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Abstract 
 

The proliferation of wireless networks, hand-held 
PCs, touch panels, large flat displays, sensors, and 
embedded devices is transforming traditional habitats 
and living spaces into ubiquitous computing environments, 
or active spaces. We envision a middleware software 
infrastructure that abstracts the heterogeneity of these 
environments and transforms them into programmable 
environments. This middleware infrastructure provides 
support to manage the resources contained in an active 
space (low-level functionality), support to develop 
applications (application-level functionality), and support 
to define interaction rules among applications (active 
space-level functionality).  

In this paper, we present a mechanism called 
“application bridge” that implements active space-level 
functionality. Application bridges provide a simple, yet 
effective, mechanism to define dynamic application 
composition interaction rules that confer the active space 
a specific behavior based on a number of parameters, 
including context, application status, and user actions.   

1. Introduction 

Future ubiquitous computing will surround users with 
a comfortable and convenient information environment 
that merges physical and computational infrastructures 
into an integrated habitat. Context-awareness [1-4] should 
adapt the habitat to the user preferences, tasks, group 
activities, and the nature of the physical space. We term 
this dynamic and computational rich habitat an active 
space. Within the space, users interact with flexible 
mobile applications, define the function of the habitat, 
and customize its behavior according to different 
properties (e.g., personal preferences and current context). 
An active space is an integrated programmable 
environment that contains heterogeneous network 

connected devices, services, and applications coordinated 
by a context-aware distributed software infrastructure, 
and populated by a number of people performing different 
activities.  

 
Active spaces host the execution of different 

applications. We define an application as a collection of 
services that cooperate to achieve a common goal (e.g., 
play audio, control the lights, and present a slide show). 
For example, an active meeting room has applications to 
control the lights and the audio, present information in a 
ticker tape, control a slideshow, and track the number, 
identity and position of the people present in the room. 
According to our experience with a prototype active 
meeting room (Figure 1), a useful property of active 
spaces is the ability to orchestrate a number of individual 
applications to confer the active space a specific behavior. 
We identify three functional levels we consider essential 
to abstract a physical space and the resources it contains 
as a single homogeneous programmable environment:  

• Low-level, which provides basic functionality 
including component management and resource 
discovery and is comparable to the functionality 
provided by traditional operating systems. 

. 

Figure 1. Active Space Prototype

  



• Application-level, providing frameworks and 
tools to build applications. 

• Active space behavior-level, which includes 
mechanisms to orchestrate the interaction among 
applications (dynamic application composition) 
and therefore provides functionality to program 
the behavior of the active space. 

 
Existing research projects [5] [6] [7] [8] address the 

low-level and application-level functional issues but do 
not provide explicit support for active space behavior 
definition. We present in this paper an infrastructure to 
program the behavior of active spaces. The infrastructure 
simplifies the creation of customizable and dynamically-
adaptable inter-application interaction rules that define 
how changes in an application affect other applications. 
We currently use the infrastructure to define interaction 
rules among six applications (i.e., speech engine, slide 
show manager, light controller, audio player, ticker tape, 
and location) running in our active space prototype. The 
results are encouraging and we have experienced a 
qualitative improvement in the global usability of the 
active space. Furthermore, it is possible now to perceive 
the active space as an interactive environment with a 
well-defined behavior instead of an execution 
environment consisting of disconnected applications.  

The rest of the paper is organized as follows: section 
2 describes the three functional levels of an active space, 
including low-level (section 2.1), application-level 
(section 2.2), and behavior-level (section 2.3); section 3 
presents a detailed example of a ticker tape and a location 
application that use the bridging mechanism to interact; 
section 4 describes how to develop and use bridges; 
section 5 presents related work and we conclude the paper 
and describe our future work in section 6.  

2. Active Space Functionality Levels 

We have developed a meta-operating system called 
Gaia OS [9] to manage active spaces. Gaia is a distributed 
middleware infrastructure we refer to as a meta-operating 
system[10] that coordinates software entities and 
heterogeneous networked devices contained in a physical 
space. Gaia exports services to query and utilize existing 
resources, to access and use current context, and provides 
a framework to develop active space-aware applications. 
Figure 2 illustrates the architecture of Gaia OS.  

 

 
               Figure 2. Gaia OS Architecture. 

