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ABSTRACT
Numerous interaction techniques have been developed that
make “virtual” pointing at targets in graphical user interfaces
easier than analogous physical pointing tasks by invoking
target-based interface modifications. These pointing facili-
tation techniques crucially depend on methods for estimat-
ing the relevance of potential targets. Unfortunately, many of
the simple methods employed to date are inaccurate in com-
mon settings with many selectable targets in close proximity.
In this paper, we bring recent advances in statistical machine
learning to bear on this underlying target relevance estimation
problem. By framing past target-driven pointing trajectories
as approximate solutions to well-studied control problems,
we learn the probabilistic dynamics of pointing trajectories
that enable more accurate predictions of intended targets.

Author Keywords
Cursor prediction, probabilistic inference, continuous control

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscella-
neous;

INTRODUCTION
Pointing at targets is a fundamental task in graphical user in-
terfaces for selecting icons, menus, buttons, and other graphi-
cal elements. An understanding of pointing task performance
has been of key importance for designing user interfaces for
efficient use. Card et al. [9] showed that target pointing
tasks via computer mouse and joystick follow Fitts’ law [12],
which was previously proposed for physical pointing task
completion times. Under this law, pointing at a target of width
W at distance D, has an average task completion time T of:

T = α+ β log2

(
1 +

D

W

)
,

where α and β are empirically estimated parameters. From it,
the contributing factors to pointing task difficulty can be more
abstractly attributed to the pointing task distance (D) and the
target precision requirement

(
1
W

)
.
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Over the past 15 years, human-computer interaction research
has investigated how the virtual nature of target pointing in
graphical user interfaces can be leveraged to outperform the
performance implied by Fitts’ law. Since interactions through
graphical user interfaces are quite prevalent, small improve-
ments in task efficiency, even at the millisecond scale, can
have substantial aggregate benefits. Further, for the popu-
lation of users with physical motor impairments, reducing
pointing task difficulty can make otherwise inaccessible ap-
plications accessible.

A number of pointing facilitation approaches have been de-
veloped and analyzed that decrease the effective target dis-
tance and/or alter the required target precision of the pointing
task. Specifically, approaches have been introduced that:

• Restrict pointing to selectable targets, skipping over non-
interactive portions of the user interface [14];

• Adjust the dynamics (control-display gains) for pointing
motions to more quickly gravitate to and then linger within
intended targets [19, 29, 7, 2, 15];

• Dynamically move candidate pointing targets closer to the
current pointing location [5];

• Enlarge candidate pointing targets to make selecting them
easier [23];

• Employ larger cursor activation regions to require less than
single-pixel precision to select targets [16, 13, 20, 10]; or

• Generate haptic responses to cursor control that serve as an
additional indicator of target precision thresholds [28, 11].

Unfortunately, the successes of these approaches have not ex-
tended to settings where multiple targets are in close prox-
imity to one another [4], which is common in many graphi-
cal user interfaces. McGuffin and Balakrishnan identify the
key limitation as the inability to reliably predict users’ in-
tended targets [24]. Without this ability, too many potential
targets must be considered by the interaction technique for
it to be effectively employed. They posit that improvements
in desired target prediction would increase the effectiveness
of any of the previously developed pointing facilitation tech-
niques [24]. This makes target prediction a key machine
learning problem for improving human-computer interactions
in graphical user interfaces.

We introduce a new approach for predicting the desired target
of a partial pointing motion using predictive inverse optimal
control [31, 30]. The approach assumes that previously ob-
served pointing motions are approximate solutions to a con-
trol task. The state-action costs of this control task that best



explain those observed pointing motions are learned in terms
of velocities, accelerations, and jerks (changes in accelera-
tion). Using Bayesian reasoning for the target prediction task,
larger probabilities are assigned to potential targets for which
a partial trajectory is an efficient solution to the learned con-
trol task. We evaluate the approach to show its applicability
for supporting pointing facilitation techniques.

REQUIREMENTS AND PREVIOUS APPROACHES
We begin by identifying the features required for a target pre-
diction system and reviewing the previously developed tech-
niques for target prediction.

Prediction Requirements for Pointing Facilitation
Four key characteristics for a pointing prediction system to be
useful in support of pointing facilitation are:

• Belief-based reasoning: Pointing facilitation techniques
have different target prediction certainty requirements for
their benefits when employed on the intended pointing tar-
get to outweigh the detriment when applied to the incorrect
target. For example, introducing large control-display gain
for movement towards the most likely target may only be
net beneficial when target certainty is high, while smaller
gain modifications may provide net benefits at much lower
levels of target certainty. Accurate probabilistic target pre-
dictions are needed to support this risk sensitivity.

