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Abstract

If current trends in cellular phone technology, personal
digital assistants, and wireless networking are indicative
of the future, we can expect our environments to contain
an abundance of networked computational devices and re-
sources. We envision these devices acting in an orchestrated
manner to meet users’ needs, pushing the level of interac-
tion away from particular devices and towards interactions
with the environment as a whole. Computation will be based
not only on input explicitly provided by the user, but also
on contextual information passively collected by networked
sensing devices. Configuring the desired responses to dif-
ferent situations will need to be easy for users. However,
we anticipate that the triggering situations for many de-
sired automation policies will be complex, unforeseen func-
tions of low-level contextual information. This is problem-
atic since users, though easily able to perceive triggering
situations, will not be able to define them as functions of the
devices’ available contextual information, even when such
a function (or a close approximation) does exist.

In this paper, we present an alternative approach for
specifying the automation rules of a pervasive computing
environment using machine learning techniques. Using this
approach, users generate training data for an automation
policy through demonstration, and, after training is com-
pleted, a learned function is employed for future automa-
tion. This approach enables users to automate the environ-
ment based on changes in the environment that are complex,
unforeseen combinations of contextual information. We de-
veloped our learning service within Gaia, our pervasive
computing system, and deployed it within our prototype per-
vasive computing environment. Using the system, we were
able to have users demonstrate how sound and lighting con-
trols should adjust to different applications used within the
environment, the users present, and the locations of those
users and then automate those demonstrated preferences.

1. Introduction

Pervasive computing is characterized by an abundance
of networked computational devices embedded within our
everyday environments (e.g., homes, workplaces, public
spaces). Underlying infrastructures provide coordination
among these devices, expanding the scope of user interac-
tion from a restrictive coupling with specific devices to a
broad interaction with the environment as a whole. As envi-
sioned by Mark Weiser [19], this expanded interaction will
allow computational devices to fade into the background of
our lives, serving as a natural extension of our surroundings
rather than a center of focus.

Unlike traditional electronic appliances and computer
applications, which often operate isolated from and obliv-
ious of what is occurring in the environment around them,
pervasive computing applications are context-aware; they
have as potential input the entire observable state of the
environment [2]. This includes a partial knowledge of
the physical environment obtained from sensing devices
(e.g., location systems, microphones, video cameras) and
a nearly complete knowledge of the computational environ-
ment (e.g., networked device state, application state, service
state). Thus, the pervasive computing system is capable of
basing computational decisions on users’ interactions with
the environment as a whole [18].

With hundreds or thousands of devices and applications
within the environment, each with many different states and
configuration options, automation is a necessity. Without it,
users will either be overburdened in configuring the envi-
ronment and updating it in response to changes, or they will
leave much of the environment’s functionality unchanged
and only a small fraction of the environment’s potential util-
ity will be realized.

If a user’s preferred action can be specified as a function
of the observable state of the environment, it is possible to
automate that action. For example, a user might prefer to
display her email on a large room display when she is the
only person present in the room, but switch to her more pri-



vate PDA otherwise. If these preferences can be easily ex-
pressed a priori by the user, tools can be used by the user to
specify desired automation policies. However, the growing
abundance of context sensing devices in the environment,
and their disappearance into the background will make it in-
creasingly difficult for users to understand how the context
changes they observe are perceived by the environment’s
computing system. It’s even more difficult for users to an-
ticipate the contextual changes for an activity a priori. Ex-
perts might be capable of accomplishing this, but then users
would not be in control of their own environments.

Appropriately employed machine learning techniques
avoid many of the limitations of having users manually
specify automation policies using tools, while still enabling
end-users to automate, and enjoy the increased utility of
their environments. Instead of expressing the rules for a par-
ticular action, users provide examples under varying con-
textual situations of when that action should be used. Users
need not know anything about how the devices within the
environment are sensing contextual information, nor how
their perception of the environment maps to the perception
of the environment’s computer system. Machine learning
algorithms use the user-provided examples to generate a
function of the contextual information for the action that
generalizes to future unseen situations. These algorithms
are better suited for dealing with the wealth of low-level
contextual information and determining how in combina-
tion it is indicative of the higher-level contextual informa-
tion that the user perceives as a cause for an action. If the
generated function errs when the machine learning tech-
niques are employed in an online setting, a new example
can be used to retrain a new function after the user corrects
the error.

