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ABSTRACT
Existing pseudo-relevance feedback methods typically per-
form averaging over the top-retrieved documents, but ig-
nore an important statistical dimension: the risk or variance
associated with either the individual document models, or
their combination. Treating the baseline feedback method
as a black box, and the output feedback model as a random
variable, we estimate a posterior distribution for the feed-
back model by resampling a given query’s top-retrieved doc-
uments, using the posterior mean or mode as the enhanced
feedback model. We then perform model combination over
several enhanced models, each based on a slightly modified
query sampled from the original query. We find that resam-
pling documents helps increase individual feedback model
precision by removing noise terms, while sampling from the
query improves robustness (worst-case performance) by em-
phasizing terms related to multiple query aspects. The re-
sult is a meta-feedback algorithm that is both more robust
and more precise than the original strong baseline method.

Categories and Subject Descriptors:
H.3.3 [Information Retrieval]: Retrieval Models

General Terms: Algorithms, Experimentation

Keywords: Query expansion, pseudo-relevance feedback

1. INTRODUCTION
Uncertainty is an inherent feature of information retrieval.

Not only do we not know the queries that will be presented
to our retrieval algorithm ahead of time, but the user’s in-
formation need may be vague or incompletely specified by
these queries. Even if the query were perfectly specified,
language in the collection documents is inherently complex
and ambiguous and matching such language effectively is a
formidable problem by itself. With this in mind, we wish
to treat many important quantities calculated by the re-
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trieval system, whether a relevance score for a document,
or a weight for a query expansion term, as random vari-
ables whose true value is uncertain but where the uncer-
tainty about the true value may be quantified by replacing
the fixed value with a probability distribution over possible
values. In this way, retrieval algorithms may attempt to
quantify the risk or uncertainty associated with their out-
put rankings, or improve the stability or precision of their
internal calculations.

Current algorithms for pseudo-relevance feedback (PRF)
tend to follow the same basic method whether we use vec-
tor space-based algorithms such as Rocchio’s formula [16],
or more recent language modeling approaches such as Rele-
vance Models [10]. First, a set of top-retrieved documents is
obtained from an initial query and assumed to approximate
a set of relevant documents. Next, a single feedback model
vector is computed according to some sort of average, cen-
troid, or expectation over the set of possibly-relevant doc-
ument models. For example, the document vectors may be
combined with equal weighting, as in Rocchio, or by query
likelihood, as may be done using the Relevance Model1. The
use of an expectation is reasonable for practical and the-
oretical reasons, but by itself ignores potentially valuable
information about the risk of the feedback model.

Our main hypothesis in this paper is that estimating the
uncertainty in feedback is useful and leads to better indi-
vidual feedback models and more robust combined models.
Therefore, we propose a method for estimating uncertainty
associated with an individual feedback model in terms of
a posterior distribution over language models. To do this,
we systematically vary the inputs to the baseline feedback
method and fit a Dirichlet distribution to the output. We
use the posterior mean or mode as the improved feedback
model estimate. This process is shown in Figure 1. As we
show later, the mean and mode may vary significantly from
the single feedback model proposed by the baseline method.
We also perform model combination using several improved
feedback language models obtained by a small number of
new queries sampled from the original query. A model’s
weight combines two complementary factors: the model’s
probability of generating the query, and the variance of the
model, with high-variance models getting lower weight.

1For example, an expected parameter vector conditioned on
the query observation is formed from top-retrieved docu-
ments, which are treated as training strings (see [10], p. 62).



Figure 1: Estimating the uncertainty of the feedback model
for a single query.

2. SAMPLING-BASED FEEDBACK
In Sections 2.1–2.5 we describe a general method for es-

timating a probability distribution over the set of possible
language models. In Sections 2.6 and 2.7 we summarize how
different query samples are used to generate multiple feed-
back models, which are then combined.

2.1 Modeling Feedback Uncertainty
Given a query Q and a collection C, we assume a proba-

bilistic retrieval system that assigns a real-valued document
score f(D, Q) to each document D in C, such that the score
is proportional to the estimated probability of relevance. We
make no other assumptions about f(D, Q). The nature of
f(D, Q) may be complex: for example, if the retrieval sys-
tem supports structured query languages [12], then f(D, Q)
may represent the output of an arbitrarily complex infer-
ence network defined by the structured query operators. In
theory, the scoring function can vary from query to query,
although in this study for simplicity we keep the scoring
function the same for all queries. Our specific query method
is given in Section 3.

