
System Support for Rapid Ubiquitous Computing

Application Development and Evaluation

Manuel Roman
1
, Jalal Al-Muhtadi

2*, Brian Ziebart
2*

Roy Campbell
2*

, M. Dennis Mickunas
2*

1DoCoMo Labs, USA
roman@docomolabs-usa.com

2Department of Computer Science, University of Illinois at Urbana-Champaign
{almuhtad, bziebart, rhc, mickunas}@uiuc.edu

Abstract. Ubiquitous computing defines a new domain in which large collections of het-

erogeneous devices are available to support the execution of applications. These applica-

tions become dynamic entities with multiple input and output alternatives. As a result, it

is difficult to predict in advance the most appropriate application configuration. System

support infrastructures for ubiquitous computing provide generic functionality to simplify

the development of applications. In this paper, we present our experience in building a
ubiquitous computing infrastructure. We describe lessons learnt, and explain the different

problems and challenges we found during the development and deployment of the infra-

structure.

1 Introduction

The evolution of Ubiquitous Computing can be compared at some level with the

one of Operating Systems. Initially, before Operating Systems were developed, appli-

cations had to be handcrafted to different machines. Developers were responsible for

implementing every single functional aspect, from device drivers to persistent storage

access. As a result, applications were hard to port to different machines, and every

application had to be built from scratch. Operating Systems provide basic services

that are independent of the hardware details of every machine. Applications are not

built for specific machines. They are built using the Operating Systems’ system sup-

port and therefore can be easily ported. Furthermore, application developers leverage

low-level functionality such as memory management, and process and thread man-

agement, which are required by all applications.

Ubiquitous computing has been following a similar path. Initially, most applica-

tions were handcrafted to specific environments and requirements. However, as the

number of applications increases and researchers gain more experience in the field, a

number of system support infrastructures have emerged. These infrastructures factor

out common functional requirements and simplify the development of dynamic appli-

cations.

In this paper, we describe our experience in building a system infrastructure to

support the development of applications for ubiquitous computing environments. We

describe the different stages we went through during the development of the infra-

structure, lessons learnt, and future directions. Furthermore, as a result of interacting

* These authors are supported by a grant from the National Science Foundation, NSF CCR 0086094 ITR.

with a ubiquitous computing environment on a regular basis, we identified the rele-

vance of “application suites.”

Section two describes the different stages our infrastructure went through. It pro-

vides information about the problems we found, and how we provided support for

these problems. Section three describes applications suites, and how our infrastructure

enables their rapid development and testing. Section three also presents an example of

an application suite we built to support a seminar class.

2 Experience in Building System Support for Ubiquitous

Computing Environments

Our current system support infrastructure is the result of three years of work. The

goal of this – still ongoing – effort is to provide a software infrastructure to manage

physically bounded ubiquitous computing environments, and to support the develop-

ment of applications customized to these environments. During the three years, the

infrastructure has evolved driven by a number of successful and wrong decisions, as

well as by constant interaction with an experimental ubiquitous computing environ-

ment. We have fully implemented the system, which has given us valuable hands-on

experience. Furthermore, it has allowed us to validate our design and assumptions.

We have played three simultaneous roles. 1) Developers of the software infrastructure

and applications. 2) Users of the ubiquitous computing environment. 3) Critical

evaluators of the produced system and applications.

Interaction with the ubiquitous computing environment includes using devices and

applications. Examples of devices are desktops, laptops, PDAs, smart watches, and

touch screens; examples of applications are music and video player, slide show pre-

senter, location, PDF viewer, ticker tape, HTML browser, speech engine, meeting and

seminar attendance, user identification and authentication based on fingerprint identi-

fication devices, iris scanners, and RF badges. This constant interaction has provided

the motivation to make the system more usable and has been a key contribution to the

current state of the infrastructure.

The next subsections summarize the stages of our research. We start at the time we

received the hardware and the ubiquitous computing lab was just a showroom for

electronic devices. We conclude at the time where the lab became a useful environ-

ment with fifteen running applications and an observable sense of coordination.