1.1. Our Contribution

In this paper, we present a machine learning service that
observes the manual usage of the environment under vary-
ing situations in order to discover and automatically invoke
user preferences in the future. Both the computational en-
vironment and the limited view of the physical environment
instrumented with sensors serve as sources of contextual in-
formation on which to base training. When an adequate
training set is provided by the user, machine learning al-
gorithms generate functions to automate the environment
that reflect the behavior preferences demonstrated by users.
From a user’s perspective, this service enables individual-
ized automation without requiring explicit definition of de-
sired behaviors. Instead, the user can demonstrate the con-
cept adequately enough for the learning algorithm to cor-
rectly approximate it.

We concretely motivate the use of machine learning for
creating automation policies in a pervasive computing envi-

ronment with the following scenario. At varying times, an
instrumented environment is used for giving small lectures,
holding meetings, and as a workplace for multiple people.
Depending on which activity is occurring, the environment
needs to be configured differently to meet the needs of the
occupants. The lighting of the environment is one aspect
that needs to be configured. During presentations the lights
around display devices must be dimmed to reduce glare and
during meetings lights over a conference table or workplace
must be more bright. As another example, when used as a
workplace with multiple occupants, control of the volume
of music being played is particularly important, as each oc-
cupant is willing to work with varying amounts of noise and
willing to listen to the musical preferences of a subset of the
other occupants. Additionally, even when only one person
is in the environment the music level must change based
on where that person is, lest he be unable to hear when far
away from the speakers within the environment and deaf-
ened when nearby.

It is difficult for the users of the environment to define
rules that distinguish between all the different activities that
require different environmental configurations. Some of the
same people are present for all of these activities, and only a
fraction of the occupants choose to register themselves with
the voluntary location system, making it impossible to asso-
ciate any activity with the presence of one particular person.
Similarly, the number of possible permutations makes it dif-
ficult and time-consuming to define at what volume music
should be played as a function of which users are registered
in the environment, where in the environment they are lo-
cated, and who has chosen the music.

Instead of trying to write functions of the contextual in-
formation to control the lights and volume of the environ-
ment, the occupants use the environment as they would with
no automation, changing the lights and music volume set-
tings manually as desired. After a few days of this, the train-
ing examples they have generated are used to train func-
tions that automate the environment in close approximation
to what was demonstrated. Though the functions are com-
plex, it turns out that characteristics of network usage vary
greatly depending on how the environment is being used
and the level of network traffic over a five minute window
is good at distinguishing the environment as a workplace,
something that the environment’s occupants had not consid-
ered. There are other surprises as well. While Joe generally
doesn’t like any music while he is working (a well-known
fact to his co-workers), right after lunch he doesn’t mind at
all. The environment is automated with these newly learned
functions, and users manually override the automated ac-
tions with their own preferences when the function doesn’t
automate the environment appropriately, adding new train-
ing examples to the training set to be used for future au-
tomation. Over time different aspects of the environment



are automated with little need for future correction, allow-
ing users to spend their time configuring other aspects of the
environment.

The remainder of this paper is organized as follows. In
Section 2, we describe Gaia, our current pervasive comput-
ing infrastructure. In Section 3, we present our new learning
service, which we integrated into Gaia. Part of the integra-
tion into Gaia includes the creation of mechanisms for de-
livering contextual information to the Learning Service and
mechanisms for querying the Learning Service and making
use of its results. This Learning Service handles the rep-
resentation of the environment and the conversion of that
representation into features for learning. In Section 4, we
revisit our motivating scenario and validate our Learning
Service, using it to learn lighting and volume preferences
based on environmental context. We conclude this paper
with a discussion of the related work and our future plans
for the Learning Service.