We treat the feedback algorithm as a black box and as-
sume that the inputs to the feedback algorithm are the orig-
inal query and the corresponding top-retrieved documents,
with a score being given to each document. We assume that
the output of the feedback algorithm is a vector of term
weights to be used to add or reweight the terms in the rep-
resentation of the original query, with the vector normalized
to form a probability distribution. We view the the inputs
to the feedback black box as random variables, and analyze
the feedback model as a random variable that changes in re-
sponse to changes in the inputs. Like the document scoring
function f(D, Q), the feedback algorithm may implement
a complex, non-linear scoring formula, and so as its inputs
vary, the resulting feedback models may have a complex
distribution over the space of feedback models (the sample

space). Because of this potential complexity, we do not at-
tempt to derive a posterior distribution in closed form, but
instead use simulation. We call this distribution over pos-
sible feedback models the feedback model distribution. Our
goal in this section is to estimate a useful approximation to
the feedback model distribution.

For a specific framework for experiments, we use the lan-
guage modeling (LM) approach for information retrieval [15].
The score of a document D with respect to a query Q and
collection C is given by p(Q|D) with respect to language

models θ̂Q and θ̂D estimated for the query and document
respectively. We denote the set of k top-retrieved docu-
ments from collection C in response to Q by DQ(k, C). For
simplicity, we assume that queries and documents are gen-

erated by multinomial distributions whose parameters are
represented by unigram language models.

To incorporate feedback in the LM approach, we assume a
model-based scheme in which our goal is take the query and
resulting ranked documents DQ(k, C) as input, and output

an expansion language model θ̂E, which is then interpolated
with the original query model θ̂Q:

θ̂New = (1 − α) · θ̂Q + α · θ̂E (1)

This includes the possibility of α = 1 where the original
query mode is completely replaced by the feedback model.

Our sample space is the set of all possible language mod-
els LF that may be output as feedback models. Our ap-
proach is to take samples from this space and then fit a
distribution to the samples using maximum likelihood. For
simplicity, we start by assuming the latent feedback distribu-
tion has the form of a Dirichlet distribution. Although the
Dirichlet is a unimodal distribution, and in general quite
limited in its expressiveness in the sample space, it is a nat-
ural match for the multinomial language model, can be esti-
mated quickly, and can capture the most salient features of
confident and uncertain feedback models, such as the overall
spread of the distibution.

2.2 Resampling document models
We would like an approximation to the posterior distri-

bution of the feedback model LF . To accomplish this, we
apply a widely-used simulation technique called bootstrap

sampling ([7], p. 474) on the input parameters, namely, the
set of top-retrieved documents.

Bootstrap sampling allows us to simulate the approximate
effect of perturbing the parameters within the black box
feedback algorithm by perturbing the inputs to that algo-
rithm in a systematic way, while making no assumptions
about the nature of the feedback algorithm.

Specifically, we sample k documents with replacement from
DQ(k, C), and calculate an expansion language model θb us-
ing the black box feedback method. We repeat this process
B times to obtain a set of B feedback language models, to
which we then fit a Dirichlet distribution. Typically B is
in the range of 20 to 50 samples, with performance being
relatively stable in this range. Note that instead of treating
each top document as equally likely, we sample according to
the estimated probabilities of relevance of each document in
DQ(k, C). Thus, a document is more likely to be chosen the
higher it is in the ranking.

2.3 Justification for a sampling approach
The rationale for our sampling approach has two parts.

First, we want to improve the quality of individual feed-
back models by smoothing out variation when the baseline
feedback model is unstable. In this respect, our approach
resembles bagging [4], an ensemble approach which gener-
ates multiple versions of a predictor by making bootstrap
copies of the training set, and then averages the (numerical)
predictors. In our application, top-retrieved documents can
be seen as a kind of noisy training set for relevance.

