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ABSTRACT 
Part of being a parent is taking responsibility for arranging 
and supplying transportation of children between various 
events. Dual-income parents frequently develop routines to 
help manage transportation with a minimal amount of 
attention. On days when families deviate from their 
routines, effective logistics can often depend on knowledge 
of the routine location, availability and intentions of other 
family members. Since most families rarely document their 
routine activities, making that needed information 
unavailable, coordination breakdowns are much more likely 
to occur. To address this problem we demonstrate the 
feasibility of learning family routines using mobile phone 
GPS. We describe how we (1) detect pick-ups and drop-
offs; (2) predict which parent will perform a future pick-up 
or drop-off; and (3) infer if a child will be left at an activity. 
We discuss how these routine models give digital calendars, 
reminder and location systems new capabilities to help 
prevent breakdowns, and improve family life. 
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INTRODUCTION 
Parents are often responsible for planning, coordinating, 
and executing the transportation of their children to and 
from their many activities. One coping strategy dual-
income parents employ is to develop routines. As parents 
repeatedly perform similar sequences of actions around 
each pick-up and drop-off, a routine emerges, significantly 
reducing the attention required to complete the task. 

When tasks unfold in a routine fashion, coordination 
requires minimal attention to detail. However, when 

families must deviate from their routines – e.g. when one 
parent must travel for work, schedule an orthodontist 
appointment, plan a new carpool, or remain home with a 
sick child – the likelihood that some part of their plan will 
break down significantly increases. 

One these days, effective logistics can often depend on 
knowledge of the routine location, availability and 
intentions of other family members. Interestingly, families 
rarely document routine events on their home calendars 
[13]. Even when they do, descriptions are incomplete, 
missing key information, like which parent will drive. 
Without a resource to provide needed information on 
routines, family members must recall details of other 
members’ routines (or their own), and here errors can take 
place. Plans for new events or reactions to unanticipated 
situations can result in double-booked schedules, missed 
events, and even children being left at events [10, 11], and, 
or course, stress and anxiety for parents [19, 37]. 

This paper explores how sensing and modeling can provide 
computational access to family transportation routines, and 
how these learned models function as an enabling 
technology. Specifically, we demonstrate how location data 
from standard mobile phones can be used to: 

1. Detect if a pick-up or drop-off has occurred 
2. Predict which parent has responsibility for a future 

pick-up or drop-off 
3. Infer if a child will forgotten at an event 

We also discuss how these learned models can create new 
resources that enable end-user applications, for example: 

1. Awareness systems can know when pick-ups occur 
2. Calendars can display implicit routine data like 

where and when pick-ups and drop-offs will occur 
3. Location systems can show what pick-up and 

drop-off responsibilities family members have 
4. Reminder systems can alert parents about children 

left at activities without explicit reminder creation 

In this paper, we describe the design and evaluation of our 
learned models of family routine. Our goal is to develop a 
proof-of-concept while providing insights on how to 
improve technical performance. We provide an overview of 
our previous research and situate our contribution within 
the field; we describe the design and performance of our 
learning systems; and we discuss how learned models can 
enable end-user applications, and ultimately, families.  
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PREVIOUS RESEARCH 
Our focus on routine models emerges from three years of 
fieldwork on the needs and values of dual-income families. 

While many domestic research projects envision technology 
to provide people more control over home devices, our first 
yearlong ethnography of dual-income families showed that 
more than control of their devices, families desire more 
control of their lives [11]. Next, a year Speed Dating design 
concepts highlighted that parents’ often feel seriously out of 
control as they decide how to transport their children to and 
from their activities [12]. A third yearlong field study to 
understand how families manage transportation illustrated 
how and why coordination breakdowns occur [13]. 

These breakdowns cut across families, parents, coordination 
styles and economic class. Parents would commit their 
spouses to tasks they could not do given the spouse’s 
current routines. Even when known in advance, we saw 
parents go to a routine place to pick-up a child when the 
child was at another location. We family members neglect 
to inform one another when their routines changed. Finally, 
on multiple occasions, we witnessed well adjusted, 
responsible parents forget to pick-up their children, leaving 
them at their activity locations for as long as 40 minutes. 

Routines are at once central to many coordination 
problems, and at the same time not documented (on 

calendars or elsewhere), so unavailable to family 
members and coordination support applications. 

Since family members currently do not record their routine 
information, we developed a vision where learned models 
of routine could create new resources to help families with: 

1. Planning – Using our models, calendaring systems like 
LINC [27] and DateLens [29] could display implicit 
routine events, event times, pick-ups and drop-offs that 
parents don’t document but are critical to making 
effective plans for and that affect others. Family 
members could see an entire day’s plan, helping make 
unresolved and conflicting responsibilities salient. 

