
CMU-IBM-NUS@TRECVID 2012:
Surveillance Event Detection∗

Yang Cai† Qiang Chen‡∔ Lisa Brown‡ Ankur Datta ‡ Quanfu Fan‡ Rogerio Feris‡

Shuicheng Yan∔ Alex Hauptmann† Sharath Pankanti‡

Carnegie Mellon University† IBM Research‡ National University of Singapore∔

1 Introduction
We present a generic event detection system evaluated in theSED task of TRECVID 2012. It
consists of two parts: the retrospective system and the interactive system. The retrospective system
uses MoSIFT [2] as low level feature, Fisher Vector encoding[1] to represent samples generated
by sliding window approach and linear SVM for event classification. For interactive system, we
introduce event-specific visualization schemes for efficient interaction and temporal locality based
search method for user feedback utilization. Among the primary runs of all teams, our retrospective
system ranked 1st for 4 / 7 events, in terms of actual DCR.

2 Fisher Vector Encoding for Retrospective Event Detection
2.1 Framework
We use MoSIFT as our low level feature and Fisher Vector encoding (FV) to represent detection
windows upon MoSIFT. Then, linear SVM is used to train classification model based on annotated
positives and randomly sampled negatives. For testing, multiscale detection is applied and non-
maximum suppression is used to exclude duplicate detections on single event.

2.2 Fisher Vector Encoding

Fisher Vector encoding utilizes a Gaussian mixture model (GMM) Uλ(x) =
∑K

k=1 πkuk(x) trained
on local features of a large image set using Maximum Likelihood (ML) estimation. The parameters
of the trained GMM are denoted asλ = {πk, µk, Σk, k = 1, · · · , K}, where{π, µ, Σ} are the prior
probability, mean vector and diagonal covariance matrix ofGaussian mixture respectively. This
GMM is used for description of low level feature.

Then for a set of low level featuresX = {x1, · · · , xN} extracted from a clip of videosy, the
soft assignments of the descriptorxi to thekth Gaussian componentsγik is computed by:γik =

πkuk(xi)∑
K

k=1
πkuk(xi)

. And the FV forX is denoted asφ(X) = {u1, v1, · · · , uK , vK} while uk andvk

is defined asuk =
∑N

i=1
1

N
√

πk

γik
xi−µk

σk

andvk =
∑N

i=1
1

N
√

2πk

γik[(xi−µk)2

σ2

k

− 1] while σk are

square root of the diagonal values ofΣk.

The FV has several good properties: (a)Fisher Vector encoding is not limited to computing visual
word occurrence. It also encodes additional the distribution information of the feature points, which
will perform more stable when encoding a single feature point. (b) It can naturally separate the
video specific information from the noisy local features. (c) We can use linear model for this rep-
resentation. We build efficient implementation for FV whichcan reach the speed of 10 times faster
than real time.

Power Normalization and L2 Normalization: It is easy to observe that as the number of Gaus-
sians increases, Fisher vectors become sparser so that the distribution of features in a given dimen-
sion becomes more peaky around zero. As introduced in [1], wealso use a combination of power
normalization and l2 normalization for each fisher vector encoding features. Supposez is one di-
mension of theφ, the power normalization is defined asf(z) = sign(z)|z|α where0 ≤ α ≤ 1 is a
parameter of the normalization and we chooseα = 0.5 in all the experiments and then followed by
l2 normalization.

∗Equal contributions by Yang Cai and Qiang Chen

(b)(a) (c)

Figure 1:Illustration of visualization schemes. (a) is using ”Many low-resolution units” for ”PersonRuns”, (b)
is using ”Few high-resolution units” for ”CellToEar” and (c) is using ”Contextual units” for ”PeopleSplitUp”.

2.3 Efficient Implementation
Compared with standard BoW, the computation cost of FV is much fewer. For BoW, the computation
mainly comes from the Vector Quantization(VQ) step which has the complexity ofO(NDM) where
N is the number of local features,D is the dimensionality of local feature andM is the codebook
size. For FV, the cost has two part that one part is the GMM assignment calculationγik which has
complexity ofO(NDK) whereK is the GMM model size, another part is the FV calculation which
often takes much less time than the first part(usually≤ 1%). Then we can see that since we usually
use much less number of Gaussians for FV (usually 128 or 256) than the number of visual words for
BoW (usually a few thousands) the computation for FV is very highly efficient compared to standard
BoW. The experiment shows that our implementation can produce the FV 10 times faster that real
time excluding the local feature extraction part cost.