Second, sampling is an effective way to estimate basic
properties of the feedback posterior distribution, which can
then be used for improved model combination. For exam-
ple, a model may be weighted by its prediction confidence,
estimated as a function of the variability of the posterior
around the model.
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Figure 2: Visualization of expansion language model vari-
ance using self-organizing maps, showing the distribution of
language models that results from resampling the inputs to
the baseline expansion method. The language model that
would have been chosen by the baseline expansion is at
the center of each map. The similarity function is Jensen-
Shannon divergence.

2.4 Visualizing feedback distributions
Before describing how we fit and use the Dirichlet distri-

bution over feedback models, it is instructive to view some
examples of actual feedback model distributions that result
from bootstrap sampling the top-retrieved documents from
different TREC topics.

Each point in our sample space is a language model, which
typically has several thousand dimensions. To help analyze
the behavior of our method we used a Self-Organizing Map
(via the SOM-PAK package [9]), to ‘flatten’ and visualize
the high-dimensional density function2.

The density maps for three TREC topics are shown in
Figure 2 above. The dark areas represent regions of high
similarity between language models. The light areas repre-
sent regions of low similarity – the ‘valleys’ between clus-
ters. Each diagram is centered on the language model that
would have been chosen by the baseline expansion. A single
peak (mode) is evident in some examples, but more complex
structure appears in others. Also, while the distribution is
usually close to the baseline feedback model, for some topics
they are a significant distance apart (as measured by Jensen-
Shannon divergence), as in Subfigure 2c. In such cases, the
mode or mean of the feedback distribution often performs
significantly better than the baseline (and in a smaller pro-
portion of cases, significantly worse).

2.5 Fitting a posterior feedback distribution
After obtaining feedback model samples by resampling

the feedback model inputs, we estimate the feedback dis-
tribution. We assume that the multinomial feedback mod-
els {θ̂1, . . . , θ̂B} were generated by a latent Dirichlet dis-
tribution with parameters {α1, . . . , αN}. To estimate the
{α1, . . . , αN}, we fit the Dirichlet parameters to the B lan-
guage model samples according to maximum likelihood us-
ing a generalized Newton procedure, details of which are
given in Minka [13]. We assume a simple Dirichlet prior over
the {α1, . . . , αN}, setting each to αi = µ · p(wi | C), where µ

is a parameter and p(· | C) is the collection language model
estimated from a set of documents from collection C. The
parameter fitting converges very quickly – typically just 2 or

2Because our points are language models in the multino-
mial simplex, we extended SOM-PAK to support Jensen-
Shannon divergence, a widely-used similarity measure be-
tween probability distributions.

3 iterations are enough – so that it is practical to apply at
query-time when computational overhead must be small. In
practice, we can restrict the calculation to the vocabulary of
the top-retrieved documents, instead of the entire collection.
Note that for this step we are re-using the existing retrieved
documents and not performing additional queries.

Given the parameters of an N-dimensional Dirichlet dis-
tribution Dir(α) the mean µ and mode x vectors are easy
to calculate and are given respectively by

µi = αi
P

αi

(2) and xi = αi−1
P

αi−N
. (3)

We can then choose the language model at the mean or the
mode of the posterior as the final enhanced feedback model.
(We found the mode to give slightly better performance.)

For information retrieval, the number of samples we will
have available is likely to be quite small for performance rea-
sons – usually less than ten. Moreover, while random sam-
pling is useful in certain cases, it is perfectly acceptable to
allow deterministic sampling distributions, but these must
be designed carefully in order to approximate an accurate
output variance. We leave this for future study.

2.6 Query variants
We use the following methods for generating variants of

the original query. Each variant corresponds to a different
assumption about which aspects of the original query may
be important. This is a form of deterministic sampling.
We selected three simple methods that cover complimentary
assumptions about the query.

No-expansion Use only the original query. The assump-
tion is that the given terms are a complete description
of the information need.

Leave-one-out A single term is left out of the original
query. The assumption is that one of the query terms
is a noise term.

Single-term A single term is chosen from the original query.
This assumes that only one aspect of the query, namely,
that represented by the term, is most important.