• Real-time efficiency: Pointing tasks in graphical user in-
terfaces are typically completed in fractions of a second. A
pointing target prediction system must therefore be able to
provide quick predictions on the order of tens of millisec-
onds to be useful in practice. This requirement eliminates
many sophisticated machine learning techniques that are
less computationally efficient.

• Personalization and context awareness: Users’ pointing
trajectories can differ greatly based on differences in capa-
bilities (including motor-skill impairments), input devices,
and contextual situation. A pointing target prediction sys-
tem should take these individual and contextual differences
into account, customizing to the particular user’s patterns
of usage in different situations.

• Application independence: The layout of selectable tar-
get locations and the sequences of targets selected differ
substantially between the user interfaces of different appli-
cations. A target pointing prediction system should be able
to generalize across these application differences.

Many different approaches have been developed for this pre-
diction task [25, 18, 21, 3, 22]. However, we will argue
throughout this paper that those approaches have lacked im-
portant properties required for supporting pointing facilita-
tion systems, or have been too simplistic to provide accurate
predictions in the general cursor target prediction setting.

Classification Prediction Approaches
Interaction techniques have been the main focus for many of
the previously published papers on pointing facilitation. Rel-
atively simple methods based on target proximity or current
pointing motion are often employed by these contributions

to select the target or targets upon which to apply those in-
teraction techniques. Unfortunately, these simple target rel-
evance estimation methods perform poorly in user interfaces
with many possible targets located in close proximity, such as
those in Figure 1.

Figure 1. A set of 25 potential pointing targets (tool icons) in close prox-
imity from the GNU Image Manipulation Program. The nearest tool
icon to the cursor position, particularly early in the pointing motion, is
often not the intended target.

Early work specifically devoted to pointing target prediction
treats the prediction task as a classification problem using
properties of the motion trajectory state sequence as input.
For example, Lane et al. [21] provides short-cuts for se-
lecting predicted targets and base target predictions primarily
on the distance to each potential target. Though probabilis-
tic techniques have been employed, e.g., using a multinomial
distribution for targets conditioned on velocity, acceleration,
and motion curvature characteristics [25], they have been in
support of target classification rather than belief-based pre-
diction. In contrast to our inverse optimal control approach,
aggressive discretization of motion characteristics is needed
limit the amount of data required to estimate model parame-
ters and for predictions to remain computationally efficient.

Regression-Based Extrapolation Approaches
Many techniques for predicting the intended target of a par-
tial pointing motion formulate the problem as a continuous-
valued regression task. Asano et al. [3] employ a simple
linear regression from the peak velocity of the trajectory to
the total distance1 to the endpoint:∣∣∣∣sT − s1

∣∣∣∣
2

= α vmax + β + εi, (1)

where st =

(
xt
yt

)
and vmax = maxτ

∣∣∣∣sτ − sτ−1
∣∣∣∣
2
.

Predictions are made by extrapolating according to the
learned regression coefficients, α and β. The parameters
are fit to the demonstrated trajectory data using maximum
likelihood estimation. The standard linear regression model
assumption that any errors in the model’s predictions εi
are Gaussian distributed (Equation 1) is employed. The

1We denote the Euclidean distance with the norm ||v||2 =√∑n
i=1 v

2
i .



extrapolated prediction of the final cursor position under the
trained model is then:

sT = st +
st − s1∣∣∣∣st − s1

∣∣∣∣
2

(α vmax + β) .

The maximum velocity has also been previously employed as
an indicator of the halfway point of a cursor trajectory [18].

A more sophisticated approach [22] is based on the observa-
tion that in idealized motion, the jerk (i.e., the third derivative
of position) is minimized. Under this model, the velocity is
assumed to be a quadratic function of the distance traversed
to the intended target location. Predictions are performed by
fitting the quadratic function to the partial trajectory, and then
extrapolating the point at which the velocity returns to zero,
as shown in Algorithm 1.

Algorithm 1 Quadratic extrapolation for predicting pointing
targets from a partial pointing trajectory.
Input: A partial trajectory, s1 . . . st, up to time step t.
Output: Trajectory endpoint prediction sT = (xT , yT ).

