preference orders (summarized in Table 2) attempt to ex-
ploit differences in their precision and recall to maximize
their combined question coverage. Preference is gener-
ally given to higher-precision modules that may fail to re-
turn an answer more often, with the less-accurate, higher-
recall modules used as a fallback method. Two exam-
ples of action sequences produced by the Planner are pre-
sented in Figure 3 illustrating the use of this strategy.

Both definition and list questions were handled with
a single fixed strategy by enabling only the extraction
operator for the IX module we estimated was “best” for
each (namely the Light and KNN modules, respectively).
This decision was made because only the Light extractor
was capable of generating longer answers, and the KNN
extractor had the highest recall of unique answers when
evaluated on past TREC list questions.



Q: What movie won the Academy Award for best picture in 1989?
A: 1. Driving Miss Daisy

2. Chariots of Fire
3. Saving Private Ryan

...

<retrieve documents DS6024 RO6637>

<extract SVM candidate fills FS18637 RO6637
DS6024>

<rank candidates AL5184 RO6637 FS18637>

<check answers A5046 AL5184 Q2694>

Q: What country is Aswan High Dam located in?
A: 1. Egypt

2. Saudi Arabia
<retrieve documents DS5957 RO6570>

<extract FST candidate fills FS17958 RO6570
DS5957>

<extract SVM candidate fills FS17962 RO6570
DS5957>

<rank candidates AL5119 RO6570 FS1962>

<check answers A4983 AL5119 Q2504>

Figure 3: Sample action sequences generated and executed by the JAVELIN system. The second question shows the
Planner’s ability to recover from the FST extractor’s failure to produce any candidates by invoking the SVM extractor.

location FST , SVM , Light , KNN
temporal FST , KNN , SVM , Light
causal-antecedent Light , KNN , FST , SVM
causal-consequence Light , KNN , FST , SVM
other3 SVM , FST , KNN , Light

Table 2: Extraction module preference ordering for fac-
toid questions. Each extractor is called in succession until
the system generates an answer or all options have been
exhausted. No ordering strategy was used for definition
and list questions: in these cases the Planner just invoked
the single “best” extractor for each (Light and KNN re-
spectively).

2 Results

In the main (factoid) task, JAVELIN answered correctly
55 questions, 3 inexact, and 3 unsupported, for an ac-
curacy of 0.133. The system achieved the highest ac-
curacy on location questions: 0.3125 (Table 3). For the
50 definition questions in TREC12, the JAVELIN system
achieved an average F score of 2.16. JAVELIN obtained
a 0.052 score on list questions (Table 4).

3 Analysis

Table 5 shows the F scores of the list questions according
to the answer type. As can be seen in Table 6, 32% of the
questions were misclassified.

The Question Analyzer’s accuracy in assigning answer
types has been analyzed using the TREC 9, 10, and 11
corpora. Since grammar development for analysis is
based on the TREC 9 and 10 corpora, we have sepa-
rated our results and provide TREC 11 as an example

Assigned Answer Type #Qs Accuracy
action 1 0
definition 1 0
description 3 0
lexicon 13 0.1538
location 64 0.3125
numeric-expression 97 0.1649
object 93 0.0430
organization-name 22 0.0455
person-name 33 0.1818
process 34 0
proper-name 1 0
regexp 1 0
relation 1 0
temporal 46 0.1304
type-of 1 0
unknown 2 0

Table 3: Answer type accuracy for factoid questions.

of unsupervised accuracy; a breakdown by answer type
appears in tables 7 and 8. The average supervised and
unsurpervised accuracies are 97.4% and 92.0%, respec-
tively. Both are acceptable, but the five percent drop in
unsupervised performance indicates that we have room to
improve. However, the training data used for the Ques-
tion Analyzer has a different question distribution from
the TREC 2003 list questions. The low score in list ques-
tions reflect this problem through an increase in misclas-
sification rate in TREC 2003.