2. Coordinating – Using our models, location systems 
like Motion Presence [6] and the Whereabouts Clock 
[8] could display where people are with implicit 
routine information like future pick-ups and drop-offs, 
helping remind family members what they need to do, 
and alerting others as days happen as planned. 

3. Improvising – Using our models, applications could 
update plans in real-time, helping parents make more 
reliable decisions. As pick-ups happen, reminder 
systems like comMotion [25] and PlaceMail [24] could 
suppress potentially annoying reminders. 

4. Protecting – Using our models, reminder systems 
could infer that a required pick-up is not happening, 
and remind parents without their explicit creation of a 
reminder, creating a new kind of safety net to guard 
families against this uncommon but stressful outcome. 

BACKGROUND 
Existing research has highlighted the value of routines in 
support of everyday living, while observing limits to that 
support when people depart from their routines.  

Many successful routines serve important organizational 
and social purposes. A form of habituated memory, routines 
free up people’s attention, creating a tacit knowledge that 
constrains and directs activity [26]. Successful routines help 
to scaffold and streamline the decision-making process 
[38]. However, as their performance becomes more 
automatic, people cannot recall the details of what they do, 
making routines difficult to transfer between people [34]. 
Also, since people often default to routines when faced with 
limited information, deviations from routine (planned and 
unanticipated) can cause plans to break down [32].  

Dual-income families, in particular, rely heavily on routines 
to support their dynamic schedules [10, 37], providing them 
with a feeling of control (cf. Bandura [3]) over the 
environment [38]. But because dual-income families also 
experience many deviations from routine – e.g. rained out 
games, holidays, scheduled school closings and half-days, 
doctor and dental checkups, forgotten items and sick 
children – their plans are often susceptible to breakdowns 
[5, 10], leading to increased stress [37]. Even the thought 
that a non-routine day might occur, such as a child showing 
signs of getting sick, can cause parents stress [10, 37]. 

During non-routine days, information about the routines of 
others would often help improvise appropriate responses. 
Despite this value, routines themselves rarely are 
documented – they do not appear on calendars [14]. Our 
work explores the use of machine learning and data mining 
to learn routines in order to make this information available 
to families and to family support systems.  

The routine is emerging as a useful computational 
abstraction across a variety of domains. It has been used, 
for example, to improve the classification of domestic 
activities  [21, 35] and to create opportunities for workplace 
communication [5]. GPS has provided a gateway to many 
of those capabilities. Researchers have used GPS data to 
model geographic mobility [20], social networks [15], 
individual one-step destination [22, 39], and navigation for 
the cognitively impaired [23].  

Our work builds upon these findings, extending them into 
the complex and highly nuanced context of family 
coordination. We model a family as a group of 
collaborating dependents, not independent individuals (e.g. 
[20, 22, 23, 25]), With multiple people, we can introduce 
models of collaborative family goals, like when parents 
pick up and drop off children, and whether a pick-up might 
be forgotten. Currently, the only extant notification 
mechanism we know for forgotten children arrives as phone 
calls from impatient day care managers [19], embarrassed 
friends [10], or irritated spouses [11]. Notification of this 
event in any form would present a significant contribution 
to family life, and create a new kind of safety net. 



 

APPROACH 
The goal of this paper is to provide an initial demonstration 
of the feasibility of our underlying technical approach in a 
realistic setting. It is also important to note that we in no 
way claim that our approach is optimal. Instead, the reader 
should consider the approach in this paper a demonstration 
of what is possible, and food for thought about other 
capabilities that knowledge of routines can offer. 

First, to operate with a shared vocabulary, we offer a set of 
definitions. Since we are relying on GPS as our primary 
sensor for learning routines, we developed a place-centric 
view of coordination. A person’s day can be described as an 
ordered list of the places they go. We call the transition 
between each place a ride. In our families, each ride has a 
driver (the parent) and possibly a passenger (the child). A 
drop-off is a ride given to a place, and a pick-up is a ride 
given from a place. A plan is an ordered list of pick-ups and 
drop-offs, each with an ideal time, when the parent intends 
it to occur, and an actual time, when it actually does occur. 
As a plan unfolds, the family coordinates, acknowledging 
completed rides, and reflecting on the need to modify their 
current plan for future rides. Families improvise; they 
dynamically modify and even generate new plans based on 
unanticipated situations that challenge the current plan. 
Collectively, we refer to planning, coordinating and 
improvising as family logistics (also known as coordination 
in other literature). Children participate in activities like 
violin and swimming lessons Parents give children rides to 
events, which are instances of the activities. 