After generating a variant of the original query, we combine
it with the original query using a weight αSUB so that we
do not stray too ‘far’. In this study, we set αSUB = 0.5. For
example, using the Indri [12] query language, a leave-one-
out variant of the initial query that omits the term ‘ireland’
for TREC topic 404 is:
#weight(0.5 #combine(ireland peace talks)

0.5 #combine(peace talks))

2.7 Combining enhanced feedback models
from multiple query variants

When using multiple query variants, the resulting en-
hanced feedback models are combined using Bayesian model
combination. To do this, we treat each word as an item to
be classified as belonging to a relevant or non-relevant class,
and derive a class probability for each word by combining
the scores from each query variant. Each score is given by
that term’s probability in the Dirichlet distribution. The
term scores are weighted by the inverse of the variance of
the term in the enhanced feedback model’s Dirichlet distri-
bution. The prior probability of a word’s membership in
the relevant class is given by the probability of the original
query in the entire enhanced expansion model.



3. EVALUATION
In this section we present results confirming the usefulness

of estimating a feedback model distribution from weighted
resampling of top-ranked documents, and of combining the
feedback models obtained from different small changes in
the original query.

3.1 General method
We evaluated performance on a total of 350 queries de-

rived from four sets of TREC topics: 51-200 (TREC-1&2),
351-400 (TREC-7), 401-450 (TREC-8), and 451-550 (wt10g,
TREC-9&10). We chose these for their varied content and
document properties. For example, wt10g documents are
Web pages with a wide variety of subjects and styles while
TREC-1&2 documents are more homogeneous news articles.
Indexing and retrieval was performed using the Indri system
in the Lemur toolkit [12] [1]. Our queries were derived from
the words in the title field of the TREC topics. Phrases
were not used. To generate the baseline queries passed to
Indri, we wrapped the query terms with Indri’s #combine

operator. For example, the initial query for topic 404 is:
#combine(ireland peace talks)

We performed Krovetz stemming for all experiments. Be-
cause we found that the baseline (Indri) expansion method
performed better using a stopword list with the feedback
model, all experiments used a stoplist of 419 common En-
glish words. However, an interesting side-effect of our resam-
pling approach is that it tends to remove many stopwords
from the feedback model, making a stoplist less critical. This
is discussed further in Section 3.6.

3.2 Baseline feedback method
For our baseline expansion method, we use an algorithm

included in Indri 1.0 as the default expansion method. This
method first selects terms using a log-odds calculation de-
scribed by Ponte [14], but assigns final term weights using
Lavrenko’s relevance model[10].

We chose the Indri method because it gives a consistently
strong baseline, is based on a language modeling approach,
and is simple to experiment with. In a TREC evaluation
using the GOV2 corpus [6], the method was one of the top-
performing runs, achieving a 19.8% gain in MAP compared
to using unexpanded queries. In this study, it achieves an
average gain in MAP of 17.25% over the four collections.

Indri’s expansion method first calculates a log-odds ratio
o(v) for each potential expansion term v given by

o(v) =
X

D

log
p(v|D)

p(v|C)
(4)

over all documents D containing v, in collection C. Then,
the expansion term candidates are sorted by descending
o(v), and the top m are chosen. Finally, the term weights
r(v) used in the expanded query are calculated based on the
relevance model

r(v) =
X

D

p(q|D)p(v|D)
p(v)

p(D)
(5)

The quantity p(q|D) is the probability score assigned to the
document in the initial retrieval. We use Dirichlet smooth-
ing of p(v|D) with µ = 1000.

This relevance model is then combined with the original
query using linear interpolation, weighted by a parameter α.

By default we used the top 50 documents for feedback and
the top 20 expansion terms, with the feedback interpolation
parameter α = 0.5 unless otherwise stated. For example,
the baseline expanded query for topic 404 is:
#weight(0.5 #combine(ireland peace talks) 0.5

#weight(0.10 ireland 0.08 peace 0.08 northern ...)

3.3 Expansion performance
We measure our feedback algorithm’s effectiveness by two

main criteria: precision, and robustness. Robustness, and
the tradeoff between precision and robustness, is analyzed
in Section 3.4. In this section, we examine average preci-
sion and precision in the top 10 documents (P10). We also
include recall at 1,000 documents.

