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ABSTRACT
Multimedia event detection (MED) has a significant impact on
many applications. Though video concept annotation has received
much research effort, video event detection remains largely unad-
dressed. Current research mainly focuses on sports and news event
detection or abnormality detection in surveillance videos. Our re-
search on this topic is capable of detecting more complicated and
generic events. Moreover, the curse of reality, i.e., precisely labeled
multimedia content is scarce, necessitates the study on how to at-
tain respectable detection performance using only limited positive
examples. Research addressing these two aforementioned issues
is still in its infancy. In light of this, we explore Ad Hoc MED,
which aims to detect complicated and generic events by using few
positive examples. To the best of our knowledge, our work makes
the first attempt on this topic. As the information from these few
positive examples is limited, we propose to infer knowledge from
other multimedia resources to facilitate event detection. Experi-
ments are performed on real-world multimedia archives consisting
of several challenging events. The results show that our approach
outperforms several other detection algorithms. Most notably, our
algorithm outperforms SVM by 43% and 14% comparatively in
Average Precision when using Gaussian and χ2 kernel respectively.

Categories and Subject Descriptors
H.3.1 [Information Search and Retrieval]: Content Analysis and
Indexing; I.2.10 [Vision and Scene Understanding]: Video anal-
ysis

General Terms
Algorithms, Experimentation, Performance

Keywords
Multimedia Event Detection (MED), Ad Hoc MED, Knowledge
Adaptation, Structural Adaptive Regression (SAR)
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1. INTRODUCTION
With ever expanding multimedia collections, multimedia con-

tent analysis is becoming a fundamental research issue for many
applications such as indexing and retrieval, etc. Multimedia con-
tent analysis aims to learn the semantics of multimedia data. To do
so, it has to bridge the semantic gap between the low-level features
and the high-level semantic content description [11, 33]. Different
approaches have been proposed to bridge the semantic gap in the
literature, either at concept level or event level.

We first highlight the difference between a concept and an event.
A "concept" means an abstract or general idea inferred from spe-
cific instances, e.g. fish, sky. In multimedia research, a major
thrust for multimedia content analysis is to learn the semantic con-
cepts of the multimedia data and to use these concepts for multime-
dia indexing and retrieval. Multimedia concept analysis has been
widely studied for images and videos [17, 25, 24, 15]. However,
as shared personal video collections, news videos and documen-
tary videos have explosively proliferated these years, video event
analysis gradually is attracting more research interest. An "event"
refers to an observable occurrence that interests users, e.g. making
a cake, landing a fish. Compared with concept analysis, where con-
cepts are usually describable by a single shot, event understanding
is a more challenging task due to its dynamic attribute and semantic
richness. For example, the event making a cake consists of a com-
bination of several concepts such as cake, people, kitchen together
with the action making within a longer video sequence.

Annotation and detection are two different topics of both con-
cept and event analysis. Multimedia annotation, also known as
recognition, aims to associate multimedia data with one or mul-
tiple semantic labels (tags). For an image/video to be annotated,
it is assigned to a specific concept or event that is already known.
Many approaches have been proposed to improve the annotation
accuracy for both images and videos [17, 30, 26]. The detection
task, however, is different from annotation in that it aims to detect
the existence of concepts or events through pre-trained detectors.
Compared with annotation, detection is more challenging. In detec-
tion, there may only be a few positive examples while the negative
examples come from an infinite semantic space. We have no clue
about all the concepts or events these negative examples include.
This provides limited information for obtaining a robust detector.

The TREC Video Retrieval Evaluation (TRECVID) commu-
nity [3] has notably contributed to the research of video concept
or event detection by providing a common testbed for evaluat-
ing different detection approaches [20]. In the field of multime-
dia, many other works have also focused on concept detection,
e.g., [25, 32, 14]. However, the research on video event detec-
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tion is still in its infancy. Most existing research on event detec-
tion is limited to the events in sports [22, 31, 24] and news video
archives [29], or those with repetitive patterns like running [28] or
unusual events in surveillance videos [4]. In 2010, the TRECVID
community launched the task of "Event detection in Internet multi-
media (MED)" which aims to encourage new technologies for de-
tecting more complicated events, e.g., landing a fish. The definition
of the MED task from National Institute of Standards and Technol-
ogy (NIST) is: detect the occurrence of an event within a video clip
based on an Event Kit, which contains some text description about
the concept and some example videos. Though few systems have
been designed for the MED task [6, 7], they only focus on prede-
fined events. In 2012, NIST proposed an even more challenging
problem of MED. The problem is how to attain respectable detec-
tion accuracy when the system is not optimized for a limited set of
known events and with very few positive examples (a.k.a. Ad Hoc
MED1) since precisely labeled training data are difficult to obtain
in the real world. In this paper, we focus on designing a novel al-
gorithm for Ad Hoc MED which deals with the limited number of
positive training examples. To the best of our knowledge, this work
is the first research on Ad Hoc MED.