2.1 Active Space Low-Level Functionality 

The Gaia OS Kernel provides services for location, 
context, events, and repositories with information about 
the active space.  It is built as a distributed object system 
that extends the notion of an execution environment 
associated to devices to the space level. The kernel also 
provides functionality to manage remote components (e.g., 
create, destroy, load, unload, and transfer). Gaia OS 
abstracts the physical space and the resources it contains 
as a programmable execution environment. 

The Gaia OS Kernel implements the active space 
low-level functionality and it is comparable to the 
functionality provided by traditional operating systems 
(e.g., process management, file system, and inter-process 
communication). 

2.2 Active Space Application-Level Functionality 

Gaia applications use a set of component building 
blocks, organized as the Gaia Application Framework [11] 
to support applications that execute within an active space.  
The framework provides mobility, adaptation, context-
awareness, and dynamic binding. The functionality 
permits commercial off the shelf, as well as new 
applications, to run in the active space. The application 
framework models applications as a collection of 
distributed components, and reuses some concepts from 
the Model-View-Controller.  The framework exploits 
resources present in the application environment, provides 
functionality to alter the application composition 
dynamically (i.e., number, type, and location of the 
application components, as well as data format they 
manipulate), is context-sensitive, implements a 
specialization mechanism that supports the creation of 
portable applications, and provides functionality to 
manage the application lifecycle (i.e. instantiation, 
adaptation, suspension and resumption, fault-tolerance,  
termination, and mobility).  

The application framework infrastructure is 
composed of five components (Figure 3): model, 
presentation, controller, input sensor, and coordinator.  
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The model, presentation, controller, and input sensor are 
the application base-level building blocks and are strictly 
related to the application domain functionality.  

The model implements the logic of the application 
and exports an interface to access and manage the 
application's state. The model maintains a list of 
registered listeners and it is responsible for notifying them 
about changes in the application's state, therefore keeping 
them synchronized.  

The presentation transforms the application's state 
into a perceivable representation, such as a graphical or 
audible representation, a temperature or lighting variation, 
or in general, any external representation that affects the 
user environment and can be perceived by any of the 
human senses. Presentations can be dynamically attached 
and detached to and from the model, and are registered as 
listeners. Presentations are responsible for contacting the 
model and retrieving the new state upon receiving a 
notification. 

The input sensor is the component responsible for 
changing the state of the application. Input sensors can be 
interactive (e.g., GUI and speech-recognition) or non-
interactive (e.g., context synthesizers), and they 
interoperate with the model’s interface to alter the state of 
the application. Input sensors receive notifications from 
the model so they can synchronize their internal state with 
the rest of the application.  

The controller mediates the interaction between the 
input sensor and the model. It translates requests from the 
input sensor into method calls that match the model’s 
interface, therefore maximizing input sensor reusability. 
The same input sensor can be used with different 
applications by changing the mappings stored in the 
controller dynamically (Figure 4). 

The coordinator encapsulates information about the 
application components' composition (i.e., application 
meta-level), provides an interface to register and 
unregister presentations and input sensors, and allows 
manipulating the bindings of the application components. 
The coordinator provides functionality to retrieve run-
time information about the application's components 
composition. The functionality provided by the 

coordinator offers fine grained control over the 
composition of the application base-level components.  

2.3 Active Space Behavior-Level Functionality  

Applications built using the application-level 
functionality are disconnected execution units. The Gaia 
OS application framework implements an additional 
mechanism called application bridge to support the active 
space behavior-level functionality. This functionality 
allows defining rules that specify how changes in an 
application affect the execution of other applications and 
therefore make it possible to program the behavior of the 
active space (i.e. coordinate all applications hosted by the 
active space). 

The active space behavior-level functionality does 
not require any changes in the applications involved in the 
interaction, it is independent of the functionality 
implemented by the connected applications, and allows 
defining and modifying the interaction rules at run-time.  

The application bridge (Figure 5) is an input sensor 
that listens for notifications from the source application 
and introduces changes in the target application by 
invoking methods on the model via the controller. 
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 Figure 5. Application Bridge (in order to simplify 
the diagram we only show the components 
involved in the interaction). 

The bridge implements functionality to execute user-
defined rules that affect the state of the target 
application’s model when it receives a notification from 
the source application. The mechanism to trigger the 
execution of the user-defined rules is common to all 
bridges while the rules defining what actions to take are 
bridge-dependent and are implemented as scripts. The 
script for the bridge receives a reference to the source 
application’s model, a reference to the target application’s 
controller, and the source application notification’s hint 
(notification sent by the source application’s model to 
inform about changes in its state). Developers write a 
script (current implementation is based on LuaORB[12]) 
using these parameters to define the interaction rules. The 
bridge executes the script each time it receives a 
notification from the source application model. Figure 6 
illustrates the interface of the script. 