2.1 Chaos and unmanageability: Device-centrism

The basic layout of the experimental lab consists of four 51-inch touch screen

plasma displays, fifteen Windows based desktop computers, an audio system, two

touch screens, four wireless PDAs (Bluetooth and WiFi), a video router and a video

switch, a video wall, two fingerprint detectors, an iris scanner, X10 appliance and

light controllers, and RF badges and detection base stations.

Before using the infrastructure, the lack of device orchestration made the environ-

ment difficult to use and maintain. Using one display and one device at a time was

feasible. However, using more than one device simultaneously was difficult because

user sessions were associated to the individual devices. There was no concept of a

unified environment where applications could be spread and migrated across the dif-

ferent devices arbitrarily. Using the lab became a tedious task. There was no logical

connection among the different devices, and therefore, having a large collection of

them did not make the room more useful, or in fact, useful at all. Device-centrism was

a serious obstacle that hindered the usability of the environment. This state was the

opposite of what ubiquitous computing is intended to be. It was far from the vision of

a globally programmable environment.

2.2 Low-Level System Support

The first prototype of the system support infrastructure brought some “low-level sys-

tem order” into the aforementioned chaos. It allowed us to address the ubiquitous

computing environment as a single execution environment, consisting of a collection

of orchestrated resources.

The system support infrastructure provides services to detect, aggregate, and man-

age resources that belong to the same logical computing environment. We use the

boundary of the physical space to define the computing environment. Resources pre-

sent in a physical space belong to the same logical computing environment. While it

is possible to use other properties to define the boundary of the environment, we leave

it as future work. The system infrastructure takes into account the specific properties

of a ubiquitous computing environment, including hardware and software heterogene-

ity, mobile devices, and resources added and removed dynamically to and from the

environment. We address the ubiquitous computing environment as a collection of

distributed components or agents. We list the supporting services next:

• Distributed component management.

• Distributed-component presence detection based on soft-state.

• Distributed-Component database with information about distributed components

present in the ubiquitous computing environment.

• Notification service to disseminate information about the state of the ubiquitous

computing environment. This service is based on events and event channels that

decouple the information senders from the information receivers.

• Data management support that is capable of dynamically aggregating and removing

data stored in multiple devices while providing a unified file hierarchy for the ubiq-

uitous computing environment. It uses context to customize the global data view,

hiding irrelevant data automatically. Furthermore, it supports data transcoding to

overcome device heterogeneity issues.

• Lightweight directory service with references to all the previous services. This

service is the entry point to the functionality provided by the ubiquitous computing

environment.

• Authentication service that supports different mechanisms and assigns different

trust levels to entities based on the strength of the authentication method used.

The infrastructure provides facilities for system and application developers, and it

effectively addresses the device-centrism problem. The functionality it provides al-

lows managing components present in the space, regardless of their hosting device.

The ubiquitous computing environment – not the individual devices – becomes the

execution domain. There are several research projects that have also identified the

importance of providing system support to manage and program ubiquitous comput-

ing environments [1-3].

2.3 Scripting and System Bootstrap

The system support infrastructure allowed us to develop services and applications

that exploited the resources contained in the ubiquitous computing environment.

However, we were still facing two problems: lack of support for component composi-

tion and complex system initialization.

The system infrastructure uses a middleware layer to ensure programming lan-

guage and OS independence. We developed several C++ and Java components using

the distributed component model. However, we had to use an additional C++ or Java

component to encode the component composition rules. It soon became clear that this

approach required too much time and effort, and therefore, we decided to add script-

ing capabilities to “glue” distributed components easily. We developed a library using

the scripting language to simplify script developers the access to the functionality

provided by the system support infrastructure. As a result, rapid prototyping became a

common practice.