Ad Hoc MED faces two major challenges, i.e., complicated events
and few positive examples. SVM has been shown to be the most
effective tool for predefined MED [6, 7, 13]. However, it is not suit-
able for Ad Hoc MED when there are only a few positive examples.
Since there are some available video archives with annotated con-
cept labels, we can leverage them to facilitate Ad Hoc MED. The
difficulty is that those concepts are different from the event to be
detected. Hence, a method is in demand to bridge the gap between
the concepts and the event, thus being able to utilize the concepts-
based videos. Inspired by [32, 12, 8], we propose to adapt the
knowledge from concept level to assist in Ad Hoc MED. Specifi-
cally, we use the available video corpora with annotated concepts
as our auxiliary resource and Ad Hoc MED is performed on the
target videos. The concepts are relevant to the event to be detected.

The main contributions of our work are as follows:
(1) We perform the first exploration of Ad Hoc MED research by

proposing a novel approach built atop knowledge adaptation.
(2) Unlike many knowledge adaptation methods, our approach

does not require that auxiliary videos have the same events as the
target videos. We exploit videos with several semantic concepts
to facilitate the Ad Hoc Event Detection on the target videos; the
event differs from the concepts and video collections are different
from each other.

(3) Compared to other detectors, leveraging knowledge from an
auxiliary video archive enables us to obtain improved detection
rates in the target video archive with only few positive examples.

2. RELATED WORK
In this section, we briefly review the related works on video se-

mantic analysis and knowledge adaptation.

2.1 Video Semantic Analysis
In the past, although multimedia event analysis has been less

focused, video concept annotation has been widely studied. For in-
stance, in [26] Tseng et al. have proposed using integrated mining
of visual features, speech features, and frequent semantic patterns
of videos for annotation. Besides, Snoek et al. have studied the
challenging problem of automatically indexing 101 semantic con-
cepts [25]. Their work also provides the research community with
a manually annotated lexicon containing 101 semantic concepts.

1http://www.nist.gov/itl/iad/mig/med12.cfm

In [14], a general post-filtering framework using association and
temporal analysis has been proposed for concept classification.

Event detection is a more challenging problem, which has not
been sufficiently studied. Most of the existing research efforts are
limited to the detection of sports events, news events, unusual surveil-
lance events or those with repetitive patterns. For example, Xu
et al. propose using web-casting text and broadcast video to de-
tect events from the live sports game [31]. In [29], a model based
on a multi-resolution, multi-source and multi-modal bootstrapping
framework has been developed for events detection in news videos.
Adam et al. present an algorithm using multiple local monitors
which collect low-level statistics to detect certain types of unusual
events in surveillance videos [4]. Sports events, news events and
unusual events are usually predefined so that we can identify some
event-specific rules or templates to facilitate detection of the partic-
ular event. For example, to detect the event goal in sports videos,
we can utilize people’s cheers as a strong evidence. However, in Ad
Hoc MED events are more generic and we do not know what the
events are before conducting the detection task. Thus, the afore-
mentioned methods may not work well for Ad Hoc MED. Wang et
al. have proposed a new motion feature by using motion relativity
and visual relatedness for event detection [28]. Their approach pri-
marily applies to events that have repetitive motion attributes and
are usually describable by a single shot, e.g. walking and dancing.
In contrast, Ad Hoc MED focuses on events that have varying mo-
tion attributes within a longer video sequence. For instance, making
a cake includes different motions such as getting the flour, adding
water and baking within a longer video sequence. Moreover, there
are few positive examples for training. Thus, the approach in [28]
is unsuitable for Ad Hoc MED.

More recently, some researchers began to study the predefined
MED [6, 7, 13]. Compared to sports events, news events, unusual
surveillance events or those with repetitive patterns, the events in
predefined MED are more complicated and difficult to detect. In
predefined MED, SVM is widely used and shows good perfor-
mance. As opposed to predefined MED, we focus on an even
more difficult problem Ad Hoc MED, which detects generic events.
However, SVM is not suitable for Ad Hoc MED due to the “curse
of reality", i.e., few precisely labeled positive examples are pro-
vided. Therefore, effective algorithms are in demand for Ad Hoc
MED to promote video semantic analysis to a more mature level.