For each query, we obtained a set of B feedback models
using the Indri baseline. Each feedback model was obtained
from a random sample of the top k documents taken with
replacement. For these experiments, B = 30 and k = 50.
Each feedback model contained 20 terms. On the query side,
we used leave-one-out (LOO) sampling to create the query
variants. Single-term query sampling had consistently worse
performance across all collections and so our results here fo-
cus on LOO sampling. We used the methods described in
Section 2 to estimate an enhanced feedback model from the
Dirichlet posterior distribution for each query variant, and
to combine the feedback models from all the query variants.
We call our method ‘resampling expansion’ and denote it as
RS-FB here. We denote the Indri baseline feedback method
as Base-FB. Results from applying both the baseline expan-
sion method (Base-FB) and resampling expansion (RS-FB)
are shown in Table 1.

We observe several trends in this table. First, the average
precision of RS-FB was comparable to Base-FB, achieving
an average gain of 17.6% compared to using no expansion
across the four collections. The Indri baseline expansion
gain was 17.25%. Also, the RS-FB method achieved consis-
tent improvements in P10 over Base-FB for every topic set,
with an average improvement of 6.89% over Base-FB for all
350 topics. The lowest P10 gain over Base-FB was +3.82%
for TREC-7 and the highest was +11.95% for wt10g. Fi-
nally, both Base-FB and RS-FB also consistently improved
recall over using no expansion, with Base-FB achieving bet-
ter recall than RS-FB for all topic sets.

3.4 Retrieval robustness
We use the term robustness to mean the worst-case aver-

age precision performance of a feedback algorithm. Ideally,
a robust feedback method would never perform worse than
using the original query, while often performing better using
the expansion.

To evaluate robustness in this study, we use a very sim-
ple measure called the robustness index (RI)3. For a set of
queries Q, the RI measure is defined as:

RI(Q) =
n+ − n

−

|Q|
(6)

where n+ is the number of queries helped by the feedback
method and n

−
is the number of queries hurt. Here, by

‘helped’ we mean obtaining a higher average precision as a
result of feedback. The value of RI ranges from a minimum

3This is sometimes also called the reliability of improvement
index and was used in Sakai et al. [17].



Collection NoExp Base-FB RS-FB

TREC
1&2

AvgP 0.1818 0.2419 (+33.04%) 0.2406 (+32.24%)
P10 0.4443 0.4913 (+10.57%) 0.5363 (+17.83%)

Recall 15084/37393 19172/37393 15396/37393

TREC 7
AvgP 0.1890 0.2175 (+15.07%) 0.2169 (+14.75%)
P10 0.4200 0.4320 (+2.85%) 0.4480 (+6.67%)

Recall 2179/4674 2608/4674 2487/4674

TREC 8
AvgP 0.2031 0.2361 (+16.25%) 0.2268 (+11.70%)
P10 0.3960 0.4160 (+5.05%) 0.4340 (+9.59%)

Recall 2144/4728 2642/4728 2485/4728

wt10g
AvgP 0.1741 0.1829 (+5.06%) 0.1946 (+11.78%)
P10 0.2760 0.2630 (-4.71%) 0.2960 (+7.24%)

Recall 3361/5980 3725/5980 3664/5980

Table 1: Comparison of baseline (Base-FB) feedback and feedback using re-sampling (RS-FB). Improvement shown for Base-
FB and RS-FB is relative to using no expansion.

(a) TREC 1&2 (upper curve); TREC 8
(lower curve)

(b) TREC 7 (upper curve); wt10g (lower
curve)

Figure 3: The trade-off between robustness and average pre-
cision for different corpora. The x-axis gives the change in
MAP over using baseline expansion with α = 0.5. The y-
axis gives the Robustness Index (RI). Each curve through
uncircled points shows the RI/MAP tradeoff using the sim-
ple small-α strategy (see text) as α decreases from 0.5 to
zero in the direction of the arrow. Circled points represent
the tradeoffs obtained by resampling feedback for α = 0.5.

Collection N Base-FB RS-FB
n
−

RI n
−

RI
TREC 1&2 103 26 +0.495 15 +0.709
TREC 7 46 14 +0.391 10 +0.565
TREC 8 44 12 +0.455 12 +0.455
wt10g 91 48 –0.055 39 +0.143
Combined 284 100 +0.296 76 +0.465

Table 2: Comparison of robustness index (RI) for baseline
feedback (Base-FB) vs. resampling feedback (RS-FB). Also
shown are the actual number of queries hurt by feedback
(n

−
) for each method and collection. Queries for which ini-

tial average precision was negligible (≤ 0.01) were ignored,
giving the remaining query count in column N .

of −1.0, when all queries are hurt by the feedback method,
to +1.0 when all queries are helped. The RI measure does
not take into account the magnitude or distribution of the
amount of change across the set Q. However, it is easy to
understand as a general indication of robustness.