Initializing the system became a time-consuming and error prone task that required

manually starting the basic services in one or more machines. Before starting the

process, we had to ensure that previous system services were not running. Otherwise,

resources in the ubiquitous environment were using different instances of the services,

therefore leading to wrong behavior. Because we were using multiple computers, we

had to check for running services in all of them. In our case, this required physically

interacting with up to fifteen keyboards and mice, or using a switch device to share a

keyboard and a mouse among all the devices (but still required manually switching to

the appropriate machine). After ensuring that all previous services were not running,

we had to manually start the different services. This approach was physical-space

dependent, required too much low-level system knowledge, and obviously did not

scale. It took us an average of twenty minutes to initialize the system, and up to one

hour to initialize user services and applications we used to demo the environment.

Furthermore, in case or errors we had to repeat the same process, therefore leading to

hours of frustration.

Using the scripting capabilities we implemented a distributed bootstrap mechanism

that automated the initialization process. We defined configuration files with informa-

tion about the required system services, initial parameters, and tentative hosts. The

bootstrap mechanism implements the following functionality: automatically starts the

services in the specified hosts, skips instantiation of already running services (reuses

them), and registers the services in the directory service. The bootstrap process re-

duced the initialization time to a couple of minutes. Furthermore, it made the system

portable. Every ubiquitous computing environment has its own bootstrap configura-

tion file.

2.4 Application Development and Management Support

Traditional applications are not appropriate for ubiquitous computing environ-

ments. After building a number of applications using the low-level API, we identified

six patterns that were required for all applications [4]: multi-device utilization, user-

centrism, run-time adaptation, mobility, context-sensitivity, and ubiquitous computing

environment independence. As a result, we provided application development and

management support customized to ubiquitous computing environments that auto-

mated the aforementioned patterns.

The new application support allowed us to build a total of 13 different applications

in six months. Students and researchers who were not involved in the design of the

supporting infrastructure built five of these applications. The new application support

functionality allowed developers to concentrate on the specifics of the application

functionality. All issues related to ubiquitous computing were provided by default.

Besides simplifying application development, we eliminated the possibility of having

multiple mechanisms for mobility, adaptation, and partitioning. This would have been

the case, had every developer been responsible for providing such functionality.

As the number of applications increased, we detected the need to combine the be-

havior of different applications. We built a ticker tape that uses multiple displays

synchronously, and found that it would be useful to use it to display information gen-

erated by other applications. For example, we were interested in displaying the name

of the song currently playing, or the news headlines. We built a mechanism that lev-

eraged the scripting language to simplify the creation of composite applications. The

requirements for this mechanism were: applications must not require changes to inter-

operate, any two pair of applications can be combined, and application interaction

rules must support a wide range of expressions [5]. The resulting mechanism met all

the requirements and used scripts to encode the interaction rules. This mechanism has

been used heavily and has allowed us to build sophisticated composite applications.

2.5 End-user support

Our system support infrastructure enables the construction of applications custom-

ized to ubiquitous computing environments. However, the support provided is useful

for application developers, not for end users. The inter-application interaction mecha-

nism, for example, is useful to enable application composition. However, it requires

knowledge of application event formats and application component interfaces. Based

on our experience, and as the number of applications built increased, it became diffi-

cult to define inter-application interaction rules. We had an increasing number of

application developers, and therefore, we were forced to go over the applications’

source code to learn about the events they generated and their interfaces. As a result,

we defined a new supporting mechanism and a tool to enable end users to compose

applications without prior knowledge of these applications. This mechanism requires

application developers to provide information (stored in XML files and scripts) about

their applications that the tool uses to automate the process of composing applica-

tions. End-users interact with this tool, which guides them through the process. This is

part of our ongoing research.

3 Evaluation: Supporting a Seminar Scenario

As shown earlier, our system provides the necessary services to orchestrate the

hundreds of heterogonous devices available in a ubiquitous computing environment,

and abstract the environment with all of its contents as a single homogenous pro-

grammable entity. To allow ubiquitous computing environments to support different

activities and usage scenarios, we define the idea of an “application suite.” An appli-

cation suite is a collection of individual applications that are coordinated in a well-

defined manner to support a specific scenario (e.g., a seminar, a meeting, and a brain-

storming session). In most cases, the individual applications are loosely coupled. This

allows applications to be reused for different suites to support diverse activities.