2.2 Knowledge Adaptation for Multimedia
Analysis

Knowledge adaptation, also known as transfer learning, aims to
propagate the knowledge from an auxiliary domain to a target do-
main [32, 12, 8, 10]. A number of algorithms have been proposed
but most of them require that the auxiliary domain and the target
domain have the same classes. However, Ad Hoc MED deals with
very complicated events which are not predefined and come from
unlimited semantic space. Hence, most existing methods are not
applicable. For example, Yang et al. have proposed to use Adap-
tive SVMs for cross-domain video concept detection [32]. The
method obtained encouraging results but has some shortcomings.
The proposed approach requires that the auxiliary videos and the
target videos have the same video concepts. However, in Ad Hoc
MED the event to be detected is unknown before we perform the
detection task. Collecting many auxiliary videos with the same
event description as the target videos is impossible. Jiang et al. [12]
have used the image context of Flickr to select concept detectors.
These pre-selected detectors are then refined by the semantic con-
text transfer from the target domain. In this way, more precise con-
cept detectors are obtained for video search. The proposed method
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Figure 1: The illustration of our framework. We first map the low-level features of the auxiliary and target videos into a Hilbert
Space. The video concept classifier and the video event detector presumably have common components which contain irrelevance
and noise. We propose to remove such negative information by optimizing the concept classifier and the event detector jointly.

is interesting but the selected concept detectors cannot be hand-
ily used for event detection without other sophisticated algorithms.
Besides, as in Ad Hoc MED we only have very few positive ex-
amples, using these examples to refine the concept detectors is not
reliable. Another algorithm proposed by Duan et al. [8] realizes
event recognition of consumer videos by leveraging web videos.
Their method does not require that the auxiliary domain and the
target domain have the same events. However, the approach is very
time consuming so it is not suitable for real-world applications.

To progress beyond these aforementioned works, we propose a
new knowledge adaptation method for Ad Hoc MED. It explores
the shared knowledge between the concepts-based auxiliary videos
and the event-based target videos. The shared knowledge can be
used to refine the detector of the target videos for Ad Hoc MED.
Different from the state of the art, our algorithm does not require
that the auxiliary videos have the same event as the target videos.
It is also computationally efficient.

3. VIDEO REPRESENTATION
Now we illustrate our framework for Ad Hoc MED. Figure 1

shows the framework of our approach. The video archive where
the Ad Hoc MED is to be conducted is our target domain. The low-
level features of both auxiliary and target videos are mapped into a
Hilbert Space where the shared knowledge between them is to be
explored. The video concept classifier and the video event detector
presumably have common components which contain irrelevance
and noise. We propose to remove such components by optimizing
the concept classifier and the event detector jointly, thereby result-

ing in a more discriminative event detector when we have very few
positive examples.

We first introduce the video representation in this section. It has
been demonstrated that using multiple features for multimedia rep-
resentation always yields better performance [34, 13]. We use the
SIFT feature [16] and CSIFT feature [27] for video representation.
Considering computational efficiency, we use a shot boundary de-
tection algorithm to extract key frames. The shot boundary detec-
tion algorithm works as follows: First, it calculates the color his-
togram of every 5 frames; Second, it subtracts the histogram with
that of the previous frame; Third, the frame will be a shot boundary
if the subtracted value is larger than an empirically set threshold.
Once we get the shot, the frame in the middle of the shot is used to
represent that shot. Then we use the Harris-Laplace interest point
detector to detect interest points. The SIFT/CSIFT descriptor is
subsequently used and we obtain a 4096 dimension Bag-of-Words
feature, for which we sum over all the interest points in a video,
which is then normalized. The SIFT and CSIFT features are fur-
ther combined so we use an 8192 dimension feature to represent
each video.

Suppose there are nt training videos for event detector training.
The training videos consist of both positive and negative examples.
Denote Xt = [x1

t ,x
2
t , ...,x

nt
t ] ∈ R

d×nt as the BoW feature of these
training videos. d is the feature dimension (d = 8192 in this pa-
per). As it has been reported that kernelization is an effective way
to deal with BoW features for video analysis [6], after extracting
BoW features from the videos, we leverage kernel tricks to trans-
form xi

t to x̃i
t . Specifically, we perform full rank principal compo-

nent analysis in another Hilbert Space H , which is related to the
input space by a nonlinear map Φ : Rd → H . The covariance ma-
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trix in H is given byCH = 1
nt

∑nt
i=1 Φ(xi

t)Φ(xi
t)

T [23], where xi
t is

the ith training MED video sequence. We aim to find eigenval-
ues λ ≥ 0 and eigenvectors V satisfying λV = CV . Although H
could have an arbitrarily large, possibly infinite dimensionality, the
inner product of any two data Φ(xi) and Φ(x j) can be explicitly ex-
pressed by a kernel matrix K, i.e., Ki j =

(
Φ(xi) ·Φ(x j)

)
. It turns out

that we need to solve the eigenvalue problem ntλα = Kα , where
α = [α1, ...,αnt ]

T are coefficients such that V = ∑nt
i=1 αiΦ(xi

t) [23].
Let α1, ...,αr be the normalized eigenvectors corresponding to all
the non-zero eigenvalues 0 < λ1 ≤ ...≤ λr . For a testing video se-
quence xte and an auxiliary video sequence xa, the projection into
the eigenvectors V p(1 ≤ p ≤ r) in H can be computed according
to ∑nt

i=1 αp
i

(
Φ(xi

t) ·Φ(xte)
)

and ∑nt
i=1 αp

i

(
Φ(xi

t) ·Φ(xa)
)
.