2. Our Pervasive Computing Infrastructure

The pervasive computing infrastructure, Gaia, that sup-
ports our prototype computing environment is comprised of
a software layer of services that support distributed applica-
tions, and a layer of heterogeneous devices that enable user
interaction. Gaia is a middleware-based meta-operating
system. It runs on top of the existing operating systems
(e.g., Windows, Linux) of devices within the environment to
support coordination. The underlying middleware enables
communication and coordination between different types of
devices and programming languages. Concepts from tradi-
tional computing have been extended over the distributed
host devices within the environment to transform many in-
dependent devices into one orchestrated system that, when
combined with sensors and actuators, becomes a represen-
tation of the environment as a whole. Applications are built
as components using an application framework and, mak-
ing use of the available Gaia services and the underlying
middleware, are distributed across multiple devices.

2.1. Gaia Services

Services within Gaia are distributed extensions of tra-
ditional operating system concepts. For example, the Gaia
File Service [5] provides separated remote components with
a unified view of data stored within the environment. The
service also automatically handles the file type conversions
between different systems. This service infrastructure en-
ables the creation of applications spread over many devices
that depend on the functionality these services provide.

2.2. Gaia Application Framework

Applications within our pervasive computing environ-
ment are comprised of a number of distributed components
that interact with each other using event channels and re-
mote method invocations. Applications are developed using
a pervasive computing extension [16] of the Model-View-
Controller (MVC) framework [10]. The extended frame-
work specifies the roles of different components in the as-
sembled application, and provides built-in support for ap-
plication mobility, dynamic composition, and context sen-
sitivity.

Figure 1. Application framework functional di-
agram

Gaia application components associate with each other
functionally as shown in Figure 1. An application consists
of the following components, distributed across devices
within the pervasive computing environment: a model, pre-
sentations, controllers, adapters, and a coordinator. The
model, presentation, and controller correspond with the
model, view, and controller of the MVC application frame-
work. The application components are distributed across
the devices within the pervasive computing environment.

The coordinator manages the composition of the applica-
tion and provides a means to dynamically change the appli-
cation’s configuration by adding or removing components
as needed within the environment. The model contains the
application logic and maintains the state of the application.
It provides synchronization with the presentation and con-
troller components through event channels and an interface
for remote procedure calls. Presentation components serve
as output mechanisms for the application. Some have visual
representations, while others have non-visual effects (e.g.,
audio output, light and temperature controls). The presenta-
tion may respond to the model’s state changes depending on
the events it receives from the model, optionally invoking
methods on the model to receive more information before
updating its output. Controller components allow users to
interact with the application logic of the model by invoking
methods on the model that change the application’s state.
Additionally, each controller has an associated adapter that
maps method calls from the controller to the methods of
the model, allowing controller reuse with different models.



Each application has one coordinator, one model, any num-
ber of presentations, and any number of controllers - each
with its own adapter.

2.3. Inter-application Coordination and Gaia
Bridges

Applications and services within a pervasive computing
environment can interact with each other in a decoupled
manner using specialized components called bridges [17].
A bridge receives events from the source application or ser-
vice’s event channel, processes any associated data from
the event, and invokes a method on the target application
or service. Bridges are implemented in Luaorb [15], an in-
terpreted language that provides bindings between Lua [6]
and CORBA, COM, and Java.

Figure 2. Application bridge between two ap-
plications

Figure 2 shows the deployment of a bridge connecting
two applications. The bridge registers as a presentation of
the source application (Application 1) and a controller of
the destination application (Application 2). The bridge re-
ceives event notifications from the source application, pos-
sibly invokes methods on the source model to obtain addi-
tional information, and then invokes methods on the target
application. As a result, the state of the target application is
affected by changes in the source application’s state.

3. The Gaia Learning Service

The Learning Service is integrated into Gaia, collecting
information about the state of the pervasive computing en-
vironment from applications and services, learning automa-
tion policies from this contextual information, and then en-
abling agents to use those learned policies to automate the
applications and services within environment. The mecha-
nisms that connect the Learning Service with the applica-
tions and services of Gaia are adaptation of Gaia Bridges.

