
Dynamic Application Composition: Customizing the Behavior
of an Active Space

Manuel Román, Brian Ziebart, and Roy H. Campbell
Computer Science Department

University of Illinois at Urbana-Champaign
{mroman1, bziebart, rhc}@uiuc.edu

Abstract

The proliferation of wireless networks, hand-held
PCs, touch panels, large flat displays, sensors, and
embedded devices is transforming traditional habitats
and living spaces into ubiquitous computing environments,
or active spaces. We envision a middleware software
infrastructure that abstracts the heterogeneity of these
environments and transforms them into programmable
environments. This middleware infrastructure provides
support to manage the resources contained in an active
space (low-level functionality), support to develop
applications (application-level functionality), and support
to define interaction rules among applications (active
space-level functionality).

In this paper, we present a mechanism called
“application bridge” that implements active space-level
functionality. Application bridges provide a simple, yet
effective, mechanism to define dynamic application
composition interaction rules that confer the active space
a specific behavior based on a number of parameters,
including context, application status, and user actions.

1. Introduction

Future ubiquitous computing will surround users with
a comfortable and convenient information environment
that merges physical and computational infrastructures
into an integrated habitat. Context-awareness [1-4] should
adapt the habitat to the user preferences, tasks, group
activities, and the nature of the physical space. We term
this dynamic and computational rich habitat an active
space. Within the space, users interact with flexible
mobile applications, define the function of the habitat,
and customize its behavior according to different
properties (e.g., personal preferences and current context).
An active space is an integrated programmable
environment that contains heterogeneous network

connected devices, services, and applications coordinated
by a context-aware distributed software infrastructure,
and populated by a number of people performing different
activities.

Active spaces host the execution of different

applications. We define an application as a collection of
services that cooperate to achieve a common goal (e.g.,
play audio, control the lights, and present a slide show).
For example, an active meeting room has applications to
control the lights and the audio, present information in a
ticker tape, control a slideshow, and track the number,
identity and position of the people present in the room.
According to our experience with a prototype active
meeting room (Figure 1), a useful property of active
spaces is the ability to orchestrate a number of individual
applications to confer the active space a specific behavior.
We identify three functional levels we consider essential
to abstract a physical space and the resources it contains
as a single homogeneous programmable environment:

• Low-level, which provides basic functionality
including component management and resource
discovery and is comparable to the functionality
provided by traditional operating systems.

.

Figure 1. Active Space Prototype

• Application-level, providing frameworks and
tools to build applications.

• Active space behavior-level, which includes
mechanisms to orchestrate the interaction among
applications (dynamic application composition)
and therefore provides functionality to program
the behavior of the active space.

Existing research projects [5] [6] [7] [8] address the

low-level and application-level functional issues but do
not provide explicit support for active space behavior
definition. We present in this paper an infrastructure to
program the behavior of active spaces. The infrastructure
simplifies the creation of customizable and dynamically-
adaptable inter-application interaction rules that define
how changes in an application affect other applications.
We currently use the infrastructure to define interaction
rules among six applications (i.e., speech engine, slide
show manager, light controller, audio player, ticker tape,
and location) running in our active space prototype. The
results are encouraging and we have experienced a
qualitative improvement in the global usability of the
active space. Furthermore, it is possible now to perceive
the active space as an interactive environment with a
well-defined behavior instead of an execution
environment consisting of disconnected applications.

The rest of the paper is organized as follows: section
2 describes the three functional levels of an active space,
including low-level (section 2.1), application-level
(section 2.2), and behavior-level (section 2.3); section 3
presents a detailed example of a ticker tape and a location
application that use the bridging mechanism to interact;
section 4 describes how to develop and use bridges;
section 5 presents related work and we conclude the paper
and describe our future work in section 6.

2. Active Space Functionality Levels

We have developed a meta-operating system called
Gaia OS [9] to manage active spaces. Gaia is a distributed
middleware infrastructure we refer to as a meta-operating
system[10] that coordinates software entities and
heterogeneous networked devices contained in a physical
space. Gaia exports services to query and utilize existing
resources, to access and use current context, and provides
a framework to develop active space-aware applications.
Figure 2 illustrates the architecture of Gaia OS.