4. CONCEPTS ADAPTATION ASSISTED
EVENT DETECTION

Next, we explain how the knowledge adaptation is accomplished
for Ad Hoc MED. Our approach is grounded on two components:
one is the knowledge from the available target training examples
and the other one is the knowledge propagated from the auxiliary
concepts-based videos.

We first demonstrate how to exploit the knowledge from the tar-
get training examples. Denote the target training videos in H by
X̃t = [x̃1

t , x̃
2
t , ..., x̃

nt
t ] ∈ R

dh×nt . yt = [y1
t ,y

2
t , ...,y

nt
t ]T ∈ {0,1}nt×1 are

the labels for the target training videos. yi
t = 1 if the ith video xi

t is
a positive example whereas yi

t = 0 otherwise. The low-level repre-
sentations and high-level semantics of videos can be associated by
a decision function f which, for an input video sequence x, predicts
an output y. In this paper, we define ft as:

ft(X̃
i
t ) = X̃T

t Wt +1tbt , (1)

where Wt ∈R
dh×1 is an event detector which correlates X̃t with their

labels yt . bt ∈ R
1 is a bias term and 1t ∈ R

nt×1 denotes a column
vector with all ones. ft is decided by minimizing the following
objective based on the training examples Xt and their labels yt :

min
ft

loss( ft(Xt),yt)+µΩ( ft ). (2)

loss(·) is a loss function and αΩ( ft) is the regularization function
on ft with µ as its parameter. Different loss functions such as the
hinge loss and the least square loss can be used. In this paper,
we use the �2,1-norm based loss function because it is robust to
outliers [18]. Thus, Eq. (2) is reformulated as:

min
Wt ,bt

∥∥∥X̃T
t Wt +1tbt −yt

∥∥∥
2,1

+µΩ(Wt ). (3)

Now we show how to adapt the knowledge from auxiliary videos
which are associated with different concepts to assist in Ad Hoc
MED. Denote the auxiliary videos in H by X̃a = [x̃1

a, x̃
2
a, ..., x̃

na
a ] ∈

R
dh×na . Ya = [y1

a,y
2
a, ...,y

na
a ]T ∈ {0,1}na×ca is their label matrix

where ca indicates that there are ca different concepts. Y i j
a denotes

the jth datum of yi
a and Y i j

a = 1 if xi
a belongs to the jth concept,

while Y i j
a = 0 otherwise. The fundamental step is to mine the corre-

lation between the low-level representations and high-level seman-
tics of the auxiliary concepts-based videos. Similarly to Eq. (3), we
realize that by the following objective:

min
Wa,ba

∥∥∥X̃T
a Wa +1aba −Ya

∥∥∥
2,1

+ γΩ(Wa) (4)

where a concept classifier Wa ∈ R
dh×ca is used to correlate X̃a with

their labels Ya. ba ∈R
1×ca is a bias term and 1a ∈R

na×1 is a column
vector with all ones.

Next, we illustrate how to adapt knowledge from the auxiliary
concepts-based videos for a more discriminating event detector.
The concepts-based videos presumably share some common com-
ponents with the target event-based videos. For instance, the con-
cepts fish, water, people are relevant with the event landing a fish.
It is reasonable to leverage such relevance to improve the target
event detection when we have only few positive examples. As the
classifier Wa and the detector Wt correlate the low-level represen-
tations with the high-level concepts and event for each domain re-
spectively, we explore the shared knowledge between the two to
optimize the learning of Wt . The video representation in H is po-
tentially noisy. In Ad Hoc MED, only few training examples are
provided. The limited information is usually not sufficient to ef-
fectively deal with the underlying noise. On the other hand, the
concepts of X̃a and the event of X̃t are related and grounded on
similar low-level representations. The irrelevant or noisy compo-
nents in Wa and Wt should be similar, which can be uncovered by
learning Wa and Wt jointly. Thus, we exploit the concept classifier
Wa to help remove the noise in Wt for a more discriminative event
detector.