1: Fit a quadratic function with parameters α2, α1, α0 to the
partial trajectory’s total distance.

2: Obtain the second root of the quadratic equation: dT =
−α1−

√
α2

1−4α0α2

2α2
.

3: Apply the correction multiplier γ based on the fraction of
predicted trajectory distance completed: d′T = γ dT (see
[22] for details).

4: Predict sT = s1 + d′T
st−s1
||st−s1||2

However, apart from the correction multiplier (Step 3 of Al-
gorithm 1), this prediction model is incapable of using pre-
viously observed trajectories to improve future target predic-
tions. This makes it particularly ill-suited for personalizing to
the different capabilities and usage patterns of individuals.

The Gaussian assumption of target prediction errors in these
regression-based approaches imposes symmetry constraints
on prediction beliefs. Namely, points that are reflections
across each of the predicted Gaussian’s principal axes have
the same probability density. When the regression models’
errors differ from Gaussian distributions, the Gaussian as-
sumption leads to models with much higher uncertainty than
warranted. The approach we present in this paper provides
a less restrictive posterior target distribution by employing
Bayesian inference methods for target inference.

INVERSE OPTIMAL CONTROL POINTER FORECASTING
We employ computationally efficient inverse optimal control
techniques to learn from and predict target-based pointing
motions. At a high-level, our approach has three main ele-
ments:

1. It re-casts the discrete cursor pointing task from a control
perspective with continuous states and actions;

2. It employs a probabilistic inverse optimal control technique
[30] to model observed pointing trajectories given the in-
tended pointing target; and

3. It leverages Bayes’ rule to obtain posterior probabilities of
a partial cursor trajectory’s intended target.

Crucially, the combination of these three elements provides
a powerful parametric learning approach that is computation-
ally efficient for real-time use. We elaborate upon these three
elements of our approach in the remainder of this section.

Continuous Control Representation of Pointing
We take a control perspective to modeling pointing motions
in which the objective is to invoke control actions that direct
the pointing motion to the origin. To facilitate this perspec-
tive, we project the original trajectory into a new axis system
where the x-axis is aligned with the origin-to-target direction
and the y-axis is orthogonal, as illustrated in Figure 2a. Under
this projection, discrete cursor locations (in pixels) are treated
as continuous-valued. As we shall see, this provides compu-
tational advantages. Additionally, to later obtain model pa-
rameters at reasonable scales, we equate one unit of distance
in this new projection to 100 pixels of screen distance.

Using this coordinate system, we view the instantaneous state
of motion at timestep t as:

st = [xt yt ẋt ẏt ẍt ÿt
...
xt

...
y t]

T
.

The higher-order changes related to position correspond to
common physical dynamics. They are the velocity (ẋt, ẏt),
the acceleration (ẍt, ÿt), and the jerk (i.e., change in acceler-
ation,

...
xt,

...
y t):(

ẋt
ẏt

)
=

(
xt − xt−1
yt − yt−1

) (
ẍt
ÿt

)
=

(
ẋt − ẋt−1
ẏt − ẏt−1

)
and

( ...
xt...
y t

)
=

(
ẍt − ẍt−1
ÿt − ÿt−1

)
. (2)

Importantly, when actions, at, are viewed as the veloc-
ities specifying changes in position between consecutive
timesteps, the state dynamics follow a linear relationship:

st+1 = Ast + Bat + εt, (3)

where the optional noise term, εt is assumed to be drawn from
a zero-mean Gaussian distribution with variance Σ. We de-
note the distribution of next state under this model of dynam-
ics as τ(st+1|st, at).

Inverse Optimal Control for Prediction
The next element of our approach is the construction of
a probabilistic model of complete cursor motion sequences
given each motion’s target location. This perspective allows
us to employ inverse optimal control techniques from ma-
chine learning, which attempt to find the costs of a control
process that makes demonstrated behavior (close to) opti-
mal [17, 8, 26, 1, 27]. We leverage the maximum entropy
variant of inverse optimal control [31, 30], which provides a
state-conditioned probability distribution π̂ over control ac-
tions (i.e., cursor movements) a that is recursively defined as:

π̂(at|st) ∝ e−Q(st,at). (4)
V (st) = softmin

at
{cost(st) +Q(st, at)} (5)

Q(st, at) = Eτ(st+1|st,at) [V (st+1)|st, at] , (6)



where cost(st) , sTt Mst is a quadratic cost function, and
the value terms, Q(s, a) and V (st), are future cumulative
expected costs. The softmin is a smoothed interpolation of
the minimum function: softminx f(x) = − log

∫
x
e−f(x)dx.