3.1. The Learning Problem

The Gaia Learning Service provides general support to
learn how each contextual attribute of the environment de-
pends on all the other contextual attributes. Each of these at-
tributes is directly mapped into a feature to accomplish this.
This feature extraction is much simpler than many learning
problems, where features are functions of the raw data and
experts are often required to formulate appropriate func-
tions. However, sensors within the environment may fail
and users’ actions may be reported latently, so our learning
algorithms must be tolerant of these sources of noise.

Figure 3. Learning every attribute as a func-
tion of every other attribute

Figure 3 shows a conceptual image of the learning prob-
lem. Each attribute of the environment is learned as a
function of the other attributes in the environment. It isn’t
known beforehand which of these attributes will be of in-
terest for evaluation, so every relationship is learned even
though many may not be used.

3.2. State Representation

The state of the pervasive computing environment is pro-
vided to the learning system as sets of variable and value
pairs having names that can be semantically meaningful to
the programmer. The variable contains hierarchical path in-
formation to enable referencing to entities. As provided to
the learning system, the variable and value pair might be:
(applications/mp3player/status, playing). The learning sys-
tem stores these variable and value pairs in a tree structure
and creates mappings between value nodes in the tree struc-
ture and unique integers that are used as features for training
examples.



Figure 4. A sample tree representation of the
environment

Figure 4 shows a possible representation of the environ-
ment in the tree structure. In this figure, variable path nodes
have solid outlines, value nodes have dashed outlines, and
active attributes are indicated by bold font. The Learning
Service’s interface provides methods to enable and disable
the attributes.

3.2.1 Entities and Entity Referencing

The state representation supports the notion of entities and
entity references in order to learn more generalized rela-
tionships. An entity is a set of features organized as a sub-
tree in the tree representation of the environment state (e.g.,
bziebart in Figure 4). An entity reference is simply a path
to a subtree entity (e.g., users/bziebart).

This reference system allows the state representation to
contain abstractions of the characteristics of the environ-
ment. These abstractions enable the environment to respond

to unseen entities if those entities possess characteristics of
previously learned entities. For example, if Bob teaches the
environment to play his music more loudly when he is at
one side of the room that is farther away from the room’s
speakers, and softer when he is closer to the speakers, in ad-
dition to learning a correlation between Bob’s location and
the MP3 Player’s volume, a correlation between the MP3
Player’s owner’s location and the MP3 Player’s volume is
also learned. If Jane, who has never used the MP3 Player
before, begins to play music in the automated environment,
the music will adjust based on her location, as Bob, and
perhaps other users, have taught it.

Figure 5. Entity referencing in the tree repre-
sentation

Figure 5 shows the changes to the tree repre-
sentation after entity reference (apps/mp3player/owner,
@users/bziebart) is provided to the Learning Service. The
reference is a pointer to the users/bziebart sub-tree. Train-
ing examples are generated by expanding the referenced
subtree under the referrer’s tree node. The resulting equiva-
lent tree representation in Figure 5 shows this expansion for
@users/bziebart. New unique feature identification integers
are generated for these mapped values rather than using the
original sub-tree identifications since the full path to this
value is different in this case than in the original.

3.3. Information Providers

Data is provided to the Learning Service by components
called information providers. We envision, when fully de-
ployed within the pervasive computing environment, hun-
dreds of information providers will supply thousands of
pieces of contextual information to the Gaia Learning Ser-
vice. Developers of applications and services provide the
necessary specifications to generate information provides
and agents, which are described later.

Figure 6 shows the three types of information providers.
Information Provider 1 is essentially half of a Gaia bridge
that listens to notification events from an application’s
model, parses these events, and delivers important changes



Figure 6. Three types of information providers

to the Learning Service. For example, in an MP3 Player,
the information provider might deliver changes in volume,
status (i.e. playing, stopped), song being played, etc. Infor-
mation Provider 2 registers for callbacks from the Location
Service. Whenever a registered event occurs, Information
Provider 2 receives notifications and then relays the events
to the Learning Service. For example, in Figure 6, the in-
formation provider may register to be notified when a par-
ticular user enters a region of the physical environment, as
detected by a positioning system. Information Provider 3
periodically polls the Space Repository, which contains in-
formation about the users, services, and applications within
the environment. The information provider delivers char-
acteristics to the Learning Service that reflect any changes
in the state of the Space Repository, which contains infor-
mation about the applications, devices, and users within the
environment.