Denote Wa = [w1
a, ...,w

dh

a ]T , Wt = [w1
t , ...,w

dh

t ]T . Then we com-
bine them and define a joint analyzer W = [w1, ...,wdh

] where wi is
the horizontal concatenation of wi

a and wi
t , i.e., wi = [wi

a,w
i
t ]. In this

sense, wi reflects the joint information from the auxiliary videos
and the target training videos. Through proper optimization of wi,
we can remove the shared irrelevant or noisy components. Previous
work has shown that sparse models are useful for feature selection
by eliminating redundancy and noise [5, 19, 18]. The sparse models
are used to make some of the feature coefficients shrink to zeros to
achieve feature selection. These works, though focusing on differ-
ent problems, provide us with the inspiration that the "shrinking to
zero" idea can be applied to uncover the common structures shared
by the concept classifier and the event detector. In this way, we
can similarly remove the shared irrelevance and noise, thus obtain-
ing a more discriminative event detector. Specifically, we propose

to minimize ‖W‖2,p =

(
dh

∑
i=1

(
ca+1
∑

j=1

∣∣Wi j
∣∣) p

2

) 1
p

to achieve that goal.

‖·‖2,p denotes the �2,p-norm (0 < p < 2). By minimizing ‖W‖2,p,
we can reduce the negative impact of the irrelevant or noisy wi’s. p
is used to control the degree of shared structures. The lower p is,
the more correlated are the concept classifier and the event detector.
Consequently, we can obtain an optimal event detector Wt .

To this end, we propose the following objective function to adapt
the knowledge from auxiliary videos for Ad Hoc MED:

min
Wa,Wt ,ba,bt

∥∥X̃T
a Wa +1aba −Ya

∥∥
2,1 +

∥∥X̃T
t Wt +1t bt − yt

∥∥
2,1

+α

(
dh

∑
i=1

(
ca+1

∑
j=1

∣∣Wi j
∣∣) p

2

) 1
p

+β(‖Wa‖2
F +‖Wt‖2

F )

(5)

where β(‖Wa‖2
F + ‖Wt‖2

F) is added to control the capacity of the
classifier and the detector.

Once Wt is obtained, we apply it to the testing videos in H for
event detection. Our method builds upon the knowledge adaptation
from concepts-based videos to event-based videos by leveraging
the shared structures between them. We therefore name it Struc-
tural Adaptive Regression (SAR).

5. OPTIMIZING THE EVENT DETECTOR
In this section, we present our solution for obtaining the target

event detector. Our problem in Eq. (5) involves the �2,1-norm and
the �2,p-norm which are both non-smooth and cannot be solved in
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a closed form. We propose to solve it as follows. For the detailed
solution, please see Appendix.

Denote X̃T
a Wa −Ya = [u1, ...,una ]T , X̃T

t Wt − yt = [v1, ...,vnt ]T .
Next, we define three diagonal matrices Da, Dt and D with their
diagonal elements Dii

a =
1

2‖ui‖2
, Dii

t = 1
2‖vi‖2

, Dii = 1
2
p ‖wi‖2−p

2

respec-

tively. In this way, we can get the concept classifier Wa as:

Wa = (X̃aHaDaHaX̃T
a +αD+βId)

−1X̃aHaDaHaYa (6)

Ha = Ia − 1
na

1a1T
a . Ia ∈ R

na×na and Id ∈ R
dh×dh are two identity

matrices. The event detector Wt is obtained as:

Wt = (X̃tHtDtHt X̃
T
t +αD+βId )

−1X̃tHtDtHtyt . (7)

where Ht = It − 1
nt

1t1T
t and It ∈ R

nt×nt is an identity matrix.
Next, we propose Algorithm 1 to solve the objective function in

Eq. (5). It can be proved that the objective function in Eq. (5) is
convex and the objective function value monotonically decreases
in each iteration until convergence using Algorithm 1. Due to the
space limit, we omit the proof. For training, the computational
complexity of Algorithm 1 is O(d3

h). Note that dh ≤ nt because
usually there are few training examples in Ad Hoc MED. Thus,
the training process is not very computationally expensive. During
testing, computing kernels between the testing data and the train-
ing data is the most expensive process. Suppose there are nte testing
videos, we need to compute ntnte kernels. Each datum is dh dimen-
sional so the complexity is O(dhntnte).

Algorithm 1: Optimizing the event detector.

Input:
The auxiliary data X̃a ∈ R

dh×na ,Ya ∈ R
na×ca ;

The target training data X̃t ∈ R
dh×nt ,yt ∈ R

nt×1;

Parameters α and β.

Output:
Optimized Wt ∈ R

dh×1 and bt ∈ R
1.