With this shared vocabulary, the remainder of this section 
describes the construction of three models of routine, their 
relationships, and how they can help families plan, 
coordinate and improvise; creating a new kind of protection 
against logistical breakdowns. Figure 1 depicts our 
modeling approach graphically, with arrows indicating the 
flow of data and inference. Models are constructed from 
two data sources: interviews, and GPS (Figure 1, top). Our 
GPS data set follows the movements of 23 people in 5 dual-
income families across approximately six months, and is 
labeled with data collected from nearly 1,000 surveys, over 
500 phone interviews, and over 100 home visits (collection 
reported in [13]). Leveraging previous work on automated 
place discovery [1, 25], we assume that all models include a 
set of known locations (taken from our interviews). 
Interviews provide a ground truth about which activities 
occur each day, and the ideal pick-up and drop-off times. 
We combined this information with GPS, and designed a 
series of three models, each recombining and building on 
the output of the previous model, and each supporting 
family logistics in different ways. 

First, we apply a temporal logic to our GPS data streams, 
and compare the location and driving state of separate 
individuals to recognize when rides occur and who 
participated in the rides. Participation allows us infer which 
parent drives which kid to which activity. In the most basic 
sense, this is part of the routine that families almost never 

record on their calendar. The output from this model can 
begin to fill in the empty calendar spaces for the things 
people do every day. 

Second, the ride recognition model provides seed data to 
learn the probability distribution that each parent will be 
driving a child to an activity (Figure 1, Model 2). We can 
use this distribution to predict future drivers, which, when 
compared with observations in real time, can offer an 
indicator of when events are happening in non-routine ways 
[31]. Because non-routine events are those most likely to 
lead to logistical breakdowns, early detection of non-routine 
rides can help propagate that information to coordinating 
family members, and, when appropriate, allow them to 
respond earlier, and to make plans in response to these 
situations with a more complete overall picture. 

Third, the driver prediction model, along with real-time 
location and driving state, a learned distribution on lateness, 
and a driver destination model, feeds into a higher-level 
inference machine to detect when parents forget a child at 
an activity (Figure 1, Model 3).  

We demonstrate that our approach is practical by 
conducting this work under legitimate sensor and modeling 
constraints. Since families literally rely on their phones, 
battery-heavy GPS sampling is limited to once per minute 
instead of the more common rates upwards of once per 
second. Models are then trained using an online approach, 
meaning we use only the data that would be available at any 
given point in time, and not the entire data set. 

 
Figure 1. Interviews provide each activity’s location and 

each event’s intended pick-up time. All other knowledge is 
inferred from low-level GPS, creating unsupervised 

models that (1) sense rides; (2) predict the driver for the 
next event; and (3) predict if parents will arrive late for 

pick-ups. End-user coordination applications can use any 
model’s output as a new data source to help families plan, 

coordinate and improvise. Model 3 can work with 
reminder systems to create a new kind of safety net. 



 

MODEL 1: RECOGNIZING RIDES 
The routine rides family members take every day are one of 
the basic units of undocumented family logistics. The 
automatic capture of rides introduces the possibility of 
computational support while requiring minimal behavioral 
changes. Each sensed ride includes a driver, a passenger, a 
place and a time, providing information that can be 
immediately shared with calendaring and awareness 
systems, as well as creating a source of labeled data with 
which computing systems can perform further reasoning. In 
this section, we describe a method for recognizing rides and 
examine its performance. 

How are rides recognized? 
To recognize when rides occur, we apply a simple temporal 
logic to the synchronized, discretized GPS data. We define 
three states for a person (see Eq. 1). A person is always 
either at a location, Ln, or traveling, T, which we define as 
the unique location occupying the space between all known 
places. Two family members are said to be co-traveling, 
CoT, if during the same time, ti they are both traveling and 
are located at a Euclidian distance of less than 500 meters 
apart. Any remaining states (e.g., no sample, outliers) are 
collectively labeled else. 

€ 

States = Ln,T |CoT,else{ }  (1) 

We examine each parent-child combination separately, and 
refer to parent as P, and child as C (see Eq. 2) 

€ 

People = P,C{ } (2) 

We define a pick-up as the conjunction of states of a parent, 
P, and a child, C, over time (See Eq. 3). At time t1, the child 
is at location Ln. At time t2 both parent and child are at 
location Ln. Lastly, at time t3, both parent and child are co-
traveling, CoT. This definition is broad enough to cover two 
cases of pick-ups. In the majority of cases, a parent comes 
from a different location to the child’s location and they 
drive off together. We also consider a pick-up in the case 
where a parent is already at the child’s location, and they 
depart together. Drop-offs are the inverse of the sequence 
for pick-ups (see Eq. 4). 

a. 

€ 

(t1,P,¬CoT)∧ (t1,C,Ln )∧   

b. 

€ 

(t2,P,Ln )∧ (t2,C,Ln )∧ (3) 

c. 