One obvious way to improve the worst-case performance
of feedback is simply to use a smaller fixed α interpolation
parameter, such as α = 0.3, placing less weight on the (pos-
sibly risky) feedback model and more on the original query.
We call this the ‘small-α’ strategy. Since we are also reduc-
ing the potential gains when the feedback model is ‘right’,
however, we would expect some trade-off between average
precision and robustness. We therefore compared the preci-
sion/robustness trade-off between our resampling feedback
algorithm, and the simple small-α method. The results are
summarized in Figure 3. In the figure, the curve for each
topic set interpolates between trade-off points, beginning
at x=0, where α = 0.5, and continuing in the direction of
the arrow as α decreases and the original query is given
more and more weight. As expected, robustness continu-
ously increases as we move along the curve, but mean aver-
age precision generally drops as the gains from feedback are
eliminated. For comparison, the performance of resampling
feedback at α = 0.5 is shown for each collection as the circled

point. Higher and to the right is better. This figure shows
that resampling feedback gives a somewhat better trade-off
than the small-α approach for 3 of the 4 collections.



Figure 4: Histogram showing improved robustness of resam-
pling feedback (RS-FB) over baseline feedback (Base-FB)
for all datasets combined. Queries are binned by % change
in AP compared to the unexpanded query.

Collection DS + QV DS + No QV

TREC
1&2

AvgP 0.2406 0.2547 (+5.86%)
P10 0.5263 0.5362 (+1.88%)
RI 0.7087 0.6515 (-0.0572)

TREC 7
AvgP 0.2169 0.2200 (+1.43%)
P10 0.4480 0.4300 (-4.02%)
RI 0.5652 0.2609 (-0.3043)

TREC 8
AvgP 0.2268 0.2257 (-0.49%)
P10 0.4340 0.4200 (-3.23%)
RI 0.4545 0.4091 (-0.0454)

wt10g
AvgP 0.1946 0.1865 (-4.16%)
P10 0.2960 0.2680 (-9.46%)
RI 0.1429 0.0220 (-0.1209)

Table 3: Comparison of resampling feedback using docu-
ment sampling (DS) with (QV) and without (No QV) com-
bining feedback models from multiple query variants.

Table 2 gives the Robustness Index scores for Base-FB
and RS-FB. The RS-FB feedback method obtained higher
robustness than Base-FB on three of the four topic sets, with
only slightly worse performance on TREC-8.

A more detailed view showing the distribution over rela-
tive changes in AP is given by the histogram in Figure 4.
Compared to Base-FB, the RS-FB method achieves a not-
icable reduction in the number of queries significantly hurt
by expansion (i.e. where AP is hurt by 25% or more), while
preserving positive gains in AP.

3.5 Effect of query and document
sampling methods

Given our algorithm’s improved robustness seen in Sec-
tion 3.4, an important question is what component of our
system is responsible. Is it the use of document re-sampling,
the use of multiple query variants, or some other factor? The
results in Table 3 suggest that the model combination based
on query variants may be largely account for the improved

robustness. When query variants are turned off and the orig-
inal query is used by itself with document sampling, there
is little net change in average precision, a small decrease in
P10 for 3 out of the 4 topic sets, but a significant drop in
robustness for all topic sets. In two cases, the RI measure
drops by more than 50%.

We also examined the effect of the document sampling
method on retrieval effectiveness, using two different strate-
gies. The ‘uniform weighting’ strategy ignored the relevance
scores from the initial retrieval and gave each document in
the top k the same probability of selection. In contrast, the
‘relevance-score weighting’ strategy chose documents with
probability proportional to their relevance scores. In this
way, documents that were more highly ranked were more
likely to be selected. Results are shown in Table 4.

The relevance-score weighting strategy performs better
overall, with significantly higher RI and P10 scores on 3 of
the 4 topic sets. The difference in average precision between
the methods, however, is less marked. This suggests that
uniform weighting acts to increase variance in retrieval re-
sults: when initial average precision is high, there are many
relevant documents in the top k and uniform sampling may
give a more representative relevance model than focusing on
the highly-ranked items. On the other hand, when initial
precision is low, there are few relevant documents in the
bottom ranks and uniform sampling mixes in more of the
non-relevant documents.