From this perspective, the recurrence of Equations 5 and 6
can be viewed as a probabilistic relaxation of the Bellman
criteria for optimal control [6]; it (probabilistically) selects
actions with smaller expected future costs in Equation 5 and
recursively computes those future costs using the expectation
over the decision process’s dynamics in Equation 6. The M
matrix contains the model’s cost parameters. Parameter val-
ues are chosen so that the predictive control distribution π̂
matches quadratic state properties of demonstrated behavior
π̃ in expectation (Ef [g(x)] ,

∫
x∈X f(x) g(x) dx):

Eπ̂,τ

[∑
t

st sTt

]
= Eπ̃,τ

[∑
t

st sTt

]
. (7)

This set of constraints ensures that the trajectory’s dynamic
properties are maintained by the control policy estimate, π̂.
For example, the relationship between target-relative position
(x) and target-directed velocity (ẋ) is important for character-
izing target-directed motion.

When the state-transition dynamics are linear (Equation 3),
the recursive relation of Equations 5 and 6 have closed-form
solutions that are quadratic functions and the action distribu-
tion (Equation 4) is a conditional Gaussian distribution. This
enables efficient O(T dim(s)2) time computation for time
horizons T and much larger continuous state/action spaces
than could be computed as discrete state/action spaces.

We make use of the probability distribution over each partial
trajectory, s2, . . . , st (t ≤ T ), given the initial state s1 and
target G:

t∏
τ=1

π(at|st, G) = e−(
∑t
τ=2 cost(sGτ ))−V (sGt )+V (sG1 ), (8)

where super-scripting the states with the target G makes the
target-dependent projection explicit. Equation 8 prescribes
larger probabilities to trajectories that efficiently reduce the
future expected cost. A derivation and detailed algorithms
for efficiently computing the policy and learning the model
parameters appear in the Appendix.

Bayesian Target Prediction
We employ the learned trajectory model to estimate target
probabilities. Using the probability distribution for a par-
tial trajectory given a target location (Equation 8), we employ
Bayes’ rule to find the probability distribution of a target lo-
cationG from a set of target locations G given a partial cursor
trajectory. The posterior distribution,

P (target G|partial trajectory s1, . . . , st)

=

∏t
τ=1 π(at|st, G)P (G)∑

G′∈G
∏t
τ=1 π(at|st, G′)P (G′)

, (9)

assigns higher probabilities to targets towards which the par-
tial trajectory efficiently makes progress.

This Bayesian formulation leverages a flexible prior distri-
bution over targets P (G) that reflect an initial belief for the
next target without current cursor trajectory information. This
distribution can be based on relevant contextual information,
such as current application, target selection history, time of
day, etc. However, as our focus in this work is on leverag-
ing available cursor trajectory data to predict pointing targets,
we simply assume a uniform prior distribution over possible
targets, P (G) = 1

|G| .

The linear inverse optimal control approach we employ pro-
vides additional computational benefits for calculating these
posterior probability distributions. Naı̈vely computing the
posterior target distribution for a pointing motion of length
t would entail calculating the quadratic value functions for
each possible target, requiring O(|G|t dim(s)2) time total for
a set of potential targets G. Instead, using simple projections
of the state into different target-based reference frames, a sin-
gle value function computation is needed and computing the
posterior for each target is independent of the the time hori-
zon t. We detail these efficient projections in the Appendix.

EXPERIMENTS
We employ a dataset of collected pointing trajectories to ana-
lyze and evaluate pointing target prediction approaches.

Collected Cursor Trajectory Data
Our dataset consists of cursor trajectories from 20 non-motor-
impaired individuals that are frequent computer users cap-
tured at 100Hz. Each individual performed 300 different
target selection tasks using computer mouse input devices.
Each task requires moving a cursor from an origin point to a
target click location—a circle—that the user selects via a but-
ton click to complete the task. Target locations were selected
at random from the computer screen space subject to being
200 pixels away from the pointing task’s starting point.