€ 

(t3,P,CoT)∧ (t3,C,CoT)  

€ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 

Pick-up 

 
     

a. 

€ 

(t1,P,CoT)∧ (t1,C,CoT)∧   

b. 

€ 

(t2,P,Ln )∧ (t2,C,Ln )∧ (4) 

c. 

€ 

(t3,P,¬CoT)∧ (t1,C,Ln )  

€ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 

Drop-off 

 

Our method to detect rides is based directly on the 
definitions. We parse the GPS streams from all members of 
a family and predict that a ride is occurring for each 
example that meets all three requirements of our definition.  

Accuracy of ride-sensing 
To evaluate the performance of our ride-sensing method, 
we compare its predictions with the ground truth taken from 
our interviews. 

Aggregate interviews report 3283 rides, or roughly one ride 
per day per family. Real-world constraints on phone use 
(e.g., forgotten phones, dead batteries, school mandates) 
place 1721 beyond the reach of sensor data collection. We 
report on the 1562 rides accessible to sensing. Across all 
families, for both pick-ups and drop-offs, our simple 
temporal model performs well. 90.1% of the events the 
model identified were in fact rides (see Table 1, Precision), 
and 95.5% of all rides were sensed (see Table 1, Recall). 

Precision Recall 

How many of the 
sensed rides are right? 

How many of the total 
rides are sensed? 

Family 

Pick-up Drop-off Pick-up Drop-off 
     

A .991 .987 .912 .910 
B .966 .962 .979 .981 
C .913 .824 .971 .921 
D .878 .873 .980 .944 
E .931 .684 .959 .985 

     

.936 .866 .960 .950 
Average 

.901 .955 

Table 1. Evaluation of our temporal logic model for sensing 
when children are picked up and dropped off. 

Precision and recall measures between families are also 
consistent, with a variance of 0.072. This variance measure 
is dominated by the precision value of 0.684 for family E 
drop-offs, the only value below .80. Three factors appear 
responsible for this low drop-off precision value. First, for 
family E, false positive drop-offs, where a drop-off was 
detected but did not occur, are five times as likely to occur 
at home than at any other location. Second, false positive 
errors at home occur almost exclusively in the late 
afternoon. Third, false positive errors in the afternoon at 
home occur almost entirely between their 10-year-old 
daughter (D10) and Mom. 

Narratives from our interviews help explain the meaning 
behind these numbers. In family E, D10 walks to and from 
school. Family E’s Mom, a doctor, arrives home from some 
hospital shifts at around the same time as D10 arrives home 
from school. Our temporal logic correctly identifies that 
parent and child are at the same location (Eq. 4b), and not 
co-traveling (Eq. 4c). Our temporal logic, however, 
mistakes arrival at home within the same minute for co-
travel (Eq. 4a). Both Mom and D10 are correctly labeled as 
traveling, and are within 500 meters of one another, but are 
not traveling together, causing the false positive errors.  



 

MODEL 2: PREDICTING DRIVERS  
With a capable ride recognition model providing reliable 
information on the driver, passenger, place and time of each 
ride, we can combine this information gleaned from sensed 
rides with low-level GPS data, derive a set of features, and 
use this to train a model of driver prediction. 

Modeling which parent drives 
To model the online probability distribution of which parent 
drives, at each point in time, we create a labeled set of rides 
using the ride detection model’s output. For each row, or 
prediction example, we build a feature vector, f, containing: 

Name Meaning Values 
Ln Location of pick-up or drop-off Place ID 
RType Ride type Pick-up, Drop-off 
DoW Day of week 0,1,2,3,4,5,6 
ToD Discretized time of day (15 min) 1,2,3…96 
drivert-j Driver for the last 5 rides to Ln Mom, Dad 
φ Driver distribution model [0,1] 

Table 2. Feature vector for predicted rides. 

We define the driver distribution for rides of type RType, on 
day DoW, at location Ln, to be the following: 

€ 

φ =

driver = P1
Ln ,Rtype,DoW
∑

driver = P1
Ln ,Rtype,DoW
∑ + driver = P2

Ln ,Rtype,DoW
∑

 (5) 

For each example, we assign the label, y, as -1 if Dad was 
detected as the driver, and +1 if Mom was detected. Our 
goal is to create a classifier to determine the probability that 
each parent is driving. Because the shape of the decision 
boundary is unknown, we use a decision tree classifier, 
which performs well with both linear and non-linear 
boundaries. Because previous research on family routines 
observes frequent deviations from the intended family 
schedule [10, 37], before classification we chose to use 
local weighting to reduce the impact of these non-routine 
outliers [2]. For each labeled example q, we calculate a new 
label d(y) as a function of the old label y and the features f:   

€ 

d(y)LW
q =

yie
− j

i xi
j −q j( )2∑

i∈labeled data,i≠q
∑

e− j
i xi

j −q j( )2∑
i=q

∑
 (6) 

This transformation pushes the labels for deviation 
examples closer to 0 and non-deviation examples closer to 
the original -1 or 1. The closer the label to 0, the less impact 
it has on the accuracy of the classifier. The overall 
classification process combines local weighting with a 
binary decision tree, creating a locally weighted decision 
tree (LWDT) to predict which parent drives for each ride. 