Our experiments show that the FST IX seems to bet-
ter cover the location question answer space, while the



Full Parse Partial Parse Pattern
Answer Type Questions Correct ATypes Accuracy Corr. Err. Corr. Err. Corr. Err.

temporal 120 120 100% 113 0 8 0 0 0
object 206 200 97% 174 4 22 2 4 0
location 205 204 100% 180 1 18 0 6 0
proper-name 220 216 98% 196 4 15 0 5 0
numeric-expression 141 136 96% 123 3 12 0 1 2
lexicon 63 54 86% 54 5 0 3 0 1
definition 165 159 96% 159 3 0 1 0 2
person-bio 39 39 100% 39 0 0 0 0 0
regexp 4 4 100% 4 0 0 0 0 0
causal 14 14 100% 10 0 3 0 1 0
procedural 4 4 100% 4 0 0 0 0 0
action 6 6 100% 6 0 0 0 0 0
relation 1 1 100% 1 0 0 0 0 0

Overall 1188 1157 97.39% 1063 20 78 6 17 5

Table 7: Performance of the Question Analyzer on TREC 9 and 10 questions.

Answer Type Questions Correct ATypes Accuracy

temporal 99 99 100%
object 80 69 86%
location 111 106 95%
proper-name 100 91 91%
numeric-expression 74 65 88%
lexicon 25 19 76%
definition 5 5 100%
person-bio 0 0 -
regexp 0 0 -
causal 0 0 -
procedural 6 6 100%
action 0 0 -
relation 0 0 -

Overall 500 460 92.00%

Table 8: Performance of the Question Analyzer on TREC 11 questions.

Question Set Best Median Worst JAVELIN
Factoid 0.7 0.177 0.034 0.133
Definition 0.555 0.192 0.0 0.216
List 0.396 0.069 0.0 0.052

Table 4: JAVELIN TREC12 scores. JAVELIN scores
are compared with the best, median, and worst accuracy
scores in the TREC 2003 QA track.

causal strategy implemented in the proximity based IX
handles causal-antecedent/causal-consequence questions
better. The definition question strategy in the IX and AG
seems to extract long and complete definitions, mostly
from apposition contexts, with reasonable success.

To examine the impact of answer type checking on

AnswerType #Qs Average FScore
location 12 0.06475
proper-name 1 0.017
person-name 10 0.0248
organization-name 3 0.19767
object 11 0.02627

Table 5: TREC12 List Questions Task.

JAVELIN system performance, we ran two tests on the
TREC 9 corpus, one with and one without type checking.
The results appear in table 9. Both the TREC score and
the MRR score increased approximately 12% with type
checking enabled. For location-specific questions from
TREC 9, 10, and 11, seen in table 10, these scores im-



AnswerType #Qs #Correct Misclassifications
location 12 10 object(2)
proper-name 1 0 object(1)
person-name 10 4 proper-name(1)

org-name(1)
object(3)

QA failure(1)
org-name 3 2 object(1)
object 11 9 causal(1)

lexicon(1)
Total 37 25 12 (32%)

Table 6: TREC12 List Question Classification.

Without TC With TC
Trec Score 0.193 0.217

MRR 0.24 0.271

Table 9: TREC9 results with/without type checking (TC)

proved a full 23% because of the additional information
available from the Gazetteer.

We tested the system with the Planner’s IX-ordering
strategy on 500 additional questions from TREC 11. As
the results in Table 11 show, the system’s performance
with the Planner (PL) was not appreciably better than it
was using a fixed sequence with the best single SVM
extractor (79 versus 77 questions correctly answered).
We attribute this to our use of a relatively small data set
for estimating the extractor performance (1193 questions
from TREC 9 and 10; particularly problematic for the
less-common answer types), coupled with the fact that
the questions used to estimate the planning parameters
were the same ones used to develop the extractors them-
selves, leading to possible overestimates of their perfor-
mance.

Even if our ordering strategy had perfectly fit the
question set (PL+), the Planner would have enabled the
system to correctly answer just 8 more questions than
the single-extractor fixed sequence version could answer.
Thus, although a good operator model is likely to include
answer type information, that by itself is not sufficient to
correctly determine the context for applying each extrac-
tion method. To achieve the best possible performance
from the current QA components (PL*) additional pre-
dictive features must be identified and incorporated into
the Planner’s model of the QA domain.

4 Current and Future Work

Our primary focus after TREC 2003 and for the future is
on more complex relationship and scenario-based ques-
tions. For example, a human interacting with JAVELIN
may wish to collect data on a terrorist organization incre-

Without TC With TC
Trec Score 0.177 0.218

MRR 0.207 0.259

Table 10: Results on 316 location questions from TREC
9, 10, and 11 with and without type checking (TC).