Figure 2a shows the x and y positions of trajectories from the
20 individuals on one task. The trajectories originate in the
southwest corner of the plot and terminate in a small target
click circle at the origin. Figure 2b and Figure 2c show how
the trajectories vary over time in the x and y positions. As a
pre-processing step, we discard any timesteps with no move-
ment. These predominantly appear at the beginning of tra-
jectories and correspond to the time that users seem to spend
visually processing and responding to the pointing task.

As shown in Figure 2, a great deal of variability exists be-
tween trajectories, illustrating the sub-optimality of human
control on pointing tasks. One particular trajectory in Fig-
ure 2 takes significantly more timesteps of motion to reach
the target location and complete the task than other trajecto-
ries. Even more anomalous deviations are shown in Figure 3,
where users slide their cursor along the outer borders of the
window while completing the task (presumably due to losing
track of the cursor and moving it to try to locate it). More
subtle anomalies are: missing the boundary of the click target
when the mouse button is pressed, responding slowly to the
targeting task, and having the cursor in motion at the begin-
ning of the targeting task.



(a) (b) (c)

Figure 2. Cursor trajectories from 20 different users between the same pair of endpoints shown in space (a) and as a function of time (with each timestep
representing 10 milliseconds) in each dimension (b, c). The target-based rotated axis frame is also shown in (a).

Figure 3. Five highly anomalous cursor trajectories that are very ineffi-
cient in reaching the ultimate target location.

To conservatively address the many sources of errors present
in collected cursor pointing data, we discard the least task-
efficient half of the cursor trajectories from each pointing
task. We believe that many of the discarded trajectories can
be useful sources of information for modeling cursor move-
ments with additional pre-processing to appropriately remove
properties of different errors. However, our point of empha-
sis in this paper is on the techniques for modeling and pre-
dicting pointing movements, so we instead use the more con-
servative dataset that does not require more sophisticated pre-
processing.

Experimental Setup and Compared Approaches
We employ the cursor trajectories from 50 pointing tasks as
training data to fit each model’s parameters and employ the
cursor trajectories from the remaining 250 cursor trajectories
to evaluate the predictive performance of each model.

The target prediction models that we compare are:

• Current position: A simple baseline that predicts that the
current position will be the pointing target.

• Velocity extrapolation [3]: The maximum velocity re-
gression approach (Equation 1) with parameters fit from
the training data set.

• Quadratic extrapolation [22]: The quadratic extrapola-
tion algorithm (Algorithm 1) fit to each partial trajectory.

• Inverse optimal control The inverse optimal control ap-
proach using maximum causal entropy.

We obtain probabilistic predictions from the current position
and regression-based approaches by assuming that prediction
errors are distributed according to a 2-dimension Gaussian:

sT ∼ N(f(s1, . . . , st),Σ(s1, . . . , st)),

where f is the regression mean estimation function and Σ
is one of 11 covariance matrices estimated from the train-
ing set of cursor motions. The covariance matrix employed
is selected based on an estimate of the motion trajectory’s
progress using: its duration for the current position model;
the location where the maximum velocity occurs in the mo-
tion sequence for the velocity extrapolation model, or the es-
timated quadratic for the quadratic extrapolation model.

Model Fitting
We analyze each model’s fit to the training data in this sec-
tion. We begin with the assumptions made by the extrapola-
tion approaches: (1) correlation between maximum velocity
and target distance; and (2) a quadratic fit to the trajectory’s
velocity as a function of distance.

Figure 4. Velocity and position of movement in the target-oriented axis
(with target at 0) for 20 participants cursor motions (thin blue lines). The
quadratic function (smooth red line) fits the average of these motions
very nicely, even though the individual motions deviate greatly from the
idealize quadratic.

The variability in pointing movement velocities in Figure 4
is typical across tasks; trajectories reach the target by follow-
ing a wide range of velocity patterns with differing maximum



Figure 6. Three perspectives of demonstrated trajectories (thin blue lines) in x and y position over time along with the mean (thicker red line) and 95%
confidence region (green ovals) of the predictive maximum causal entropy model at each point in time.

Figure 5. Velocity and position of movement in the target-oriented axis.
The trajectory appears to have been decomposed into three sequences
of small movements towards the target position. This composition con-
founds the quadratic model, which no longer predicts any endpoint (i.e.,
the quadratic has no real roots).

velocity. Unfortunately, this introduces a large degree of un-
certainty in the velocity extrapolation model obtained by re-
gression from maximum velocity to target distance.