Driver prediction accuracy 
The ride model’s treatment of the output class (Mom or 
Dad) as a nominal variable leaves only two cases for 
evaluation: (1) a prediction of Mom when Mom drives or 
Dad when Dad drives is correct; and (2) a prediction of 
Mom when Dad drives or Dad when Mom drives is 
incorrect. With no case that can lead to false positive or 
false negative, we cannot evaluate using precision or recall. 
Instead, we look at accuracy: how many times out of the 
total did the classifier predict mom or dad correctly. 

We then train the model using a sliding window, and test on 
the week immediately following the training period, a 
common technique used with time-series data [30]. 
Searching for an optimal window size, we vary the size of 
the sliding window from one to 24 weeks, and analyze the 
results. Across all families, when the model is trained using 
only one week of training data (Figure 2, top left), the 
model correctly predicts the driver 72.1% of the time, 
showing that a deployed system might be able to provide 
useable data after just a single week in the field. The 
optimal window size is four weeks, which predicts the 
driver correctly 87.7% of the time. 

At test weeks twelve (June 1) and eighteen (July 13), nearly 
every graph in Figure 2 shows a steep drop in performance, 
correctly predicting the driver only marginally better than 
chance. These dips correspond to significant changes in 
family routines at test week eleven (May 25), when all our 
families transitioned from school to a new summer 
schedule, and at test week seventeen (July 6), when camps 
ended (families D, E), families vacationed (Families A, C), 
and summer sports ended (family B). Poor performance 
during these weeks is consistent with previous findings that 
routines are least stable during transition times [13, 37]. 

Changes in routine that occurred in weeks eleven and 
seventeen would not appear in the training data until weeks 
twelve and eighteen, which exactly overlap the drops in 
performance. Looking more closely, the changes in routine 
at weeks eleven and seventeen also influence the outcome 
of our driver model optimization.  

 
Figure 2. Accuracy (vertical axis) of our driver prediction model across all families, plotted by test week number (horizontal 

axis), varying the amount of training data provided to the model from one (left) to fourteen (right) weeks. No matter how much 
training data is used, accuracy drops at weeks 12 and 18 (vertical lines). 

 



 

Figure 3 shows the relationship between the size of the 
training data sets, and the number of times they include an 
aberrant week. Since five weeks separate the routine 
changes, training data sets that include five weeks of data or 
more will include one of these aberrant weeks more often 
than not, providing them with noisier training data, and 
lowering their accuracy. In fact, four weeks of training data 
marks the turning point, when training data sets do not 
include aberrant weeks more often than they do, explaining 
why it is the optimal number of weeks of training data to 
use in the driver prediction model. 

Lastly, despite poor performance at test weeks twelve and 
eighteen across the variations in size of the sliding window, 
performance makes a sharp turnaround in weeks thirteen 
and nineteen. This suggests that the model is able to make 
correct predictions with only one week’s data from the new 
routine, adding support to the belief that a deployed model 
could recover quickly and again provide useful data even 
after facing changes in routine. 

FORGETTING CHILDREN 
In this section, we explore the feasibility of a system that 
can predict when a parent will forget to pick a child up from 
an activity at an agreed-upon time, using only GPS trace 
information for family members. The fear of being late and 
forgetting a child is a constant source of stress and anxiety 
for dual-income families [4, 11, 18]. Such a prediction 
system could create a new kind of safety net, reducing 
anxiety and increasing feelings of safety. 

Modeling forgotten children 
Forgetting is an ambiguous term. It can mean that a parent 
never goes to get a child, or that a parent failed to 
remember at the appropriate time and thus began the pick-
up task later than expected. Relying on GPS for all our 
information, we develop a time- and place-centric definition 
of forgetting. We say that a parent wants to arrive at an 
ideal time, tideal. We say a parent forgets a pick-up when 
their actual arrival time, t0, is more than ten minutes after 
tideal (we defer the explanation for the choice of the 10 
minute threshold to the discussion). From within the set of 

1562 sensed rides, we apply this rule to the 813 pick-ups, 
and identify 83 instances of parents forgetting pick-ups. 