2.4 Multiscale detection and Non-maximum suppression
Ideally, we need to search over different scales and different step size to locate the exact event in the
video sequences. However, it is unpractical for current sliding window framework. For example, the
maximum length of PersonRuns event in the Dev dataset is 1000frames while the minimal length
is 10 frames – such diversity of event duration brings a lot ofsearch space and the computation cost
is too high. Instead of this exhaustive search, we select three scales which are closest to the average
duration of each event and accept the scale with best performance.

NMS is widely used in many computer vision tasks, e.g. edge detection or object detection. In
SED task, NMS will set all scores in the current neighborhoodwindow that are lower than the
maximum value in that window to zero (or lowest value).The current score of the sliding window is
then compared to this maximum value. If lower it is set to zerootherwise the value is unchanged.
We use NMS to suppress the multiple detection for single event.

3 Interactive Event Detection System
We attempted to address two central problems of an interactive surveillance event detection system:
(1) detection results visualization and (2) user feedback utilization. Because of the limited time
available for interaction, the system design was driven by efficiency considerations from both these
two perspectives. Specifically, in this year system, we proposed two techniques for the two aspects
respectively, which are introduced as follow.

3.1 Event-specific Detection Results Visualization
In a surveillance video where tens or even hundreds of peopleappear simultaneously in one camera,
it’s not surprising to take one several minutes to verify a correct event detection. To help user more
efficiently capture video content, we experimented with several presentation schemes and designed
an event-specific visualization approach by finding good presentation schemes for different events.

We define a single detection result as a visualization unit orunit. In our interactive system, a unit
is presented by repeatedly playing the detected video segment at twice original speed. Given the
limited space of a screen and the limited perception abilityof an user, the problem then turns to
how to arrange these units to better trade-off the visualization quantity (e.g. the number of units
in one screen) and visualization quality (e.g. the clearness of each unit). We specifically explored
following three presentation schemes.

Many low-resolution units: As shown in Figure 1(a), we presented multiple low-resolution units
in a screen. It leveraged the fact that users can simultaneously capture the rough content of multiple
units. Due to the roughness of such simultaneous capture, it’s only favored by events which can
be captured by a glance, such as ”PersonRuns”. For other sophisticated events, however, it doesn’t
benefit the performance due to low-resolution units.

Few high-resolution units: Due to the impreciseness of previous scheme, we presented the units
with higher resolution at the expense of fewer units in a screen (see Figure 1(b)). This presentation

0

0.05

0.1

0.15

0.2

0.25

[0
,1

0
0
)

[1
0
0
,2

0
0
)

[2
0
0
,3

0
0
)

[3
0
0
,4

0
0
)

[4
0
0
,5

0
0
)

[5
0
0
,6

0
0
)

[6
0
0
,7

0
0
)

[7
0
0
,8

0
0
)

[8
0
0
,9

0
0
)

[9
0
0
,1

0
0
0
)

[1
0
0
0
,1

1
0
0
)

[1
1
0
0
,1

2
0
0
)

[1
2
0
0
,1

3
0
0
)

[1
3
0
0
,1

4
0
0
)

[1
4
0
0
,1

5
0
0
)

[1
5
0
0
,1

6
0
0
)

[1
6
0
0
,1

7
0
0
)

[1
7
0
0
,1

8
0
0
)

[1
8
0
0
,1

9
0
0
)

[1
9
0
0
,2

0
0
0
)

[2
0
0
0
,2

1
0
0
)

[2
1
0
0
,2

2
0
0
)

[2
2
0
0
,2

3
0
0
)

[2
3
0
0
,2

4
0
0
)

[2
4
0
0
,2

5
0
0
)

[2
5
0
0
,2

6
0
0
)

[2
6
0
0
,2

7
0
0
)

[2
7
0
0
,2

8
0
0
)

[2
8
0
0
,2

9
0
0
)

[2
9
0
0
,3

0
0
0
)

[3
0
0
0
,3

1
0
0
)

[3
1
0
0
,3

2
0
0
)

[3
2
0
0
,3

3
0
0
)

[3
3
0
0
,3

4
0
0
)

[3
4
0
0
,3

5
0
0
)

[3
5
0
0
,3

6
0
0
)

[3
6
0
0
,3

7
0
0
)

[3
7
0
0
,3

8
0
0
)

[3
8
0
0
,3

9
0
0
)

[3
9
0
0
,4

0
0
0
)