1: Set t = 0, initialize Wa ∈ R
dh×ca and Wt ∈ R

dh×1 randomly;

2: repeat
Compute X̃T

a Wa −Ya = [u1, ...,una ]T ,
X̃T

t Wt −yt = [v1, ...,vnt ]T , and W = [w1, ...,wd]T ;

Compute the diagonal matrix Dt
a, Dt

t and Dt according to
Dii

a = 1
2‖ui‖2

, Dii
t = 1

2‖vi‖2
, and Dii = 1

2
p ‖wi‖2−p

2

respectively;

Update W t+1
a as:

W t+1
a = (X̃aHaDaX̃T

a +αD+βId)
−1X̃aHaDaHaY T

a ;

Update bt+1
a as: bt+1

a = 1
na

1T
a Ya − 1

na
1T

a X̃T
a Wt+1

a ;

Update W t+1
t as:

W t+1
t = (X̃tHtDt X̃T

t +αD+βId)
−1X̃tHtDtHtyT

t ;

Update bt+1
t as: bt+1

t = 1
nt

1T
t yt − 1

nt
1T

t X̃T
t W t+1

t ;

t = t +1.
until Convergence;

3: Return Wt and bt .

6. EXPERIMENTS
In this section, we present the experiments which aim to evaluate

the performance of our Structural Adaptive Regression (SAR) for
Ad Hoc MED.

6.1 Datasets
NIST has provided so far the largest video corpora for MED.

Our experiments on Ad Hoc MED are conducted on the TRECVID
MED 2010 (MED10) and TRECVID MED 2011 (MED11) devel-
opment set. MED102 includes 3 events defined by NIST, which are
Making a cake, Batting a run, and Assembling a shelter. MED113

includes 15 events, i.e., Attempting a board trick, Feeding an ani-
mal, Landing a fish, Wedding ceremony, Working on a woodwork-
ing project, Birthday party, Changing a vehicle tire, Flash mob
gathering, Getting a vehicle unstuck, Grooming an animal, Making
a sandwich, Parade, Parkour, Repairing an appliance and Work-
ing on a sewing project. The two datasets are combined together
(MED10-11 for short) in our experiments so we have a dataset of
9822 video clips consisting of 361,623 key frames.

We use the development set from TRECVID 2011 semantic in-
dexing task (SIN11) as the auxiliary videos. The SIN11 covers 346
concepts but some of them have few positive examples. Addition-
ally, "events" usually refer to "semantically meaningful human ac-
tivities, taking place within a selected environment and containing
a number of necessary objects [9]." Hence, we removed the con-
cepts with few positive examples and selected 65 concepts that are
related to human, environment and objects. We thus use a subset
with 2529 video frames.

6.2 Setup
The videos are represented by the SIFT and CSIFT features. We

ran our program on the Carnegie Mellon University Parallel Data
Lab cluster, which contains 300 cores, to extract features and per-
form the bag-of-words mapping.

According to the MED task definition from NIST, each event is
detected independently. Therefore, there are 18 individual detec-
tion tasks. NIST has defined that the number of positive training
examples is 10 for Ad Hoc MED [2]. However, there is no stan-
dard training and testing set partition provided by NIST. Hence, we
randomly split the MED10-11 dataset into two subsets, one as the
training set and the other one as the testing set. We follow the Ad
Hoc MED definition by NIST and randomly select 10 positive ex-
amples for each event. Another 300 negative examples are selected
and combined with the positive examples as the training data. The
remaining 9512 videos are our testing data. The experiments are in-
dependently repeated 5 times with randomly selected positive and
negative examples. The average results are reported.

We use three evaluation metrics. The first one, Minimum NDC
(MinNDC), is officially used by NIST in TRECVID MED 2011
evaluation [1]. Lower MinNDC indicates better detection perfor-
mance. The second one is the Probability of Miss-Detection based
on the Detection Threshold 12.5. This evaluation metric is used
by NIST in TRECVID MED 2012 [2] to evaluate MED perfor-
mance. We denote it Pmd@TER=12.5 for short. Likewise, lower
Pmd@TER=12.5 indicates better performance. For more details
about the above two evaluation metrics, please see the TRECVID
2011 and 2012 evaluation plans [1, 2]. The third one is Average
Precision (AP). Higher AP indicates better performance.

6.3 Ad Hoc MED Results
In this section, we show the Ad Hoc MED results. As SVM is

the most widely used and robust event detector for MED [13, 6, 11,
28], we first compare our method SAR with SVM. We use two ker-
nels, i.e., Gaussian kernel and χ2 kernel for both SAR and SVM.
To be clear, we use G-SAR, G-SVM, χ2-SAR and χ2-SVM to refer

2http://nist.gov/itl/iad/mig/med10.cfm
3http://www.nist.gov/itl/iad/mig/med11.cfm
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Table 1: Average detection accuracy of SAR and SVM using
Gaussian kernel. LOWER MinNDC and Pmd@TER=12.5 in-
dicate BETTER performance. HIGHER AP indicates BET-
TER performance. Better results are highlighted in bold.