 Figure 2. Gaia OS Architecture.

2.1 Active Space Low-Level Functionality

The Gaia OS Kernel provides services for location,
context, events, and repositories with information about
the active space. It is built as a distributed object system
that extends the notion of an execution environment
associated to devices to the space level. The kernel also
provides functionality to manage remote components (e.g.,
create, destroy, load, unload, and transfer). Gaia OS
abstracts the physical space and the resources it contains
as a programmable execution environment.

The Gaia OS Kernel implements the active space
low-level functionality and it is comparable to the
functionality provided by traditional operating systems
(e.g., process management, file system, and inter-process
communication).

2.2 Active Space Application-Level Functionality

Gaia applications use a set of component building
blocks, organized as the Gaia Application Framework [11]
to support applications that execute within an active space.
The framework provides mobility, adaptation, context-
awareness, and dynamic binding. The functionality
permits commercial off the shelf, as well as new
applications, to run in the active space. The application
framework models applications as a collection of
distributed components, and reuses some concepts from
the Model-View-Controller. The framework exploits
resources present in the application environment, provides
functionality to alter the application composition
dynamically (i.e., number, type, and location of the
application components, as well as data format they
manipulate), is context-sensitive, implements a
specialization mechanism that supports the creation of
portable applications, and provides functionality to
manage the application lifecycle (i.e. instantiation,
adaptation, suspension and resumption, fault-tolerance,
termination, and mobility).

The application framework infrastructure is
composed of five components (Figure 3): model,
presentation, controller, input sensor, and coordinator.

Component Management Core

Space
Repository
Service

 Active Space Applications

Application Framework

Event
Manager
Service

Context
File System

Context
Service

Presence
Service

G
aia K

ernel

The model, presentation, controller, and input sensor are
the application base-level building blocks and are strictly
related to the application domain functionality.

The model implements the logic of the application
and exports an interface to access and manage the
application's state. The model maintains a list of
registered listeners and it is responsible for notifying them
about changes in the application's state, therefore keeping
them synchronized.

The presentation transforms the application's state
into a perceivable representation, such as a graphical or
audible representation, a temperature or lighting variation,
or in general, any external representation that affects the
user environment and can be perceived by any of the
human senses. Presentations can be dynamically attached
and detached to and from the model, and are registered as
listeners. Presentations are responsible for contacting the
model and retrieving the new state upon receiving a
notification.

The input sensor is the component responsible for
changing the state of the application. Input sensors can be
interactive (e.g., GUI and speech-recognition) or non-
interactive (e.g., context synthesizers), and they
interoperate with the model’s interface to alter the state of
the application. Input sensors receive notifications from
the model so they can synchronize their internal state with
the rest of the application.

The controller mediates the interaction between the
input sensor and the model. It translates requests from the
input sensor into method calls that match the model’s
interface, therefore maximizing input sensor reusability.
The same input sensor can be used with different
applications by changing the mappings stored in the
controller dynamically (Figure 4).

The coordinator encapsulates information about the
application components' composition (i.e., application
meta-level), provides an interface to register and
unregister presentations and input sensors, and allows
manipulating the bindings of the application components.
The coordinator provides functionality to retrieve run-
time information about the application's components
composition. The functionality provided by the

coordinator offers fine grained control over the
composition of the application base-level components.

2.3 Active Space Behavior-Level Functionality

Applications built using the application-level
functionality are disconnected execution units. The Gaia
OS application framework implements an additional
mechanism called application bridge to support the active
space behavior-level functionality. This functionality
allows defining rules that specify how changes in an
application affect the execution of other applications and
therefore make it possible to program the behavior of the
active space (i.e. coordinate all applications hosted by the
active space).

The active space behavior-level functionality does
not require any changes in the applications involved in the
interaction, it is independent of the functionality
implemented by the connected applications, and allows
defining and modifying the interaction rules at run-time.