Building upon our earlier driver prediction model, and 
relying on our GPS data set, we designate the following 
features to help us detect these incidents of forgetting: 

Name Meaning Values 

R Whether the parent remembers True, False 
J Driver prediction model Mom, Dad 
T If the parent is traveling True, False 
λ Empirical cumulative distribution(ecdf) of 

on-time arrivals to Lchild at time TnowTideal 
[0,1] 

Lchild Location of the child Place ID 
Lstart Starting location of a parent Place ID 
Lcurr Ending location of a parent Place ID 
D Destination of a parent Place ID 

We assemble these features into a Bayesian Network (see 
Figure 4). The Bayesian network captures the complex 
dependencies shared by coordinating parents. Here, we use 
the term dependency as used in probability theory to mean 
the outcome of an event makes its dependent event more or 
less likely. It can be read as influences. Each side of the 
symmetrical model represents the state of one parent (Mom 
on the left, Dad on the right). Mutual dependencies are 
represented at the crossover nodes in the graph’s center. For 
example, the location of each parent depends on (is 
influenced by) the location of the child, Lchild, and whose 
job the pick-up is, J.  

Other dependencies are mirrored for each parent. For 
example, according to the model, whether or not a parent is 
traveling, T, depends on their location, Lstart, the location of 
the child, Lchild, how often they have been late in the past, λ, 
and if they remember the pick-up, R. The model also shows 
that a parent’s destination, D, depends on the location of 
their child, Lchild, their current location, Lcurrent, and if they 
remember the pick-up, R. The driver prediction model 
appears in the network as node J, predicting which parent 
has the job to make the pick-up. We can see that according 
to the network, if a parent remembers the pick-up, R 
depends on whether or not the pick-up is their job, J.  

Starting 30 minutes before every late pick-up, we ask the 
network to make two predictions. First, we see if the non-
driver is not going to be late. Second, we look to see if the 
driver is going to be late. We repeat these calculations at 
each minute until the actual time of the late pick-up, and see 
how early we can make the correct predictions. 

We use the properties of the network structure to derive the 
formulas that will provide us the prediction values. To see 
if Dad remembers, we calculate the posterior probability 
Rdad, and then repeat the calculation for Mom. 

€ 

P(Rd | Lstart
d ,Lstart

m ,Lcurr
d ,Lcurr

m ,Lchild ,Td ,Tm ,φ)  (7) 

 
Figure 3. Performance drops of the driver prediction 

model at weeks 12 and 18 occur as transitions from the 
routines of school to into summer (week 11), and from the 

routines of camp to back-to-school prep (week 18) first 
appear in training data. Because these changepoints are 

separated by five weeks, models using five weeks or more 
of training data will include one of these aberrant weeks. 



 

Performance of the forgotten child model 
To evaluate the forgotten child model, we first learn the 
optimal distributions for the remaining learned model nodes 
– λ, and D. Using four weeks of training data for the driver 
prediction model, J (our learned optimum) we vary the 
amount of training data to λ and D, and compare the output. 
Ten weeks of data gives optimal values for both λ, and D. 

To calculate the output of the entire network, we use the 
Maximum Entropy Inverse Optimal Control algorithm [39] 
to compute D, destination, and starting thirty minutes 
before each forgotten pick-up, compute values for Rmom and 
Rdad at one-minute intervals, until we arrive at tideal+10, ten 
minutes after the ideal pick-up time, when the parent is late 
(by our definition). 

Given the unequal distribution of forgotten pick-ups (83 
examples of forgotten children out of 1562 sensed rides – 
majority of these are parents arriving late but some are 
instances of parents actually forgetting their children), a 
model based on no data, but that simply always predicted 
on-time arrival would be right 0.885 of the time. Evaluation 
using precision and recall would output high values, but 
would lack a way to distinguish how much of that number 

comes from the excellence of the model, and how much 
simply from the sheer number of negative examples. 

As an alternative, we evaluate the model using a technique 
from signal processing [30] called the receiver operating 
characteristic (ROC), which is a more conservative measure 
of performance [16]. Figure 5 shows two ROC plots. For 
each plot, the y-axis shows correct predictions, and the x-
axis shows incorrect predictions. The points inside each 
square represent different ratios of correct predictions to 
incorrect predictions. Points along the diagonals mean the 
ratio is even, and the model is performing no better than a 
coin flip – for every one correct prediction, there is one 
incorrect prediction. The upper left corner is perfection, 
with all correct predictions and no mistakes.  