Evaluation Metric G-SVM G-SAR
MinNDC

Pmd@TER=12.5
AP

0.954
0.751
0.072

0.910
0.674
0.103

Table 2: Average detection accuracy of SAR and SVM using
χ2 kernel. LOWER MinNDC and Pmd@TER=12.5 indicate
BETTER performance. HIGHER AP indicates BETTER per-
formance. Better results are highlighted in bold.

Evaluation Metric χ2-SVM χ2-SAR
MinNDC

Pmd@TER=12.5
AP

0.904
0.665
0.115

0.881
0.626
0.131

to different implementations. For SAR, we tune the two parameters
α and β both from {10−3,10−2, ...,102,103}, and the parameter p
from {0.5,1,1.5}. For SVM, we use LIBSVM and tune the param-
eters C and γ similarly from {10−3,10−2, ...,102,103}. We report
the best results for each algorithm.

Figure 2 shows the comparison between the four approaches.
Note that LOWER MinNDC and Pmd@TER=12.5 indicate BET-
TER performance; HIGHER AP indicates BETTER performance.
We observe that: 1) In general, χ2-SAR and χ2-SVM are better
than G-SAR and G-SVM respectively, demonstrating that χ2 ker-
nel is better than Gaussian kernel for video analysis. 2) χ2-SAR
proposed in this paper is consistently the most competitive algo-
rithm. Specifically, χ2-SAR attains the best detection performance
for 14, 14 and 13 events in MinNDC, Pmd@TER=12.5 and AP
respectively; χ2-SAR gets the advantageous performance for the
remaining events. 3) For average performance over the 18 events,
G-SAR, χ2-SAR outperform G-SVM, χ2-SVM respectively using
all the three evaluation metrics. The detailed numbers of the av-
erage results are listed in Table 1 and Table 2. 4) We also notice
that the performance of G-SAR does not change significantly com-
pared with χ2-SAR. However, for most events, the performance of
G-SVM drops drastically compared with χ2-SVM, which indicates
that SVM is sensitive to kernel change. In fact, the advantage of
G-SAR over G-SVM is remarkably large for many events. For few
events, e.g., Working on a woodworking project and Grooming an
animal, χ2-SAR is worse than χ2-SVM. Nonetheless, G-SAR out-
performs G-SVM dramatically.

Next, we add two state of the art detectors for comparison:
(1) TaylorBoost [21]: a state of the art algorithm extended from

AdaBoost.
(2) Adaptive Multiple Kernel Learning (A-MKL) [8]: a recent

knowledge adaptation algorithm built upon SVM.
For these algorithms, we use the code shared by the authors. A-

MKL is a knowledge adaptation based algorithm, which similarly
utilizes the SIN11 dataset as auxiliary data.

Since χ2-SAR and χ2-SVM show better performance in the last
experiment, we only list their results to compare with the other
three approaches. Note that we use SAR and SVM for short here.

Figure 3 shows the detection results of different approaches.
Note that lower MinNDC and Pmd@TER=12.5 indicate better per-
formance; higher AP indicates better performance. We can see that

our method SAR is still the most competitive algorithm. Specif-
ically, SAR is the best for 14, 13 and 10 events in MinNDC,
Pmd@TER=12.5 and AP respectively. For the remaining events,
SAR obtains the advantageous performance. For average perfor-
mance, SAR is the best algorithm using all the three evaluation
metrics. We also observe that A-MKL generally attains the second
best performance. However, we would point out that A-MKL is not
suitable for large scale multimedia analysis due to its low compu-
tational efficiency. The calculation of 80 different kernel matrices
consumes up to 30GB memory and the detection for one event is
much more computationally expensive than our algorithm.

6.4 Using Fewer Concepts
To study whether the number of concepts affects the Ad Hoc

MED performance, we conduct an experiment by choosing fewer
concepts out of the 65 concepts from the auxiliary videos. We man-
ually selected 30 concepts which are supposed to be most related
to generic events. The videos related to these 30 concepts are used
as auxiliary data. Figure 4 displays the corresponding results. We
only show the results in Average Precision due to the space limit.
It can be seen that the performance does not vary much when us-
ing only 30 auxiliary concepts. This observation indicates that it is
not very critical to decide how many concepts should be selected
as auxiliary knowledge with our method.

6.5 Do Negative Examples Help?
We further conduct an experiment to evaluate whether negative

examples contribute much to the detection accuracy by reducing
the number of negative examples to 100. Figure 5 shows the per-
formance comparison between using 100 negative examples and
using 300 negative examples. Similarly, Average Precision is cho-
sen as the evaluation metric. It can be seen that using 300 negative
examples is clearly better than merely using 100 negative exam-
ples, which indicates that negative examples do help improve the
detection accuracy. Since negative examples are quite easy to ob-
tain in the real world, it is reasonable and beneficial to leverage
such cheap resources for boosted detection accuracy.