The application bridge (Figure 5) is an input sensor
that listens for notifications from the source application
and introduces changes in the target application by
invoking methods on the model via the controller.

Mouse

B A
Software Inp. Sensor
 (Two Push Buttons)

Badge Detector
Context Input Sensor

On LeftMouseButton
On PushButton A
On PushButton B
On Entered (Jon)

Zoom In
Next Picture
Previous Picture
Start Slide Show

Controller Model

Figure 4. Example of a Controller mapping
events from a Mouse Input Sensor, a Context
Input Sensor, and a Software Input Sensor into
method requests to the model.

Prese

Model

Coordinator

Application
Base Level

Application
Meta-Level

Input

CoCoController

PresePresePresentation Input Input Sensor

 Figure 3. Gaia Application

Coordinator

Model

Coordinator

Controller

BRIDGE

Notifications

Model

Presentation

Notifications

Source Application Target Application

 Figure 5. Application Bridge (in order to simplify
the diagram we only show the components
involved in the interaction).

The bridge implements functionality to execute user-
defined rules that affect the state of the target
application’s model when it receives a notification from
the source application. The mechanism to trigger the
execution of the user-defined rules is common to all
bridges while the rules defining what actions to take are
bridge-dependent and are implemented as scripts. The
script for the bridge receives a reference to the source
application’s model, a reference to the target application’s
controller, and the source application notification’s hint
(notification sent by the source application’s model to
inform about changes in its state). Developers write a
script (current implementation is based on LuaORB[12])
using these parameters to define the interaction rules. The
bridge executes the script each time it receives a
notification from the source application model. Figure 6
illustrates the interface of the script.

Figure 6. Application Bridge Script Interface.

3. Using a Ticker Tape to Display People
Location

In this section, we describe a ticker tape application
that uses several synchronized displays to present
information, and a location application that provides
people location information (room granularity). Next, we
explain how we use the ticker tape application to display
people location information using the active space
behavior-level functionality.

3.1 Ticker Tape Application

This application provides support for displaying
scrolling items sequentially across multiple display
devices (Figure 7). The ticker tape serves as an
input/output interaction mechanism within an active space.
Unlike traditional stock quoting ticker tapes, our ticker
tape displays multimedia items, including graphics, and
allows assigning specific actions to the scrolling items.

Items displayed in the ticker tape can be selected, and
they trigger user defined actions, including launching
additional applications, or modifying the state of existing
applications.

One main characteristic of the ticker tape is the
synchronized and dynamic utilization of multiple display
devices. Applications in an active space are not confined
to one display device; therefore, a ticker tape item (e.g.,
text and pictures) displayed in an active space can be
rendered on multiple devices. When a ticker tape item
reaches the edge of one display, it is immediately
displayed in the next display. In addition, components in
an active space are often mobile, so the ticker tape must
be able to respond to devices entering, exiting, and
changing location within the active space by attaching,
detaching, and re-ordering ticker tape items.

The Ticker Tape is composed of four components:
Model, Ticker Tape Display Input Sensor (TTDIS), and
Coordinator. The Ticker Tape implements the first two
components and reuses the default Coordinator
implementation provided by the application framework.

According to the application framework description
discussed in section 2.2, the ticker tape application
component that displays the scrolling items (TTDIS)
should be a presentation (it displays the scrolling items).
However, the ticker tape application allows assigning
actions to the items, and therefore we model the TTDIS as
an input sensor (input sensors receive notifications and
therefore can implement presentation functionality).

 The Ticker Tape Model orchestrates the
synchronized handling of scrolling items across the
different displays used by the application. The model
associates an index to each scrolling item, and stores an
ordered list of TTDIS ids (based on the scrolling item

function bridgeRules (
targetController, sourceModel, sourceEvent)
 <Interaction Rules>

end

Item 1

Display 1
(TTDIS1)

Figure 7. Ticker Tape Item synchronized
across three displays.