We can use this property of ROC curves to visualize how a 
notification system would balance the desire of the parent 
to never miss a pick-up, against the cost of sending wrong 
information (e.g., an unnecessary reminder). For any given 
number of correct predictions, an ROC curve indicates how 
many incorrect predictions the model will also produce. At 
tideal-30 (Figure 4, right, dark pink line), for every 6 correct 
predictions the model makes 5 incorrect predictions. When 
viewed as percentages, every rate of accurate predictions 
between 0 and 1 has a corresponding rate of inaccurate 
predictions between 0 and 1, producing a smooth curve. If 
we continue to follow this curve up and to the right, we can 
see that the ratio improves little. At tideal (light orange line), 
for every 8 correct predictions the model makes 2 incorrect 
predictions. At tideal+10 (dark orange line) for every 8 
correct predictions the model makes only 1 incorrect 
prediction. 

We can also measure the area beneath an ROC curve to 
describe a model’s cumulative performance across all 
confidence values. At thirty minutes before tideal, the area 
under the ROC curve is 0.649 (Figure 4, pink area). The 
performance gradually rises as the pick-up time approaches, 
and is highest tideal+10, at 0.826. 

 
Figure 4. A Bayesian Network used to predict if a parent 

remembers to make a pick-up. Each side of the 
symmetrical model represents the state of one parent. At 
each point in time the model makes two predictions: (1) 

does the parent who drives remember the pick-up; and (2) 
does the other parent not remember the pick-up. 

 
Figure 5. Forgotten child model performance. At left, ROC 
curves show performance improving from 0.640 at tideal-30 

to 0.826 at tideal+10. At right, the values demonstrate the 
relationship between right and wrong guesses. 



 

DISCUSSION 
This paper describes a successful initial demonstration of 
the feasibility of our approach to the sensing and modeling 
of pick-ups and drop-offs, and hopes to spur investigation 
of routine as a versatile and enabling abstraction. In this 
section, we discuss possible directions, and identify ways to 
continue towards optimal performance. As a broad reaching 
proof-of-concept, this work required many simplifications. 
In this section we discuss their impact, and extensions to 
the work as a whole. 

Building on the ride model 
Our ride detection model provides ample evidence that the 
large scale detection of rides is within reach. Still, across all 
families, the model overlooks about ten percent of rides 
(false negatives), and makes incorrect detections (false 
positives) around ten percent of the time. Because our 
hierarchical approach to modeling means that errors in ride 
detection propagate to downstream models, causing further 
errors, improvements in ride detection will pay threefold, 
helping to improve driver and forgotten child prediction as 
well. 

A variety of ways exist to improve upon our ride detection. 
Because we sample GPS only once per minute, pick-ups, or 
examples of co-location that happen on a faster time scale 
are simply missed. In our fieldwork, we observed busy 
families carrying out pick-ups and drop-offs below this 
detection threshold. An intelligent approach to sampling 
would increase rates during times when data collection 
would be more valuable (i.e., when a person is moving), 
and lower the sampling rate during periods of stasis, 
avoiding battery depletion. This approach would require the 
integration of other low-level sensors into the model (e.g., 
accelerometer, noise or light). The addition of Bluetooth 
could also improve co-location and co-travel accuracy by 
providing additional proximity cues to the model. 

Missed rides are also caused by the model’s simple ride 
representation. We defined travel in terms of one parent, 
one child and one car. The model has no representation of 
other modes of transport, causing it to miss common 
activities like walking, riding bicycles, and taking the bus. 
For simplicity we limited our observations to the nuclear 
family, but in reality families plan and coordinate with their 
extended families, friends and carpoolers, all whom were 
outside the scope of this investigation. The model also 
requires that activities occur while people are at a location. 
Activities like paper routes, however, occur over a wide 
area that contains home, neighbors, and schools, making it 
appear to the model as an unusual occurrence of travel. 

Building on the driver prediction model 
The driver prediction model learns parental responsibilities 
at more than 70% accuracy with only one week of training 
data, and about 85% accuracy with four weeks of training 
data. These are satisfactory numbers when seen as a 
technical problem. A deployed system, however, will face 
unknown scrutiny from coordinating parents during 
stressful times. Even small errors may deter adoption, 

encouraging examination of ways to achieve better results 
with less training. 

While we explored a general-purpose algorithm for use 
across all families, we know that there is great variation in 
the ways families plan, coordinate and improvise. Even 
within families, as children grow, parents age, interests, 
even entire geographies, evolve. Exploration remains to 
find algorithms both for family style, and for attending to 
and integrating to the inevitable changes. 

The driver prediction model also showed a remarkable 
potential for detecting large-scale transitions in routine. 
Because families experience the most stress during times of 
large-scale routine change, an algorithm tuned to this class 
of events could effectively function as a seasonal boundary 
detector, offering an index of routineness to other models 
providing services to families, helping the driver prediction 
model identify seasonal boundaries in training data and 
achieve better learning faster. 