In this section we look into issues pertaining to the development of ubiquitous

computing application suites. We also discuss the “seminar application suite” we

built. This application suite demonstrates the flexibility of our ubiquitous computing

infrastructure and serves to evaluate the system support for rapid ubiquitous comput-

ing application development.

3.1 Rapid Development Cycle

Our system provides a complete sup-

porting infrastructure for rapid develop-

ment of ubiquitous computing applica-

tions, including mechanisms for control-

ling the inter-application behavior. As a

result, we were able to identify an applica-

tion suite rapid prototype development

cycle. This development cycle is illustrated

in Figure 1.

Ubiquitous computing environments are

extremely dynamic systems with ever

changing requirements and constantly

refined specifications. Therefore, a prototype-based development cycle is most appro-

priate to cope with new demands. The first stage in our development cycle identifies

the initial set of functionality and behavior needed by the scenario at hand. In stage 2,

the higher-level services of our system allow the rapid development of the tools that

help in achieving the functionality sought. This process may include writing new

applications, or composing existing applications in special ways. In stage 3, the new

tools are deployed in the test-bed environment. The usability of the tools is evaluated

based on users’ reactions and use. In stage 4, requirements and specifications are

refined based on the evaluation step and an enhanced prototype is developed by going

back to stage 2.

3.2 Seminar Format

The seminar has a total length of fifty minutes, and it is based on the discussion of

two papers related to the topic of ubiquitous computing. Every week, a student

chooses two papers and sends them to the seminar organizer. The organizer posts the

papers on the web and sends an e-mail to all registered students. Students are then

responsible for reading the papers and writing a list of paper’s pros and cons. During

the seminar, the student who chose the papers has five minutes to give an overall

overview of the first paper. After the overview, we criticize the paper and go through

a list of pros and cons provided by the students. This discussion goes for twenty min-

utes. The same process is repeated for the second paper. Students are only allowed to

miss the class three times to get the credit. Therefore the seminar organizer must keep

an attendance list for the duration of the seminar. Summarizing, the requirements for

the seminar are as follows. 1. Keep attendance information. 2. A student chooses two

papers every week and writes a summary for each. 3. Post the papers and notify atten-

dees. 4. Read the papers and write a list of pros and cons for each paper. 5. Discuss

the papers.

3.3 Creating a Seminar Application Suite

To meet the requirements for the seminar described above, we created the “seminar

application suite”, which consists of five applications, and a number of application

interaction rules. Table 1 shows the approximate amount of time it took us to develop

the applications in the suite.

 The user identification application identifies

users through a variety of methods (fingerprint

scanners, active badges, smart watches, traditional

login/password, and iris scanners). Supporting

different identification methods allows the users to

choose one or more convenient methods for

identification. For instance, some users found

biometric-based identification convenient and less

obtrusive. Others however, were concerned about

privacy issues and preferred to use more

conventional methods, like username / password or

active badges. In cases where users forget their active badge, they can resort to an

alternative method. Minimal coding was needed for this service because it was based

on the low-level services provided in our system, namely the notification service and

the authentication service. A successful identification results in a “user entered space”

notification.

The Attendance Application records the presence of people in the room under a

certain context (location, time, activity). This application listens to “user entered”

notifications that occur after successful identifications. This application was devel-

oped using the application support in the underlying infrastructure. By utilizing noti-

fications, the attendance recording event is independent of the specific identification

device or method used.

The ubiquitous computing environment was expected to give feedback when a user

is identified. To do this, we created a composite application, where notifications from

the authentication service are captured by the ticket tape application and a relevant

message is displayed across the public displays in the room that included the picture

of the person entering or leaving the space. The automated identification process

proved to be useful in introducing new users to the rest of the class.

During the summary or discussion of the papers, users reference text or figures.