This is an

Display 3
(TTDIS3)

Display 2
(TTDIS2)

example of a ticker tape item

display order), so it can dispatch notifications to the
appropriate TTDIS when an item needs to be displayed.
For example, based on the example depicted in Figure 7,
the model stores an id for the scrolling item (Item 1), and
an ordered list of TTDIS in the following order: TTDIS 3,
TTDIS 2, and TTDIS 1 (the item scrolls from right to left).
The model also implements functionality for adding,
updating, and removing scrolling items. A scrolling item
is stored in the model as a set of attributes, including size,
color, font and content of text, the path location and size
of pictures, and other attributes to determine how items
are rendered and displayed by the display components.

The Ticker Tape Display Input Sensor (TTDIS) is
responsible for displaying scrolling items in a display
when the model sends the appropriate notification, and
notifying the model when its scrolling item reaches the
edge of the display so that the next TTDIS can be notified
to display the item. In addition, the TTDIS is responsible
for detecting and notifying the model when users select a
certain scrolling item so that the model can execute any
functionality associated with that item. Upon receiving a
notification from the model to display a scrolling item, a
TTDIS checks if the notification is intended for it. If so,
it requests the set of attributes associated with the item
from the model, and renders and displays the scrolling
item.

Figure 9 illustrates all the ticker tape application
components and explains all the steps required to scroll
items.

3.2 Location Application

The location application provides functionality to
track people inside our computer science building. The
application relies on sensor data provided by the active
space low-level functionality (Gaia Kernel) to detect the
position of the users. The current implementation of the
Gaia location application provides information at room
granularity. That is, we can detect whether or not a user is
present in a room, but not where in the room the user is
located.

The location application implements three
components, Location Model, Location Presentation, and
Location Input Sensor, and reuses the default coordinator
(Figure 8).

The Location Model provides functionality to store
and update information about users and their locations
and provides an interface to query about user location.
The model stores information about the user name, the
name of the space where he or she is located, and the date
and time the user entered and left the space.

The Location Presentation is a graphical presentation
that displays information about user location. Users can
select a user name and get updated information about his

or her position, or select a space and learn about the
people located in it.

The Location Input Sensor leverages the low-level
functionality (Gaia OS Kernel) to learn about users
entering and leaving the space. When a user enters or
leaves, the location input sensor updates the model’s
states via the controller. There is one instance of the input
sensor for each active space.

Figure 8 illustrates the composition of the location
application running in our building. We define three
active spaces: domain, 2401, and 3231. These three active
spaces are hierarchically organized as a tree, with the
domain at the root and 2401 and 3231 as leaves.s The
coordinator, model, and controller of the application run
in the domain active space, and 2401 and 3231 host the
execution of the location presentation and location input
sensor. When a person enters 2401 or 3231, the input
sensor sends a notification to the model running in the
domain via the controller (steps A and B in Figure 8),
which notifies the presentations (steps C and D). Tracking
people in additional active spaces in the building is simple.
It requires instantiating an input sensor and attaching it to
the model running in the domain active space.

Domain
Active
Space
(DCL)

2401 3231

Location
Model

Location
Input Sensor

Location
Input Sensor

Controller

Location
Presentation

Location
Presentation

A

B C D

3.3 Using the Ticker Tape to Display Location
Information

In this section we explain how we use the ticker tape
to display user location information. Figure 9 illustrates
the ticker tape application and the location application
connected by a bridge. The script with the interaction
rules is depicted in Figure 10. We describe the
functionality based on an example consisting of a user
(Andrew) entering an active space (2401).

Figure 8. DCL Active Space hierarchy (left) and
corresponding location application instance
(right).