3.4. The SNoW Machine Learning System

The Gaia Learning Service learns preferences in a batch-
based manner, which consists of a training phase and a sepa-
rate automation phase. During the training phase, examples
are generated periodically from the representation’s active
characteristics. Each active characteristic is a feature in the
learning system. To transition into the automation phase,
the Sparse Network of Winnows (SNoW) Machine Learn-
ing System [1] is used to compute for each feature an ap-
proximate function of all other features.

SNoW is an efficiently implemented classifier architec-
ture with support for the Perceptron, Winnow, and Naive
Bayes learning algorithms. Unlike most other learning
problems, where a set of labels is learned as a function of
a different set of features, our learning problem learns for
all features. SNoW is well-suited for quickly computing
approximations for each feature.

3.5. Adaptive Agents and Applications

The learned behavior preferences can be used by query-
ing the Gaia Learning Service and, depending on the re-
sult, invoking changes to the environment. The invoker can
either be an independent agent component, or an applica-
tion. Agent components are generated based on specifica-
tions provided by application developers that describe the
mapping between contextual variables and invokable meth-
ods of the application. We only used a handful of agents
for the experiments in this paper and they were started au-
tomatically as part of the conclusion of the learning phase,
though in future pervasive computing environments we ex-
pect a user will need to have an interface to select the de-
sired agent from a list of all available agents.

Figure 7. Agent attached to an application

Figure 7 shows an agent that uses the results of the learn-
ing service to change the state of an application. There
are two types of queries that the Learning Service supports.
In both types, the SNoW architecture is provided with the
current features generated from the environment represen-
tation. The first option is to query for the confidence of a
particular variable-value pair. The Learning Service pro-
vides a normalized activation level between 0 and 1 for the
corresponding feature to be active or inactive given the pro-
vided environment state. The agent can then use this value
and, if it is above or below some threshold, change the en-
vironment characteristic associated with that variable. The
second option is to provide a variable to the Learning Ser-
vice, and the best value choice for that variable under the
current environment state will be returned. The agent can
then invoke changes in the environment to reflect this best
option.



4. Experimental Results

The Gaia Learning Service was successfully deployed
within our prototype pervasive computing environment. We
used it to learn several preferred behaviors under different
domains of features. We present two of the experiments we
conducted that relate to our motivating scenario.

4.1. Experiment 1: Space Repository

In the first experiment we utilized the Learning Service
to automate the volume of an MP3 Player application based
on the types of application components currently being used
and the users present within the environment. Figure 8

Figure 8. Experiment 1 configuration

shows the configuration for this experiment. Information
providers deliver the names of application components that
exist in the environment, and the volume of the MP3 Player
(discretized into four different values: very soft, soft, loud,
and very loud) to the Learning Service. The information
provider connected with the Space Repository queries the
Space Repository every three seconds. Then, during the au-
tomation phase the agent queries the variable for the MP3
Player’s volume and sets the volume based on the result ev-
ery three seconds.

Using this setup we taught the Learning Service many
behaviors, such as: ”Play the music loud usually, soft when
PowerPoint Application A is running, and really soft when
PowerPoint Application B is running.” We generated train-
ing examples every 10 seconds, and started and stopped
applications while adjusting the MP3 Application’s vol-
ume to correspond to the different applications and differ-
ent users within the environment roughly every minute for
five minutes. We were able to learn this behavior easily us-
ing SNoW’s default Naive Bayes, Winnow, and Perceptron

algorithms. Thus, the agent was able to interact with the
Learning Service and automate the environment according
to the demonstrated behavior as applications were started
and stopped in the environment. We augmented this exper-
iment with the use of fingerprint scanners and RF tags to
detect user presence, and more complicated concepts were
learned, such as ”Play music softly when a presentation is
occurring, loudly otherwise, except if Professor Campbell
is detected within the room.”