The PDF Viewer is an application that utilizes our infrastructure to display multiple

PDF readers simultaneously on different devices while maintaining them synchro-

nized. All the outputs are controlled from one or more “controllers.” We built the

application wrapping Adobe Acrobat SDK with our application support.

As noted, the seminar involves some setup overhead, including the downloading of

PDF files, firing up the PDF application with the correct files, configuring the room

by running the necessary applications, scripts, and inter-application interaction, etc. A

ubiquitous computing environment should provide adequate support to automate these

tasks. The iCalendar application is used to schedule tasks, set context information,

and configure the space according to the activity at hand. We used the iCalendar for

all the setup needed to run the seminar scenario, this included running the appropriate

applications, scripts, and firing up the correct PDF files automatically at the correct

time.

3.3.1. Version 2

The first version of the seminar application suite had several problems that were

only apparent after testing it with new users. Displaying PDF documents on the large,

wall mounted plasma displays was not very helpful, particularly, when referencing

text within the document. This is because the text in general was too small and hard to

read off the wall displays. We were able to address this shortcoming in version 2 by

utilizing the infrastructure’s support for dynamic addition and removal of personal

devices to/from the space. This allowed users to bring along their laptops or tablet

PCs, connect them to the space, and interact with the applications and documents

running within the space. The personal devices also acted as an unobtrusive method

for identifying users through stored certificates.

3.3.2. Version 3

After heavier use of the seminar application suite, it was apparent that the feedback

using the Ticker Tape application was not effective, as it required users to know

which display to look at for notification. It was difficult to tell if the identification

process has failed (badge failed to work, or finger is misplaced on the fingerprint

scanner) this is because users are not aware which display to look at for error mes-

sages etc. Further, when a large number of users enter the space at the same time, too

many messages are displayed on the ticker tape in sequential order, causing an infor-

mation overload on the ticket tape. In version 3 of the Seminar application suite we

were able to rapidly develop a speech engine application. This application incorpo-

rates a real-time text-to-speech engine. Upon receiving selected notifications, the

speech engine provides vocal feedback. By utilizing inter-application interaction and

the context service, it was possible to have personalized welcome messages for users.

This provided an overall better feedback experience, because it was more natural and

did not require users to look at specific displays or consoles.

4 Conclusion

Our experience building a ubiquitous computing environment, and interacting with its ser-
vices on a regular basis, has proven highly valuable to understand the basic requirements to
support this distributed computing model. We have identified five design guidelines we con-
sider essential to support ubiquitous computing environments: low-level system support, boot-
strapping, scripting, application development and management support, and end-user support.
We presented our Active Seminar application suite, which demonstrated the flexibility and
generality of our infrastructure. Additionally, the Active Seminar application suites demon-
strated the rapid prototyping and development capabilities that the infrastructure supports.
Overall, the user experience was very positive and the space usability was intuitive.

5 References

[1] B. Johanson, A. Fox, and T. Winograd, "Experiences with Ubiquitous Computing Rooms,"

IEEE Pervasive Computing Magazine, vol. 1, pp. 67-74, 2002.

[2] P. Tandler, "Software Infrastructure for Ubiquitous Computing Environments: Supporting

Synchronous Collaboration with Heterogeneous Devices," presented at Ubicomp 2001: Ubiqui-
tous Computing, Atlanta, Georgia, 2001.

[3] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel, "BASE - A Micro-broker-based Middle-

ware for Pervasive Computing," presented at IEEE International Conference on Pervasive Com-
puting and Communication (PerCom), Dallas-Fort Worth, Texas, USA, 2003.

[4] M. Roman and R. H. Campbell, "Providing Middleware Support for Active Space Applica-

tions," presented at ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro,

Brazil, 2003.

[5] M. Roman, B. Ziebart, and R. H. Campbell, "Dynamic Application Composition: Customizing
the Behavior of an Active Space," presented at PerCom2003, Dallas-Fort Worth, Texas, USA,

2003.