When the user enters the active space, the input
sensor of the location application calls a method on the
model (via the controller) to report the new user (Andrew)
entering active space 2401 (A). The location model
updates its data structures to reflect the new location
report and notifies all of its listeners with the message
“andrew has entered 2401,” (B). The location-to-ticker
tape bridge parses the username, “Andrew” from the
message and calls a method to create a new scroll item in
the tickertape with text (“Andrew has entered 2401”) and
a picture of the detected person (C). The controller
receives the message, checks for a mapping, and since no
mapping has been defined, it simply forwards the request
to the Ticker Tape Model (D). The ticker tape model
stores all the fields for the scroll item and notifies all
listeners that a new scroll item is available for display on
the first display according to its internal display list. The
model sends a notification containing a string with the
index number of the new item and the id of the ticker tape
display input sensor (E, F). The id assigned to the input
sensor in the forefront of the figure (TTDIS 1) matches
the one included in the notification, so the input sensor
calls a method on the ticker tape model to retrieve the
scroll item fields (G). Next, the input sensor renders the
item using the attributes contained in the item structure
and scrolls it across the display. When the scroll item
reaches the left side of the display, the input sensor calls a
method on the controller to notify that the next input
sensor has to begin displaying the item (H). The
controller receives the message and forwards it to the
ticker tape model (I). The Ticker Tape Model notifies all
listeners with a message containing the display id of the

next input sensor in the model’s internal display list (J, K).
This time, TTDIS 2 has the correct id, so it calls a method
on the Ticker Tape Model and follows the same steps as
the previous input sensor.

Lines 2-6 in the script depicted in Figure 10 parse the
location model’s notification and extract the name of the
person entering or leaving a space. Line 7 sends a request
to the ticker tape model (via the controller) to create a
new scroll item consisting of text (the source event) and a
picture (the name of the file matches the name of the user).

4. Bridge Creation and Utilization

Bridge creation and utilization are two different tasks and
are intended for different people. Creating a bridge
requires technical knowledge, including the LuaORB
scripting language, information about the source
application’s model notifications, and the interface of the
target application’s model. Therefore, this task is reserved
for application developers. On the other hand, using a
bridge simply requires selecting an entry from a list of
available bridges, and therefore does not require technical
knowledge.

In order to create a bridge, an application developer
writes the application bridge script, and then uses a tool
(GUI) to register it. The registration process asks the
developer information about the bridge (a description of
the functionality the bridge implements), source and
target application types, and optional source and target
application names. The tool creates a file with a header
including the information provided by the user, and the
script code. Next, it uses the Gaia Context File System to
make it available to the active space.

In order to use the bridges, we provide a tool that lists
all available bridges. When the user selects one, the
application retrieves the description (stored by the
developer’s GUI) and presents it to the user. Furthermore,
based on the source and target application types (stored
also by the GUI), the application presents a list of

1. function(targetController, sourceModel,
 sourceEvent)

2. local pos = strfind(sourceEvent," ")
3. name = ""
4. if (pos~=null) then
5. name = strsub(sourceEvent,1,pos)
6. end
7. targetController:defaultSetItem(sourceEvent,

 name+”.jpg")
8. end

Figure 10. Location to ticker tape
application bridge script.

Location
Application

Location
Model

Ticker Tape
Model

Location to
Ticker Tape
Bridge

TTDIS2

Controller
Notifications

Notifications

Coordinator

D, I
F, K E, J

Location
Input Sensor

Coordinator

TTDIS1

Ticker Tape Application

G

C H L

A B

Figure 9. Using a bridge to display location
information in the ticker tape.

compatible applications running in the space. If the
developer provided application names, the tool
automatically highlights the applications (if they are
present). The end user has to select two applications from
the list, or accept the pre-selected applications. The tool
also provides information about currently running bridges,
and allows users to disable them.

We currently have fifteen bridges. Our current
bridging mechanism monitors both source and target
applications. If any of them crashes, the bridge disables
itself automatically.

As part of our future work we plan to extend the end-
users tool with functionality to enable bridges
automatically based on certain user-defined events such
as users entering or leaving the space, or new applications
being started.

In order to allow end users to define their own
bridges, we need to provide additional support (e.g., a
“wizard” like tool) that leverages the infrastructure
presented in this paper, and automatically generates the
bridge script. For example, the tool would display a list of
applications currently running in the active space. Users
would choose a pair of applications (source and target)
and would select the actions to take on the target
(methods to call), based on the notifications fired by the
source application model. Such a tool requires further
research and therefore we leave it for a future paper.