We occasionally experienced poor results when the al-
gorithms employed by SNoW did not produce the neces-
sary approximation functions to reflect the demonstrated
behavior. Often this was a result of insufficient amounts
of training examples to compensate for noise in the contex-
tual information. Additionally, the volume adjustments of-
ten lagged behind changes in context due to a system-level
setting that caused a ten-second delay for notifications of
exiting applications.

4.2. Experiment 2: Location Service

In the second experiment, we employed the Learning
Service to automate both the volume of the MP3 Player and
the X10 Application’s lamp settings based on where in the
environment a user is located. This experiment is based on
our motivational scenario: both light settings and volume
settings will need to change to provide appropriate light and
sound for users performing different activities and moving
throughout the environment.

Figure 9. Experiment 2 configuration

Figure 9 shows the configuration of the Machine Learn-
ing system for this experiment. Information providers de-
liver the volume of the MP3 Player, entrances of users
into four regions associated with four different plasma dis-
plays, and the state of lamps controlled by the X10 system,
which controls electronic appliances and lights by passing
messages over an environment’s electrical system. During
the training phase, a controller resides on each of the four
plasma displays with bridges to the MP3 Player and X10



Application, allowing users to set the volume and lighting
as they move about the environment. During the automation
phase, agents query the variable for the volume of the MP3
Player Application and the X10 Application’s lamp’s sta-
tus every second and change the lamp and volume settings
according to the result.

Using this setup, a user moves among the different re-
gions, setting the lighting and volume to different levels
based on where she is in the environment. The user stands
in each region for a small period of time after she change the
settings to simulate more realistic usage conditions. Train-
ing examples are generated every second for roughly one or
two minutes. We employ SNoW using Naive Bayes to learn
approximations based on the training examples we gener-
ated. Then, we launch agents that automate the environment
as the user walks between plasma displays again.

In the worst case, the environment is only able to auto-
mate some of the preferences that the user demonstrated.
Depending on the noise in the training examples, which is
strongly influenced by the accuracy of the location system,
usually anywhere between half and all of the preferences
are learned and automated. During automation the environ-
ment is much more responsive than in the first experiment
as long as users are accurately detected within the differ-
ent regions of the environment, as changes in location are
propagated nearly instantaneously, unlike closing applica-
tions, with their ten-second delays. Successful automation
often occurred in a cascading pattern; first the lights would
change as the user migrates and the music would change
after the light change had registered in the state representa-
tion, as the lights being on or off were good indicators of a
specific volume level when combined with the user’s loca-
tion. Occasionally, when our system failed to automate the
light settings appropriately, volume settings would also not
be appropriately automated without first manually control-
ling the lights.

4.3. Discussion of Results

The experiments we employed were designed to quickly
demonstrate the ability of the learning system after only a
few minutes of training. The experiments were generally
successful with such short training periods because of the
small feature space in each experiment. As with all super-
vised classification problems, we expect that as the feature
space increases, a longer training period will be required to
learn the same automation policies. Additionally, success-
ful experiments also depended on examples in the testing
data being somewhat represented in the training data’s ex-
amples.

Our choice of algorithm in the learning phase of the ex-
periments had only a small impact on the system’s efficacy
in automating the environment, but some fine tuning was

required. For example, the Naive Bayes algorithm required
a high smoothing parameter value for unseen attributes to
compensate for new contextual information not present dur-
ing training (e.g., a new user registering within the environ-
ment during the automation phase). This might make Naive
Bayes a poor algorithm choice if, through the somewhat
random usage of the environment, many previously unseen
features such as this may appear during testing. However,
we are reluctant to characterize the data from a fully de-
ployed pervasive computing environment based on our ex-
periments. Many diverse aspects of the environment will
need to be automated using the Learning Service to get a
sense for what characteristics exist in the training examples
and what specialized algorithms might be best suited to han-
dle them.