The average of our collected trajectories very closely fits the
idealized motion quadratic (Algorithm 1), as shown in Figure
4. However, individual trajectories deviate greatly from the
idealized quadratic. Indeed, for 3.1% of trajectories, no pre-
diction is provided by the quadratic fit because the quadratic
is convex (as shown in Figure 5) rather than concave. Many
other quadratic fits, though concave, do not provide accurate
target distance predictions. This becomes increasingly preva-
lent when fitting the quadratic function using only a small
portion of the motion sequence.

The inverse optimal control model’s fit to a set of demon-
strated pointing trajectories in Figure 6. The prediction is
conditioned on the starting point and the target location. The
95% confidence intervals of the prediction are adjusted based
on the varying trajectory durations; completed trajectories are
treated as being known at the target center. Though the con-
fidence intervals generally do not contain 95% of the demon-
strated trajectories due to the model being a simplified ab-
straction of a user’s control-feedback loop, the model pro-
vides a reasonably good fit to the demonstrated trajectories.

Figure 7. Heat map for the quadratic cost coefficients of matrix M
learned by the inverse optimal control approach. Positive values cor-
respond to costs while negative values can be interpreted as rewards.

A heat map of the learned quadratic parameter matrix M of
the inverse optimal control model is shown in Figure 7. Each
entry of the heat map is a cost coefficient corresponding to a



combined quadratic term. For example, the xẋ term penal-
izes velocities that are away from the target location (x < 0
and ẋ < 0 or x > 0 and ẋ > 0) with coefficient 1.3. Along
the diagonal (bottom left to top right), the cost coefficients
are all positive, penalizing deviations away from zero. In par-
ticular, large higher-order dynamics (accelerations and jerks)
are heavily penalized. The diagonal (xẋ, yẏ, ẋẍ, ẏÿ, ẍ

...
x , and

ÿ
...
y ) is similarly positive. This primarily supports the stability

of the trajectory by penalizing the reinforcement of growing
dynamics. Note that the heat map has a checkerboard pattern;
high magnitude coefficient weights are primarily associated
with same-axis combinations.

Pointing Target Prediction
We evaluate each trained model’s performance in predicting
each pointing motion’s target given only a partial pointing tra-
jectory. Though our collected dataset only involves a single
target location, we introduce a set of closely grouped targets
around the true target and ask: How well could we predict the
actual target? Our assumption is that additional irrelevant tar-
gets do not significantly alter pointing trajectories compared
to single-target pointing tasks.

We employ a challenging set of closely clustered targets to
assess predictive performance: a 9-by-9 grid of potential tar-
gets spaced apart by 50 pixels. This type of configuration has
previously been identified as difficult for target prediction [4].
The specific setting we employ is similar to, but larger than,
the array of tool icons shown in Figure 1.

Figure 8. The likelihood function of all target locations (each pixel on
the screen) given a partial trajectory (the black line up to the “X”). The
initial point is denoted as a small green circle and the final target region
is denoted as a larger circle. Each pixel of the figure represents 10 pixels
of monitor space.

Our evaluation procedure is best described using Figure 8 for
reference. Note that the task target in Figure 8 is contains
six prediction task targets, making this a particularly difficult
prediction task. Also in the figure, the likelihood function
of the inverse optimal control approach, P (s2, . . . , st|s1, G),
is shown for each potential target point throughout the screen
given one particular partial cursor trajectory (the black line up
to the red “X”). Unlike regression-based approaches, that this
likelihood function is not constrained to be Gaussian, which

allows a great deal more flexibility than linear regression-
based techniques. Target predictions for a specific set of
targets—the 81 white points in the figure—are made by eval-
uating the likelihood function at each potential target position
and normalizing after weighting by the prior probability (uni-
form for our experiments). For the regression-based models,
we evaluate the target probability only at each target location
and appropriately re-normalize the distribution.

We measure predictive performance using the classification
error (i.e., the frequency with which the model’s most proba-
ble target is not the true target), and the log-loss of the point-
ing motion’s true target G∗,

− 1

N

N∑
i=1

log2 P̂ (target Gi,∗|si1, . . . sit).