 
Figure 6. Application Bridge Script Interface. 

3. Using a Ticker Tape to Display People 
Location 

In this section, we describe a ticker tape application 
that uses several synchronized displays to present 
information, and a location application that provides 
people location information (room granularity). Next, we 
explain how we use the ticker tape application to display 
people location information using the active space 
behavior-level functionality.  

3.1 Ticker Tape Application 

This application provides support for displaying 
scrolling items sequentially across multiple display 
devices (Figure 7).  The ticker tape serves as an 
input/output interaction mechanism within an active space.  
Unlike traditional stock quoting ticker tapes, our ticker 
tape displays multimedia items, including graphics, and 
allows assigning specific actions to the scrolling items. 

Items displayed in the ticker tape can be selected, and 
they trigger user defined actions, including launching 
additional applications, or modifying the state of existing 
applications.  

One main characteristic of the ticker tape is the 
synchronized and dynamic utilization of multiple display 
devices.  Applications in an active space are not confined 
to one display device; therefore, a ticker tape item (e.g., 
text and pictures) displayed in an active space can be 
rendered on multiple devices.  When a ticker tape item 
reaches the edge of one display, it is immediately 
displayed in the next display.  In addition, components in 
an active space are often mobile, so the ticker tape must 
be able to respond to devices entering, exiting, and 
changing location within the active space by attaching, 
detaching, and re-ordering ticker tape items. 

The Ticker Tape is composed of four components: 
Model, Ticker Tape Display Input Sensor (TTDIS), and 
Coordinator.  The Ticker Tape implements the first two 
components and reuses the default Coordinator 
implementation provided by the application framework.  

According to the application framework description 
discussed in section 2.2, the ticker tape application 
component that displays the scrolling items (TTDIS) 
should be a presentation (it displays the scrolling items). 
However, the ticker tape application allows assigning 
actions to the items, and therefore we model the TTDIS as 
an input sensor (input sensors receive notifications and 
therefore can implement presentation functionality).  

 The Ticker Tape Model orchestrates the 
synchronized handling of scrolling items across the 
different displays used by the application.  The model 
associates an index to each scrolling item, and stores an 
ordered list of TTDIS ids (based on the scrolling item 

function bridgeRules ( 
targetController, sourceModel, sourceEvent ) 
 <Interaction Rules> 

end 

Item 1 

Display 1 
(TTDIS1) 

Figure 7. Ticker Tape Item synchronized 
across three displays. 
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display order), so it can dispatch notifications to the 
appropriate TTDIS when an item needs to be displayed.  
For example, based on the example depicted in Figure 7, 
the model stores an id for the scrolling item (Item 1), and 
an ordered list of TTDIS in the following order: TTDIS 3, 
TTDIS 2, and TTDIS 1 (the item scrolls from right to left). 
The model also implements functionality for adding, 
updating, and removing scrolling items.  A scrolling item 
is stored in the model as a set of attributes, including size, 
color, font and content of text, the path location and size 
of pictures, and other attributes to determine how items 
are rendered and displayed by the display components. 

The Ticker Tape Display Input Sensor (TTDIS) is 
responsible for displaying scrolling items in a display 
when the model sends the appropriate notification, and 
notifying the model when its scrolling item reaches the 
edge of the display so that the next TTDIS can be notified 
to display the item.  In addition, the TTDIS is responsible 
for detecting and notifying the model when users select a 
certain scrolling item so that the model can execute any 
functionality associated with that item. Upon receiving a 
notification from the model to display a scrolling item, a 
TTDIS checks if the notification is intended for it.  If so, 
it requests the set of attributes associated with the item 
from the model, and renders and displays the scrolling 
item.   

Figure 9 illustrates all the ticker tape application 
components and explains all the steps required to scroll 
items. 

3.2 Location Application 

The location application provides functionality to 
track people inside our computer science building. The 
application relies on sensor data provided by the active 
space low-level functionality (Gaia Kernel) to detect the 
position of the users. The current implementation of the 
Gaia location application provides information at room 
granularity. That is, we can detect whether or not a user is 
present in a room, but not where in the room the user is 
located.  

The location application implements three 
components, Location Model, Location Presentation, and 
Location Input Sensor, and reuses the default coordinator 
(Figure 8). 