Answer Type #Qs SVM PL PL+ PL*
location 109 26 27* 26 (S) 33
temporal 99 28 27 28 (S) 43
object 90 1 2 3 (K) 5
num-expression 69 7 8 7 (S) 14
person-name 50 3 3 7 (K) 10
proper-name 31 5 5 7 (L) 8
lexicon 24 3 3 3 (S;L) 3
org-name 16 4 4 4 (S) 4
other 12 0 0 0 0

OVERALL 500 77 79 85 120

Table 11: JAVELIN performance on TREC 11 ques-
tions using a fixed sequence with the best single extractor
(SVM) and the Planner with answer-type-based IX op-
erator model (PL). The last two columns contain upper
bounds for an optimal answer-type-based Planner model
(PL+), and the best possible performance for the current
QA components by chosing an optimal sequence for each
question (PL*).

mentally for use with subsequent question answering. To
facilitate this expansion, each module is focusing on en-
hancements necessary to process more complex question
types and content.

The QA module is enhancing the depth and accuracy of
its language processing output, in addition to creating and
improving analysis for scenario-based question types.

A new NLP-based IX is being developed. This IX is
based solely on linguistic analysis of the question and
answer data, unifying syntactic and semantic forms of
the question against similar analyses of candidate answer
passages.

A Text Processing module is being added to the system
to facilitate much of the newly-required natural language
processing. This module centralizes textual analysis, pro-
viding much of the tagging, hypernym/meronym, syn-
tactic, and semantic processing used by other JAVELIN
modules.

A Linguistic Reasoner module is being created to serve
as a more linguistically aware sub-planner. For complex
questions not answerable by a ”straight shot” through the
existing JAVELIN system (e.g. questions containing an
implied subquestion), the LR uses a dependency-based
mechanism to find missing information and recursively
communicate this need to the main JAVELIN Planner.
This allows both more sophisticated linguistic reasoning
and more intricate use of JAVELIN itself to answer com-



plex questions.
All of these enhancements are being developed to im-

prove the JAVELIN system’s capability to answer com-
plex questions dependent on semantics or context. The
results from our participation in the first NIST relation-
ship QA pilot evaluation indicate that approaches which
are currently common for factoid-style questions are not
applicable to relationship and scenario questions. We
hope to apply our flexible architecture and linguistic
knowledge to areas of question answering which require
deeper reasoning about the text. It will be useful to see
how these linguistic techniques perform for factoid ques-
tions, but we believe that their primary strength will be in
addressing other, more complex types of questions.

References

D. M. Bikel, R. L. Schwartz, and R. M. Weischedel.
1999. An algorithm that learns what’s in a name. Ma-
chine Learning, vol. 34, no. 1-3.

E. Brill. 1995. Unsupervised learning of disambiguation
rules for part of speech tagging. VLC.

C. Cardie, V. Ng, D. Pierce, and C. Buckley. 2000. Ex-
amining the role of statistical and linguistic knowledge
sources in a general-knowledge question-answering
system. ANLP.

K. Czuba, J. Prager, and A. Ittycheriah. 2003. In ques-
tion answering, two heads are better than one. HLT-
NAACL.

Fellbaum. 1998. Wordnet - an electronic lexical
database.

S. M. Harabagiu, M. A. Pasca, and S. J. Maiorano. 2000.
Experiments with open-domain textual question an-
swering. COLING.

L. S. Hiyakumoto and M. Veloso. 2002. Towards plan-
ning and execution for information retrieval. Proceed-
ings of AIPS Workshop on Exploring Real-World Plan-
ning.

B. Magnini, M. Negri, R. Prevete, and H. Tanev. 2002.
Is it the right answer? exploiting web redundancy for
answer validation. ACL.

E. Nyberg and T. Mitamura. 2000. The kantoo machine
translation environment. AMTA.

P. Oglivie and J. Callan. 2002. Experiments using the
lemur toolkit. TREC.

D. Ravichandran and E Hovy. 2002. Learning surface
text patterns for a question answering system. ACL.

TIPSTER. 1992. Tipster gazetteer 4.0.
ftp://crl.nmsu.edu/CLR/lexica/gazetteer/.