5. Related Work

There are a number of projects [5] [6] [7] [8] [13]
that provide a software infrastructure for ubiquitous
computing environments. The closest to Gaia are BEACH
[7] and iROS [8], in that they consider physically
bounded spaces such as offices and meeting rooms, and
both of them provide low-level functionality. iROS does
not provide explicit support for application development
and management, instead, they rely on service
synchronization using their event heap. BEACH[7]
implements application-level functionality and provides
an application framework (based on MVC) to support the
development of document-based collaborative
applications. Our approach provides a generic active
space application framework with support for both
collaborative and non-collaborative applications.
Furthermore, it provides support for inter-application
interaction (active space behavior-level functionality),
which is not present in iROS and BEACH.

The concept of application bridging is similar to
scripting languages such as LuaOrb, which implements
language bindings between Lua[14] and CORBA[15],
COM[16], and Java. LuaOrb simplifies the coordination
of existing components, and therefore supports the
development of applications that reuse COTS components.

The application bridge reuses existing applications and
defines coordination rules among these applications.

Cooperstock et al. [17] propose a software
infrastructure to manage computer-augmented
environments, including videoconference environments.
They mention the difficulty of using these spaces due to
the large amount of devices, and propose a system that
adapts automatically and reacts to certain user actions.
The application bridging mechanism described in this
paper provides the tools to customize the reaction of the
active space. The framework described by Cooperstock et
al. is customized for a specific type of environment, while
application bridges can be used in different environments.

6. Conclusion and Future Work

In this paper, we discuss the relevance of active space
application interaction as a mechanism to customize the
behavior of active spaces. We present a mechanism called
an application bridge to define interaction rules among
applications, and describe our experience with a number
of applications that use the mechanism. Application
bridges do not require modifications of the applications
they bridge, and are independent of the functionality
implemented by the applications.

Current results show that application interaction
provides an effective mechanism to customize the
behavior of active spaces. The ability to reuse existing
applications unmodified and defining the interaction rules
as scripts allows us to easily obtain new functionality by
defining different interaction rules. Furthermore, defining
new interaction rules is fast and does not require
extensive programming knowledge. For example, the
bridge to connect the slide show manager to the x10
application was built and deployed in around five minutes,
and the script contains around twenty lines of code.

As users of the prototype active space, we have
clearly observed a great change since the installation and
utilization of the bridges. We perceive the active space as
a reactive environment with some well defined behavior.
The results are encouraging because there is still room for
further experimentation (e.g., AI techniques) and
improvement.

As part of the future work, we plan to continue
experimenting with new bridges, integrating new
applications, providing mechanisms to automate the
installation and monitoring of bridges, and building
applications to allow non-expert end-users create their
own bridges. We plan to develop more sophisticated
bridges that leverage the low-level functionality provided
by the Gaia OS (e.g., context, presence, and security). All
current bridges alter the application domain functionality
of the target application (e.g., display items in the ticker
tape, and control the lights). We plan to extend our
experiments with bridges that interact with the

coordinator of the target application to modify the
composition of the application (application meta-level).
For example, a bridge between the location and the music
application can move the audio from the room speakers to
the user’s laptop when it detects that the user is not alone,
and can move the audio back to the room when
everybody else leaves. Finally, and also as part of our
future work, we plan to work on how to resolve conflicts
among bridges. We currently solve conflicts via social
interaction, i.e., having the parties to agree on what bridge
to keep (we exploit the collocated nature of user
interaction). However, this option is not feasible in
environments were people do not know each other. One
of the options is to use user priorities to enforce what
bridge to keep.

7. Acknowledgements

This research is supported by the National Science
Foundation grant NSF 98-70736, NSF 9970139, and NSF
infrastructure grant NSF EIA 99-72884.