Building on the forgotten child model 
Because end-user evaluation metrics will vary with 
application context (e.g. missed pickups for a reminder 
application will be less tolerable than incorrect event times 
in a calendar application), a precise assessment of its 
performance requires a field deployment. Instead, we 
presented an ROC analysis, which quantifies performance 
tradeoffs as confidence values. End-user application 
designers can define the behavior of systems that 
implement the model by calculating a future expected value 
based on model confidence, and the costs and benefits as 
defined by their domain. 

Unfortunately, without a field deployment, we can only 
estimate costs and benefits. The ROC analysis, for example, 
showed that the model has about sixty percent accuracy at 
thirty minutes before a parent forgets a child. With about 
twenty actual incidents of forgetting children per family, 
this would equate to forty alerts over six months, or about 
1.5 per week. Given the stress caused by forgetting a child, 
would this number of alerts constitute an annoyance, or 
prompt a parent to take a moment and double-check their 
plan and their assumptions?  

This question is further complicated by the question of 
information delivery. It is unknown how early a forgotten 
pick-up needs to be detected in order to be of use. A 
message that comes too late to enable a parent to arrive on 
time might be marginally helpful, but the real goal is to 
make this detection early enough to ensure prevention of 
the event. 

Improved models will also need to address the temporal 
complexity of coordinating parents. In some families, ten 
minutes late might be considered on time. In others, it 
might constitute abandonment. A range might more 
faithfully represent an ideal time than any particular minute. 
Also, if a parent plans to be late, then their late arrival time 
is their ideal time, and not the one the model assumes. 



 

Applications of models of routine 
The haphazard introduction of learning systems into the 
home has been a subject of concern to researchers. Their 
caution reflects an understanding of the technical 
challenges that idiosyncratic human behavior could present 
to modeling [32, 34], a sensitivity to the unintended 
consequences of technology in the home [9], a concern over 
the appropriate role of domestic technology [33], all which 
threaten to take away autonomy from families. 

Ultimately, we distinguish a belief that aspects of family 
life can be modeled from the belief that family life should 
be automated. We advocate a measured approach where 
intelligence is applied in such a way that it does not take on 
the role of parent and does not conflict with the social 
structure within the family.  

Our work does not focus on optimizing the work of families 
in order to allow an ever-increasing number of activities to 
be performed. Instead, our intention is to help family 
members more elegantly and effortlessly perform their role 
within the family by providing the resources they need to 
better understand what they do and what they plan to do. 

Our technical models of routine support this decisively 
human need by acting through existing research family 
support systems, allowing them to better address the 
situations they were originally designed for. Calendaring 
systems like LINC [27] and DateLens [29] could display 
implicit routine events, event times, pick-ups and drop-offs 
that parents don’t document but are critical to making 
effective plans for and that affect others. Location systems 
like Motion Presence [6] and the Whereabouts Clock [8] 
could display where people are with implicit routine 
information like future pick-ups and drop-offs, helping 
remind family members what they need to do, and alerting 
others as days happen as planned. Applications could 
update plans in real-time, helping parents make more 
reliable decisions. As pick-ups happen, reminder systems 
like comMotion [25] and PlaceMail [24] could suppress 
potentially annoying reminders. Reminder systems could 
infer that a required pick-up is not happening, and remind 
parents without their explicit creation of a reminder, 
creating a new kind of safety net to guard families against 
this stressful outcome. 

CONCLUSION 
In this paper, we demonstrated that dual-income family 
transportation routines could be sensed and modeled 
without any supervision using the GPS available on 
commodity mobile phones. Towards that end, we gathered 
a large data set of family location, and of pick-ups and 
drop-offs. Using simple heuristics and statistical models, 
we demonstrated that pick-ups and drop-offs can be sensed, 
and their drivers predicted. We also demonstrated a model 
that can predict when parents are going to forget to pick-up 
their children at activities before these damaging events 
happen. 

We provided examples of how learned models of family 
routines can function as an enabling technology. We 
described how they could be added to digital calendars to 
help families make better plans, to reminder systems and to 
location systems to help families coordinate on routine 
days, and to function as a safety net, helping observe and 
prevent incidents where children are forgotten at their 
activities. 

Future work 
We intend this work to stimulate discussion around the 
broad applicability of routine as an enabling abstraction. 
Considering our choice of exploration over optimization, a 
significant amount of the modeling space remains open to 
investigation. Additionally, the use of routine in various 
application domains brings with it a series of questions. 
Identifying appropriate ways to visually represent implicit 
information, or entire learned routines, presents challenges 
to the visualization community. And ways to repair and 
amend incorrect implicit information presents challenges to 
the interaction techniques community. 

Because routine as a computational abstraction is able to 
capture and model events that are meaningful but 
ephemeral, the algorithms developed in this work could be 
applied across other domains. In the workplace, for 
example, best practices could be described as a form of 
routine. Their modeling, visualization, and communication 
would represent another significant research opportunity. 
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