The batch-based learning approach, where all the train-
ing examples are generated and then a classifier is trained,
was appropriate for these experiments because we were
learning unique policies demonstrated in each of the small
windows of training. SNoW has support for training also
over testing data, but for our experiments this would have
just reinforced whatever was already being automated. In
future deployments, continuous observation of users’ inter-
actions with the environment and real-time refinements of
the learned automation policies will be desirable. There
are additional system and modeling considerations involved
with discerning automated actions from user actions in our
approach, such as tracking through applications and Gaia
bridges whether an agent or user originated some action,
which we discuss in our future work section.

5. Related Work

In this section, we discuss how our Learning System re-
lates to other work in the field. In particular, we look at
the handful of similar systems designed to learn and auto-
mate user preferences within an everyday environment, and
works in the fields of context-based computing and activity
recognition.

5.1. Automating Environments by Observed Usage

There are a handful of similar systems that automate
their environments based on the observed usage. The Neu-
ral Network House [12] controls operations of a house’s
air, heating, cooling, and ventilation systems by observing
users’ control decisions and sensor readings throughout the
house. The system employs neural networks to learn how
to control environmental conditions within the house based
on the needs of users while reducing energy usage.

The iDorm system [4] consists of many different sensing
devices and controllable devices embedded within a dormi-
tory room. When the user controls one of the devices within



the environment, the state of the environment immediately
prior to the action is recorded. A rule extraction system
based on fuzzy logic is employed to find appropriate au-
tomation policies. These policies are then automated within
the environment to reduce the amount of user intervention.

In Project Oxygen, a system observes the usage of an
environment and utilizes a human tracking system to create
”activity zones” where users perform certain types of ac-
tions using clustering techniques [9]. The system relies on
the user to label zones of interest and associate appropriate
actions to take when events occur in each zone.

In the MavHome Project [20], the environment is rep-
resented using a Hierarchical Hidden Markov Model, and
a reinforcement learning algorithm is employed to predict
environmental preferences based on sensors within the en-
vironment. Desired actions are proposed for the control of
lights within the environment primarily based on motion de-
tection sensors, and, if the actions are within the bounds
of acceptable safety and security policies, they are invoked
within the environment. Using this system to automate the
environment, fewer user interactions with lighting controls
are required while power consumption is reduced.

Our work is unique in that rather than engineering a
learning system to handle specific controls and sensors,
we maintain Gaia’s operating system approach of provid-
ing generic support for additional expansion. Within the
Gaia framework, application developers provide the neces-
sary functionality to accompany a new source of contextual
information or a new invokable control by encapsulating it
as an application. The application can then be deployed and
will be used by the learning service in any new Gaia envi-
ronment without requiring an expert to connect and config-
ure it. This is comparable to how many different input and
output devices can be used without modification to existing
programs in a traditional operating system. It is important
for users who want to be able to add new devices to their en-
vironments to be able to do so without requiring an expert’s
assistance.

5.2. Context-based Computing

Research in context-based computing is primarily fo-
cused on gathering raw contextual information from sens-
ing devices, inferring higher-level contextual information
from this raw contextual data, and providing contextual in-
formation to context consumers. The synthesized context
can be based on provided logic rules. Dey et al. [2] cre-
ated a context toolkit that provides this functionality to en-
able context-aware applications. Our work is separate from
context infrastructures. The Gaia Learning Service learns
to invoke changes in the environment, whereas context in-
frastructures focus on providing more complex contextual
information as application input for programmers to use. In

our work, we use a direct mapping between low-level con-
textual data and features for learning, enabling users rather
than programmers to have control over their environments
responses to changes in context.

5.3. Activity Recognition

Much of the machine learning research in pervasive
computing environments is focused on activity recognition
[13, 8, 3]. A high-level description of the room’s usage
or the activities of users is desired as a function of all the
contextual information provided by sensors within the envi-
ronment. Unlike the Gaia Learning System, a major limita-
tion of activity recognition is obtaining training data labeled
with user-supplied activity labels [7]. Though clustering ap-
proaches and background knowledge can possibly reduce or
eliminate the need for exterior supervision in some domains
[11, 14], generally users or observers must supply these la-
bels in a manner that is not a natural part of their usage of
the environment. While knowing the high-level classifica-
tion of the room’s usage can be very useful for automating
the environment, the premise of our research is that we can
learn to automate the environment based on what is observ-
able without external labeling.