[4
0
0
0
,4

1
0
0
)

[4
1
0
0
,4

2
0
0
)

[4
2
0
0
,4

3
0
0
)

[4
3
0
0
,4

4
0
0
)

[4
4
0
0
,4

5
0
0
)

[4
5
0
0
,4

6
0
0
)

[4
6
0
0
,4

7
0
0
)

[4
7
0
0
,4

8
0
0
)

[4
8
0
0
,4

9
0
0
)

[4
9
0
0
,5

0
0
0
)

P
e

rc
e

n
ta

g
e

Interval Size (frame)

PersonRuns

CellToEar

ObjectPut

PeopleMeet

PeopleSplitUp

Embrace

Pointing

Figure 2:Distribution of frame intervals between each consecutive events pair in SED development set.

scheme is helpful for events whose action is small, weak and always lying in a tiny sub-region of
the whole frame, such as ”CellToEar”, ”ObjectPut” and etc.

Contextual units: Instead of only presenting the unit corresponding to a detection result, this
scheme also presented the contextual units, which are neighbor windows next to the detection. It
helped the verification of slightly drifted true positives.The middle unit of Figure 1(c) shows an
slightly drifted detection of ”PeopleSplitUp”, which started with a person walking away from an
airport agent. Since it missed the moment they were together, it’s very hard for user to judge if the
detection is a true positive or a false alarm. However, by providing at the context (the first and third
units in Figure 1)(b), the problem can be easily solved.

Even different events favor different presentation schemes, in practice, we didn’t use only one for
the interaction of curtain event. Because the good presentation scheme for a event is just in general
sense and unnecessarily true for all specific cases (e.g. children’s running may also need detailed
looking). In the interactive system for this year submission, we organized these schemes into one
integrated interface.

3.2 Temporal Locality Based Search
By analyzing the distribution of events in temporal domain,we observed an interesting ”clustered”
distribution pattern for some events. To see this, we calculated the frame intervals between each
consecutive events pair in a video and then counted the numbers of pairs dropping into quantized
interval bins. In Figure 2 which visualizes the interval distribution, we can easily see that, for some
events (e.g. Pointing, ObjectPut and etc.), most of the intervals are very small, which indicates an
clustered distribution of them. In other words, if we see an event at somewhere, we are likely to see
another one near to it. Based on such temporal locality, we proposed a interactive searching method
focusing on saving miss detections.

Let dt be a system detection whose middle frame ist. LetD be a set of system detections. Letδt be
a predefined short interval. When user labeled one system detectiondt as true positive, the temporal
locality search method retrieves a set of neighbor detectionsD = {d

t
′ ||t

′

− t| < δt} to users. Then
user can quickly go through the list and search for miss detections.

4 Experiments
4.1 Evaluation of Retrospective Event Detection
Experimental Setting: For an ideal event detection framework, we focus on the efficiency and
effectiveness of training and testing stages. For trainingstages, we use Fisher Vector encoding as
the representation of video events which allows us to use linear classifier to obtain efficiency and
good performance. We first trained a GMM model with 256 codebooks. Each MoSIFT feature
is first reduced to 80 dims using PCA. No SPM is utilized in thisyear. The final dimension is
2 × 80 × 256 = 40960. We perform hard samples mining on the training set so that the learned
classifier is more generalized. 2-fold cross validation is used to obtain the thresholding of final
output. At testing stages, ideally, exhaustive search overtemporal space should be utilized. However,
two factors avoid this: (1) high cost for dense search. (2) unbalanced output at different scales. Thus,
we calculated the mean temporal duration of each events and select 30, 60, 120 as the testing frame
windows and select best performance window size as the final result. Since DCR evaluation is
highly nonlinear, we also perform threshold prediction in which we use topK threshold and min
DCR threshold on the training set as observation to predict the final best thresholds for DCR.

Results: We show our primary run result using Fisher Vector encoding (CMU12 FV) on retrospec-
tive task in Table 1 compared with the results of CMU Bag-of-Words of last year (CMU11 BoW)
and the other teams’ best primary run results this year (Others12 Best). Please note the test video
of 2012 is a subset of last year’s. It is shown that ourCMU12 FV is better thanCMU11 BoW. We
had similar observation in our experiments on development set. In terms of the actual DCR, our

Table 1: The actual DCR and minimum DCR comparisons of primary runs amongCMU12 FV,
Others12 Best andCMU11 BoW.