The latter measures the amount of uncertainty of the intended
target under each model’s predictive probability distribution.
This can be interpreted as the amount of information (in bits)
needed to distinguish the true target from the others under a
target prediction system’s predictive belief. When the target
is known with certainty, 0 bits are required, and when the dis-
tribution is most uncertain (a uniform distribution over 81 tar-
gets), log2 81 = 6.65 bits are required. Though improvement
of a pointing facilitation technique’s utility to a user is the
ultimate evaluation metric for a pointing prediction method,
that evaluation measure is highly dependent on the pointing
facilitation technique employed. Log-loss is the natural mea-
sure for belief-based predictive performance that should be
useful in improving pointing facilitation techniques.

Figure 9. Mean target prediction classification error as a function of the
amount of pointing trajectory remaining (in terms of time) with 95%
confidence intervals.

Our evaluations are shown in Figure 9 and Figure 10 as func-
tions of the fraction of the cursor trajectory remaining at the
point in time that the prediction is made, ranging from 5% to
70% remaining—beyond which, no model performs particu-
larly well for this task. It is important to note that the predic-
tive model does not know what percentage of the trajectory
has been completed.



Figure 10. Target prediction log loss as a function of the amount of point-
ing trajectory remaining (in terms of time) with 95% confidence inter-
vals.

For both measures, the current position model provides high-
quality predictions when the fraction of pointing motion re-
maining is small. Indeed, when 95% of the motion is com-
pleted, essentially only selecting the target remains, and
the current position assumption provides 100% accuracy.
However, while that assumption biases the model to have
good performance in the almost-completed-task region, sig-
nificantly fewer classification errors are obtained with the
quadratic extrapolation model when at least 50% of the
pointing motion remains and by the velocity extrapolation
model when at least 60% of the pointing motion remains.
However, neither extrapolation method significantly outper-
forms the current position model under log-loss, presumably
because log-loss penalizes these models for predictions based
on the highly variable maximum velocities and quadratic fits
that may be anomalous, as illustrated in Figure 4 and Figure
5.

The inverse optimal control model provides significant per-
formance improvements over the three other models when
large portions of pointing motion remain. Specifically, with
between 40% and 60% of the motion trajectory remaining, it
is more than twice as accurate for target classification than all
other models and is only significantly outperformed in log-
loss by the current position model when 30% or less of the
pointing motion remains to be completed. We believe that
the predictive performance characteristics of the inverse opti-
mal control model will prove to be more beneficial for select-
ing appropriate pointing facilitation techniques because ac-
curate predictions earlier in the pointing motion have the po-
tential to provide greater benefits than later, when the motion
has essentially reached the target. Understanding to what de-
gree the current position model’s superior performance when
small amounts of pointing motion remain results from inher-
ent bias of the model’s assumption or whether the inverse op-
timal control approach can be improved to provide similar
performance is an important question for future research.

DISCUSSION
We began this paper by discussing key requirements needed
by a pointing target prediction system to support pointing
facilitation techniques. We introduced an inverse optimal
control approach that outperform previously developed tech-
niques in critical early portions of pointing motions when
predicting intended pointing targets and satisfies the require-
ments we discussed. Importantly, it learns parameters closely
associated with motion dynamics, making it applicable to a
wide range of settings. While training the model is relatively
slow and computationally expensive, making predictions is
fast and can be accomplished in real-time for moderate num-
bers of targets (e.g., less than 200). Though we focused on
aggregate modeling of cursor trajectories from a group of
users, the approach we presented is well-suited for learning
quadratic cost coefficients for each user or populations of
users with similar patterns of usage—an important focus for
improving computer accessibility. Additionally, contextual
information can be easily incorporated into the prior target
distribution in this approach.

We conclude by emphasizing that the performance of our ap-
proach in this paper should serve as a starting point. We em-
ployed a relatively simply set of statistics to base our model
on in this paper—quadratic statistics of positions, velocities,
accelerations, and jerks. We expect improved performance
can be realized by augmenting these with linear and/or time-
dependent statistics of the pointing motions. Many other
opportunities exist for further improving the approach. For
example, viewing pointing trajectories as mixtures of be-
haviors (such as some steady movements and some over-
shooting/correcting movements) may be beneficial for lever-
aging the less efficient trajectories that were discarded in the
analyses of this paper while remaining computationally effi-
cient for real-time prediction tasks. We plan to investigate
these extensions and the incorporation of this predictive ap-
proach with specific facilitation techniques in future work.
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APPENDIX: MAXIMUM CAUSAL ENTROPY LINEAR
QUADRATIC REGULATION
We describe the maximum causal entropy approach to inverse
optimal control and its efficient algorithms for the setting with
linear dynamics and quadratic cost functions.