7. CONCLUSION
In this paper, we have introduced the first research exploration

of Ad Hoc MED. This is an important research issue as it focuses
on more generic, complicated and meaningful events that reflect
our daily activities. In addition, the situation we are faced in the
real world requires that only few positive examples are used. To
achieve good performance, we have proposed to borrow strength
from available concepts-based videos for Ad Hoc MED. In our joint
optimization framework, we first mine the shared irrelevance and
noise between the auxiliary videos and the target videos. Then a
sophisticated method is exerted to alleviate the negative impact of
the irrelevance and noise to obtain a more robust event detector.
We also proposed an efficient iterative algorithm to solve our ob-
jective function. Extensive experiments using real-world multime-
dia archives were conducted with results showing that our method
generally outperforms all compared state of the art detection algo-
rithms. This promising performance indicates that it is beneficial
to leverage auxiliary knowledge for Ad Hoc MED when we do not
have sufficient positive examples. However, knowledge adaptation
is based on the assumption that there are shared structures between
the source and the target. If the two have very different structures,
we may get negative transfer which degrades the detection perfor-
mance on the target. Therefore, it would be interesting and im-
portant to study how to judge the structural commonness to better
utilize knowledge adaption in the future.
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Figure 2: Performance Comparison between SAR and SVM using different kernels. Note that LOWER MinNDC and
Pmd@TER=12.5 indicate BETTER performance; HIGHER AP indicates BETTER performance.
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Figure 3: Performance Comparison on Ad Hoc MED. Note that LOWER MinNDC and Pmd@TER=12.5 indicate BETTER perfor-
mance; HIGHER AP indicates BETTER performance.
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Figure 4: Performance comparison between using 30 auxiliary concepts and using 65 auxiliary concepts.
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Figure 5: Performance comparison between using 100 negative examples and using 300 negative examples.
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APPENDIX
The objective in Eq. (5) is equivalent to:

min
Wa,Wt ,ba,bt

Tr
(
(X̃T

a Wa +1aba −Ya)
T Da(X̃

T
a Wa +1aba −Ya)

)
+Tr

(
(X̃T

t Wt +1t bt − yt)
T Dt(X̃

T
t Wt +1t bt − yt)

)
+αTr

(
W T DW

)
+β(‖Wa‖2

F +‖Wt‖2
F )

(8)

where Tr (·) denotes the trace operator. By setting the derivative of
Eq. (8) w.r.t. ba to zero, we get:

21T
a DaX̃T

a Wa +21T
a Da1aba −21T

a DaYa = 0

⇒ ba =
1
na

1T
a Ya − 1

na
1T

a X̃T
a Wa. (9)

Similarly, we obtain bt as:

bt =
1
nt

1T
t yt − 1

nt
1T

t X̃T
t Wt . (10)

Substituting Eq. (9) and Eq. (10) into Eq. (8), it becomes:

min
Wa,Wt

Tr

(
[X̃T

a Wa +1a(
1
na

1T
a Ya − 1

na
1T

a X̃T
a Wa)−Ya]

T Da

[X̃T
a Wa +1a(

1
na

1T
a Ya − 1

na
1T

a X̃T
a Wa)−Ya]

)

+Tr

(
[X̃T

t Wt +1t(
1
nt

1T
t yt − 1

nt
1T

t X̃T
t Wt)− yt ]

T Dt

[X̃T
t Wt +1t(

1
nt

1T
t yt − 1

nt
1T

t X̃T
t Wt)− yt ]

)

+αTr
(
W T DW

)
+β(‖Wa‖2

F +‖Wt‖2
F )

(11)

Let Ha = Ia − 1
na

1a1T
a and Ht = It − 1

nt
1t1T

t where Ia ∈ R
na×na and

It ∈ R
nt×nt are two identity matrices. We then rewrite Eq. (11) as:

min
Wa,Wt

Tr
(
(HaX̃T

a Wa −HaYa)
T Da(HaX̃T

a Wa −HaYa)
)

+Tr
(
(Ht X̃

T
t Wt −Htyt )

T Dt (HtX̃
T
t Wt −Htyt )

)
+αTr

(
W T DW

)
+β(‖Wa‖2

F +‖Wt‖2
F )

(12)

Setting the derivative of Eq. (12) w.r.t. Wa to zero, it becomes:

2X̃aHaDaHaX̃T
a Wa +2αDWa +2βWa −2X̃aHaDaHaYa = 0

⇒Wa = (X̃aHaDaHaX̃T
a +αD+βId)

−1X̃aHaDaHaYa (13)

where Id ∈ R
dh×dh is an identity matrix. In the same manner, we

obtain the event detector Wt as:

Wt = (X̃tHtDtHt X̃
T
t +αD+βId)

−1X̃tHtDtHtyt . (14)
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