For space reasons we only summarize our findings on sam-
ple size here. The number of samples has some effect on
precision when less than 10, but performance stabilizes at
around 15 to 20 samples. We used 30 samples for our ex-
periments. Much beyond this level, the additional benefits
of more samples decrease as the initial score distribution is
more closely fit and the processing time increases.

3.6 The effect of resampling on expansion
term quality

Ideally, a retrieval model should not require a stopword
list when estimating a model of relevance: a robust sta-
tistical model should down-weight stopwords automatically
depending on context. Stopwords can harm feedback if se-
lected as feedback terms, because they are typically poor
discriminators and waste valuable term slots. In practice,
however, because most term selection methods resemble a
tf · idf type of weighting, terms with low idf but very high
tf can sometimes be selected as expansion term candidates.

This happens, for example, even with the Relevance Model
approach that is part of our baseline feedback. To ensure
as strong a baseline as possible, we use a stoplist for all ex-
periments reported here. If we turn off the stopword list,
however, we obtain results such as those shown in Table 5
where four of the top ten baseline feedback terms for TREC
topic 60 (said, but, their, not) are stopwords using the Base-
FB method. (The top 100 expansion terms were selected to
generate this example.)

Indri’s method attempts to address the stopword prob-
lem by applying an initial step based on Ponte [14] to se-
lect less-common terms that have high log-odds of being
in the top-ranked documents compared to the whole col-
lection. Nevertheless, this does not overcome the stopword
problem completely, especially as the number of feedback
terms grows.

Using resampling feedback, however, appears to mitigate



Collection QV + Uniform QV + Relevance-score
weighting weighting

TREC
1&2

AvgP 0.2545 0.2406 (-5.46%)
P10 0.5369 0.5263 (-1.97%)
RI 0.6212 0.7087 (+14.09%)

TREC 7
AvgP 0.2174 0.2169 (-0.23%)
P10 0.4320 0.4480 (+3.70%)
RI 0.4783 0.5652 (+18.17%)

TREC 8
AvgP 0.2267 0.2268 (+0.04%)
P10 0.4120 0.4340 (+5.34%)
RI 0.4545 0.4545 (+0.00%)

wt10g
AvgP 0.1808 0.1946 (+7.63%)
P10 0.2680 0.2960 (+10.45%)
RI 0.0220 0.1099 (+399.5%)

Table 4: Comparison of uniform and relevance-weighted document sampling. The percentage change compared to uniform
sampling is shown in parentheses. QV indicates that query variants were used in both runs.

Baseline FB p(wi|R) Resampling FB p(wi|R)
said 0.055 court 0.026
court 0.055 pay 0.018
pay 0.034 federal 0.012
but 0.026 education 0.011

employees 0.024 teachers 0.010
their 0.024 employees 0.010
not 0.023 case 0.010

federal 0.021 their 0.009
workers 0.020 appeals 0.008

education 0.020 union 0.007

Table 5: Feedback term quality when a stoplist is not used.
Feedback terms for TREC topic 60: merit pay vs seniority.

the effect of stopwords automatically. In the example of Ta-
ble 5, resampling feedback leaves only one stopword (their)
in the top ten. We observed similar feedback term behavior
across many other topics. The reason for this effect appears
to be the interaction of the term selection score with the
top-m term cutoff. While the presence and even propor-
tion of particular stopwords is fairly stable across different
document samples, their relative position in the top-m list
is not, as sets of documents with varying numbers of bet-
ter, lower-frequency term candidates are examined for each
sample. As a result, while some number of stopwords may
appear in each sampled document set, any given stopword
tends to fall below the cutoff for multiple samples, leading
to its classification as a high-variance, low-weight feature.