CMU12 FV Others12 Best CMU11 BoW
Rank ActDCR MinDCR ActDCR MinDCR ActDCR MinDCR

CellToEar 1 1.0007 1.0003 1.0040 0.9814 1.0365 1.0003
Embrace 1 0.8000 0.7794 0.8247 0.8240 0.8840 0.8658
ObjectPut 2 1.0040 0.9994 0.9983 0.9983 1.0171 1.0003

PeopleMeet 3 1.0361 0.9490 0.9799 0.9777 1.0100 0.9724
PeopleSplitUp 1 0.8433 0.7882 0.9843 0.9787 1.0217 1.0003
PersonRuns 1 0.8346 0.7872 0.9702 0.9623 0.8924 0.8370

Pointing 3 1.0175 0.9921 0.9813 0.9770 1.5186 1.0001

Table 2: The actual DCR comparision between different interaction stategies on development set
and evaluation set.

Development Set Evaluation Set
Retro Naive ESpecVis ESpecVis+TLRerank Retro ESpecVis+TLRerank

CellToEar 1.0008 1.0014 1.0008 1.0009 1.0007 1.009
Embrace 0.9519 0.9547 0.9344 0.9115 0.8 0.6696
ObjectPut 1.0033 1.0026 1.0024 1.0023 1.004 1.0064

PeopleMeet 0.9381 0.9338 0.9334 0.9361 1.0361 0.9786
PeopleSplitUp 0.8972 0.9416 0.889 0.8863 0.8433 0.8177
PersonRuns 0.761 0.7528 0.7511 0.7366 0.8346 0.6445

Pointing 1.0168 1.0109 1.0134 1.0084 1.0175 0.9854

system achieved best performance in four events this year. It shows good results on ”PersonRuns”,
”PeopleSplitUp”, ”Embrace” and ”PeopleMeet”, while in other tasks the results are still close to
random. Other localized method should be used to tackle these failure tasks.

4.2 Evaluation of Interactive Event Detection
Experimental Setting: Besides reporting the formal evaluation results provided by NIST, we also
included the developing experimental results, to exam the effectiveness of proposed interaction
methods. Specifically, in our developing experiments, we used ”Dev08” as training and ”Eval08”
as testing. Instead of using the 25 minutes interaction walltime of formal evaluation setting, the
developing experiments used an interaction walltime of 5 minutes for each event. In table 2, we
compared the actual DCR on development set and evaluation set (primary runs) for 4 interaction
strategies: (1)no interaction (Retro), (2)scanning system detections only with ”many low-resolution
units” visualization discussed in Section 3.1 (Naive), (3)scanning system detections using event-
specific visualization (ESpecVis) and (4)scanning system detections using both event-specific visu-
alization and temporal locality search (ESpecVis+TLSearch).

Results: In developing experiments, compared toRetro, Naive only shown significant improve-
ments on event ”PersonRuns” which is very easy to identify. On other events, the performance
even dropped dramatically (e.g. ”PeopleSplitUp”) after this naive interaction. By adopting the
better event-specific visualizations,ESpecVis shown improvements overRetro on more events than
Naive. Specifically, for events ”Embrace” and ”PeopleSplitUp” which Naive didn’t do well, ES-
pecVis demonstrated performance gain by providing high resolution visualization and event context.
By further adding temporal locality search, we observed larger improvements on ”PersonRuns” and
”Embrace” forESpecVis+TLSearch compared withESpecVis. Since the these events shown relative
high temporal locality as demonstrated in Figure 2, the temporal locality search has high probability
to save miss detections. However, we also found the current interaction techniques were not effec-
tive on some events, such as ”CellToEar” and ”ObjectPut”. There are two-fold reasons. First of all,
the current visualization method still has difficulty in presenting these events with tiny and weak
actions, especially in complected scenes. Secondly, one necessary condition for temporal locality
search to be effective is user can find some true positives during interaction. Since the retrospective
system still cannot get reasonable detections on these events, the proposed temporal locality cannot
benefit the performance much.

As for formal evaluation, it basically shared the same performance changing trends of the one on
development set. Due to the the longer interaction time (25 minutes) used in formal evaluation, we
observed greater improvement in terms of absolute values.

References

[1] J. S. Florent Perronnin and T. Mensink. Improving the fisher kernel for large-scale image classification. In
ECCV, 2010.

[2] M. yu Chen and A. Hauptmann. Mosift: Reocgnizing human actions in surveillance videos. InCMU-CS-
09-161, 2009.