References

[1] Jason I. Hong and James A. Landay, "An Infrastructure
Approach to Context-Aware Computing," Human
Computer Interaction, vol. 16(4), 2001.

[2] Anind K. Dey, Daniel Salber, and Gregory D. Abowd, "A
Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications,"
Human-Computer Interaction (HCI), vol. 16(2-4), pp. 97-
166, 2001.

[3] Mari Korkea-aho, "Context-Aware Applications Survey,"
Helsinki University of Technology, Helsinki,
Internetworking Seminar April 25 2000.

[4] Bill N. Schilit, Norman Adams, and Roy Want, "Context-
Aware Computing Applications," Proceedings of IEEE
Workshop on Mobile Computing Systems and Applications,
1994.

[5] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern,
and Steven Shafer, "EasyLiving: Technologies for
Intelligent Environments," Proceedings of Handheld and
Ubiquitous Computing (HUC), pp.12, Bristol, England,
2000.

[6] Joao Pedro Sousa and David Garlan, "Aura: an
Architectural Framework for User Mobility in Ubiquitous
Computing Environments," Proceedings of IEEE/IFIP

Conference on Software Architecture, pp.29-43, Montreal,
2002.

[7] Peter Tandler, "Software Infrastructure for Ubiquitous
Computing Environments: Supporting Synchronous
Collaboration with Heterogeneous Devices," Proceedings
of Ubicomp 2001: Ubiquitous Computing, pp.96-115,
Atlanta, Georgia, 2001.

[8] Brad Johanson, Armando Fox, and Terry Winograd,
"Experiences with Ubiquitous Computing Rooms," IEEE
Pervasive Computing Magazine, vol. 1(2), pp. 67-74, 2002.

[9] Manuel Roman, Christopher K. Hess, Renato Cerqueira,
Anand Ranganat, Roy H. Campbell, and Klara Nahrstedt,
"Gaia: A Middleware Infrastructure to Enable Active
Spaces," IEEE Pervasive, vol. 1(4), pp. 74-82, 2002.

[10] Fabio Kon, Roy H. Campbell, M. Dennis Mickunas, Klara
Nahrstedt, and Francisco J. Ballesteros, "2K: A Distributed
Operating System for Dynamic Heterogeneous
Environments," Proceedings of 9th IEEE International
Symposium on High Performance Distributed
Computing,Pittsburgh, 2000.

[11] Manuel Roman and Roy H. Campbell, "A User-Centric,
Resource-Aware, Context-Sensitive, Multi-Device
Application Framework for Ubiquitous Computing
Environments," University of Illinois at Urbana-
Champaign, Urbana, CS Technical Report UIUCDCS-R-
2002-2284 UILU-ENG-2002-1728, July 2002 2002.

[12] Renato Cerqueira, Carlos Cassino, and Roberto
Ierusalimschy, "Dynamic component gluing across
different componentware systems," Proceedings of
International Symposium on Distributed Objects and
Applications (DOA'99), pp.362-371, Edinburgh, 1999.

[13] Robert Grimm, Janet Davis, Eric Lemar, Adam McBeath,
Steven Swanson, Steven Gribble, Tom Anderson, Brian
Bershad, Gaetano Borriello, and David Wetherall,
"Programming for Pervasive Computing Environments,"
University of Washington, Technical Report: UW-CSE-01-
06-01, Washington 2001.

[14] Roberto Ierusalimschy, Luiz Figuereido, and Waldemar
Celes, "Lua: An Extensible extension language,"
Proceedings of Software: Practice and Experience, pp.635-
652, 1996.

[15] Michi Henning and Steve Vinosky, Advanced CORBA
Programming with C++: Addison-Wesley, 1999.

[16] Dale Rogerson, Inside COM: Microsoft Press, 1997.
[17] Jeremy R. Cooperstock, Sidney, S. Fels, William Buxton,

and Kenneth C. Smith, "Reactive Environments: Throwing
Away Your Keyboard and Mouse," Communications of the
ACM, vol. 40(9), pp. 65-73, 1997.