4. RELATED WORK
Our approach is related to previous work from several ar-

eas of information retrieval and machine learning. Our use
of query variation was inspired by the work of YomTov et
al. [20], Carpineto et al. [5], and Amati et al. [2], among
others. These studies use the idea of creating multiple sub-
queries and then examining the nature of the overlap in the
documents and/or expansion terms that result from each
subquery. Model combination is performed using heuristics.
In particular, the studies of Amati et al. and Carpineto et al.
investigated combining terms from individual distributional

methods using a term-reranking combination heuristic. In
a set of TREC topics they found wide average variation in
the rank-distance of terms from different expansion meth-
ods. Their combination method gave modest positive im-
provements in average precision.

The idea of examining the overlap between lists of sug-
gested terms has also been used in early query expansion
approaches. Xu and Croft’s method of Local Context Anal-
ysis (LCA) [19] includes a factor in the empirically-derived
weighting formula that causes expansion terms to be pre-
ferred that have connections to multiple query terms.

On the document side, recent work by Zhou & Croft [21]
explored the idea of adding noise to documents, re-scoring
them, and using the stability of the resulting rankings as
an estimate of query difficulty. This is related to our use
of document sampling to estimate the risk of the feedback
model built from the different sets of top-retrieved docu-
ments. Sakai et al. [17] proposed an approach to improving
the robustness of pseudo-relevance feedback using a method
they call selective sampling. The essence of their method
is that they allow skipping of some top-ranked documents,
based on a clustering criterion, in order to select a more var-
ied and novel set of documents later in the ranking for use
by a traditional pseudo-feedback method. Their study did
not find significant improvements in either robustness (RI)
or MAP on their corpora.

Greiff, Morgan and Ponte [8] explored the role of variance
in term weighting. In a series of simulations that simplified
the problem to 2-feature documents, they found that average
precision degrades as term frequency variance – high noise –
increases. Downweighting terms with high variance resulted
in improved average precision. This seems in accord with
our own findings for individual feedback models.

Estimates of output variance have recently been used for
improved text classification. Lee et al. [11] used query-
specific variance estimates of classifier outputs to perform
improved model combination. Instead of using sampling,
they were able to derive closed-form expressions for classifier
variance by assuming base classifiers using simple types of
inference networks.

Ando and Zhang proposed a method that they call struc-
tural feedback [3] and showed how to apply it to query ex-
pansion for the TREC Genomics Track. They used r query



variations to obtain R different sets Sr of top-ranked docu-
ments that have been intersected with the top-ranked doc-
uments obtained from the original query qorig. For each Si,
the normalized centroid vector ŵi of the documents is calcu-
lated. Principal component analysis (PCA) is then applied
to the ŵi to obtain the matrix Φ of H left singular vectors
φh that are used to obtain the new, expanded query

qexp = qorig + ΦT Φqorig. (7)

In the case H = 1, we have a single left singular vector φ:

qexp = qorig + (φT
qorig)φ

so that the dot product φT qorig is a type of dynamic weight
on the expanded query that is based on the similarity of the
original query to the expanded query. The use of variance as
a feedback model quality measure occurs indirectly through
the application of PCA. It would be interesting to study
the connections between this approach and our own model-
fitting method.

Finally, in language modeling approaches to feedback, Tao
and Zhai [18] describe a method for more robust feedback
that allows each document to have a different feedback α.
The feedback weights are derived automatically using regu-
larized EM. A roughly equal balance of query and expansion
model is implied by their EM stopping condition. They pro-
pose tailoring the stopping parameter η based on a function
of some quality measure of feedback documents.

5. CONCLUSIONS
We have presented a new approach to pseudo-relevance

feedback based on document and query sampling. The use
of sampling is a very flexible and powerful device and is mo-
tivated by our general desire to extend current models of re-
trieval by estimating the risk or variance associated with the
parameters or output of retrieval processes. Such variance
estimates, for example, may be naturally used in a Bayesian
framework for improved model estimation and combination.
Applications such as selective expansion may then be imple-
mented in a principled way.

While our study uses the language modeling approach as a
framework for experiments, we make few assumptions about
the actual workings of the feedback algorithm. We believe
it is likely that any reasonably effective baseline feedback
algorithm would benefit from our approach. Our results on
standard TREC collections show that our framework im-
proves the robustness of a strong baseline feedback method
across a variety of collections, without sacrificing average
precision. It also gives small but consistent gains in top-
10 precision. In future work, we envision an investigation
into how varying the set of sampling methods used and the
number of samples controls the trade-off between robust-
ness, accuracy, and efficiency.
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