6. Conclusions and Future Directions

All the decisions a user makes when interacting with the
world around him or her is some function of the global en-
vironment information (including the neuron activity within
the user’s brain). When the function can be approximated
by the observable environment information, it becomes
possible to use machine learning techniques to learn the
approximation and later use it to automate the environ-
ment. Pervasive computing research provides mechanisms
for easily integrating many different sensors and interaction
devices into the observable environment.

In this paper, we used our pervasive computing envi-
ronment, Gaia, to develop a general state representation
for the environment that accepts many sources of contex-
tual information and supports abstract features using enti-
ties and entity referencing. We extended existing concepts
from within the pervasive computing infrastructure to pro-
vide contextual information from many sources within the
environment. We employed the SNoW Machine Learning
architecture to learn approximations for each contextual at-
tributes as a function of all other contextual attributes in
our environment representation. We used these approxima-
tions to create predictions for different contextual charac-
teristics under the current state of the environment, and au-
tomated the environment based on the predictions. Finally,
we demonstrated how our Learning Service can be used in
two experiments motivated from our original scenario.



Our Learning Service provides a more practical, more
natural alternative to the existing approaches for specifying
automation policies. Unlike manual rule specification tools,
we employ machine learning techniques that scale better
for policies that are complicated combinations of contex-
tual information and for environments with an abundance of
contextual information. Unlike some of the other machine
learning approaches, we use the user’s natural interactions
with the pervasive computing environment rather than re-
quiring external labeling to learn automation policies, and
our system is designed to allow the entire observable con-
text of the environment and all the available actions to be
used in automation policies. Additionally, our system al-
lows the user to add additional features and actions encapsu-
lated within developed application to the automation system
without requiring an expert. Our approach enables users to
more easily automate the behaviors of pervasive computing
environments to reflect personal preferences, allowing more
of the utility that pervasive computing research promises to
be realized by the end-user. While our results are already
very promising, we expect the comparative benefits of this
approach to grow as the contextual awareness of pervasive
computing environments continues to increase.

6.1. Online Learning and Causal Models

One area of our work that we are planning to address is
our use of batch-based learning, where a number of training
examples are collected and then given to a machine learn-
ing system to learn from. Batch-based learning imposes an
unnatural mode of user interaction with the pervasive com-
puting environment. More desirable for an interactive en-
vironment is to use online learning, where a system learns
continually as the user changes the environment in response
to contextual changes, and also responds to the automated
decisions of agents. However, at the system level the Gaia
infrastructure does not distinguish between the actions in-
voked by users and those invoked automatically by agents.
Without being able to tell the difference between these two
types of actions, the learning system would strongly rein-
force whatever behaviors it learned earlier that are driving
the decisions of agents.

Additionally, without knowing what effects an action has
on the context of the environment, learning algorithms will
discover the correlations between the action and its effects,
which is useless for prediction. One of the ways that other
learning systems avoid this problem is by selecting controls
and sensors so that the effects of controls are not directly
detected, or, when they are, they are specifically ignored.
This solution is not practical in enabling the user to have
maximal control over the environment without requiring an
expert to perform feature selection for every controllable
action. Another way other learning systems avoid the prob-

lem is by only learning when a user overrides control, but
this approach ignores that not taking control can be usefully
interpreted as implicit approval.

Support could be added within the Gaia infrastructure to
track the causation of actions and differentiate those caused
by agents from those caused by users. Additionally, causal
models of actions and their effects on contextual informa-
tion could be automatically created and used to distinguish
between changes in the environment’s contextual informa-
tion that are effects of some action and changes that might
indicate a triggering situation for that action. The machine
learning system could then be modified to only learn user-
imposed changes in the environment as a function of the
environment’s context that is not an effect of the action.
Additionally, introducing a means for overriding the agent-
enforced preferences would temporarily allow user deci-
sions to stand without being automatically changed. This
would also make room for learning individual automation
preferences for each user when there are many users in a
single environment.
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