Formulation of the probability distribution
The distribution over actions we employ in this work (Equa-
tion 4) and the recursive relation defining its variables (Equa-
tion 5) are obtained by maximizing the causal entropy,

H(a||s) = Eπ̂,τ

[
−

T∑
t=1

log π̂(at|st)

]
, (10)

subject to the constraints of Equation 7 [30]. We refer the
reader to the previous paper introducing the general maxi-
mum causal entropy approach for a better understanding of
the robust predictive guarantees that it provides.

Linear dynamics case
In the case of linear dynamics, the recurrence values (Equa-
tion 5) are quadratic functions of the form:

Q(at, st) =

[
at
st

]T [ Ca,a Ca,s
Cs,a Cs,s

] [
at
st

]
+

[
at
st

]T [ Fa
Fs

]
, and

V (st) = sTt Dst + sTt G.

Expanding the definitions of Equation 5 and 6, we have:

Q(at, st) = Eτ(st+1|st,at)[s
T
t+1Dst+1 + sTt+1G|st, at]

= (Ast + Bat)TD(Ast + Bat) + tr(DΣ)

+ aTt BTG + sTt ATG

=

[
at
st

]T [ BTDB BTDA
ATDB ATDA

] [
at
st

]
+

[
at
st

]T [ BTG
ATG

]
+ const, and

V (st) = − log

∫
at

exp{−(aTt Ca,aat + 2aTt Ca,sst

+ sTt Cs,sst + sTt Fs + aTt Fa)} dat + sTt Mst
= sTt (Cs,s + M− CT

a,sC
−1
a,aCa,s)st

+ sTt (Fs − CT
a,sC

−1
a,aFa) + const,

Thus the set of update rules for the quadratic functions are:
Ca,a = BTDB; Cs,a = CT

a,s = BTDA; Cs,s = ATDA;

Fa = BTG; Fs = ATG; D = Cs,s + M − CT
a,sC

−1
a,aCa,s;

and G = Fs − CT
a,sC

−1
a,aFa.

Parameter Estimation
The model parameters in matrix M are fit from demonstrated
state sequences. The likelihood of the demonstrated trajec-
tories under the action distribution, Equation 4, is a convex
function of those free parameters. This guarantees that stan-
dard gradient-based techniques will converge to the choice of
parameters that best explains the demonstrated trajectories.
The gradients have an intuitive interpretation: they are the
differences of the optimization constraints (Equation 7),

∇M L = Eπ̂,τ

[∑
t

st sTt

]
− Eπ̂,τ

[∑
t

st sTt

]
. (11)

These values can be directly obtained from the Gaussian dis-
tribution of state over time. Namely, if x is normally dis-
tributed with mean µx and covariance matrix Σx, E[xxT] =
µxµ

T
x + Σx.

The parameters can then be optimized by iteratively applying
the gradients of Equation 11 with a decaying learning rate, η,
e.g., M←M+η∇M. However, in practice, an exponentiated
update, M ← elog M+η∇M , preserves a useful property (posi-
tive semi-definiteness) of the M matrix, aiding optimization.

Efficient State Projections
Computing the target posterior requires repeated calcula-
tion of state values, V (sG), and cumulative trajectory costs,∑T
τ=2 cost(sGτ ) for different goals (Equation 9). Naı̈vely,

computing the cumulative trajectory costs is computationally
expensive, requiring O(t|s|2) time. However, due to the lin-
earity of the cost function, previously computed cumulative
costs can be re-used.

Consider the transformation of a cost function from an ini-
tial goal G to a new goal G′ using rotation matrix RG

′

G and
translation vector ∆G′

G :
t∑

τ=1

sG
′

τ

T
M sG

′

τ = M ·
t∑

τ=1

sG
′

τ sG
′

τ

T

= M ·
t∑

τ=1

(RG
′

G sGτ + ∆G′

G )(RG
′

G sGτ + ∆G′

G )
T

= M · RG
′

G

(
t∑

τ=1

sGτ sGτ
T

)
RG

′

G

T
+ tM ·∆G′

G ∆G′

G

T

+ 2M · RG
′

G

(
t∑

τ=1

sGτ

)
∆G′

G

T
.

Thus, with the previously computed quadratic and linear
sums for projection G, only matrix operations independent of
the time horizon t are needed. This reduces theO(t dim(s)2)
time computation to O(dim(s)2) time.
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