The Location Model provides functionality to store 
and update information about users and their locations 
and provides an interface to query about user location. 
The model stores information about the user name, the 
name of the space where he or she is located, and the date 
and time the user entered and left the space. 

The Location Presentation is a graphical presentation 
that displays information about user location. Users can 
select a user name and get updated information about his 

or her position, or select a space and learn about the 
people located in it. 

The Location Input Sensor leverages the low-level 
functionality (Gaia OS Kernel) to learn about users 
entering and leaving the space. When a user enters or 
leaves, the location input sensor updates the model’s 
states via the controller. There is one instance of the input 
sensor for each active space. 

Figure 8 illustrates the composition of the location 
application running in our building. We define three 
active spaces: domain, 2401, and 3231. These three active 
spaces are hierarchically organized as a tree, with the 
domain at the root and 2401 and 3231 as leaves.s The 
coordinator, model, and controller of the application run 
in the domain active space, and 2401 and 3231 host the 
execution of the location presentation and location input 
sensor. When a person enters 2401 or 3231, the input 
sensor sends a notification to the model running in the 
domain via the controller (steps A and B in Figure 8), 
which notifies the presentations (steps C and D). Tracking 
people in additional active spaces in the building is simple. 
It requires instantiating an input sensor and attaching it to 
the model running in the domain active space. 
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3.3 Using the Ticker Tape to Display Location 
Information 

In this section we explain how we use the ticker tape 
to display user location information. Figure 9 illustrates 
the ticker tape application and the location application 
connected by a bridge. The script with the interaction 
rules is depicted in Figure 10. We describe the 
functionality based on an example consisting of a user 
(Andrew) entering an active space (2401).  

Figure 8. DCL Active Space hierarchy (left) and 
corresponding location application instance 
(right). 



When the user enters the active space, the input 
sensor of the location application calls a method on the 
model (via the controller) to report the new user (Andrew) 
entering active space 2401 (A). The location model 
updates its data structures to reflect the new location 
report and notifies all of its listeners with the message 
“andrew has entered 2401,” (B). The location-to-ticker 
tape bridge parses the username, “Andrew” from the 
message and calls a method to create a new scroll item in 
the tickertape with text (“Andrew has entered 2401”) and 
a picture of the detected person (C). The controller 
receives the message, checks for a mapping, and since no 
mapping has been defined, it simply forwards the request 
to the Ticker Tape Model (D). The ticker tape model 
stores all the fields for the scroll item and notifies all 
listeners that a new scroll item is available for display on 
the first display according to its internal display list. The 
model sends a notification containing a string with the 
index number of the new item and the id of the ticker tape 
display input sensor (E, F). The id assigned to the input 
sensor in the forefront of the figure (TTDIS 1) matches 
the one included in the notification, so the input sensor 
calls a method on the ticker tape model to retrieve the 
scroll item fields (G). Next, the input sensor renders the 
item using the attributes contained in the item structure 
and scrolls it across the display. When the scroll item 
reaches the left side of the display, the input sensor calls a 
method on the controller to notify that the next input 
sensor has to begin displaying the item (H). The 
controller receives the message and forwards it to the 
ticker tape model (I). The Ticker Tape Model notifies all 
listeners with a message containing the display id of the 

next input sensor in the model’s internal display list (J, K). 
This time, TTDIS 2 has the correct id, so it calls a method 
on the Ticker Tape Model and follows the same steps as 
the previous input sensor. 

Lines 2-6 in the script depicted in Figure 10 parse the 
location model’s notification and extract the name of the 
person entering or leaving a space. Line 7 sends a request 
to the ticker tape model (via the controller) to create a 
new scroll item consisting of text (the source event) and a 
picture (the name of the file matches the name of the user). 

4. Bridge Creation and Utilization 

Bridge creation and utilization are two different tasks and 
are intended for different people. Creating a bridge 
requires technical knowledge, including the LuaORB 
scripting language, information about the source 
application’s model notifications, and the interface of the 
target application’s model. Therefore, this task is reserved 
for application developers. On the other hand, using a 
bridge simply requires selecting an entry from a list of 
available bridges, and therefore does not require technical 
knowledge. 

In order to create a bridge, an application developer 
writes the application bridge script, and then uses a tool 
(GUI) to register it. The registration process asks the 
developer information about the bridge (a description of 
the functionality the bridge implements), source and 
target application types, and optional source and target 
application names. The tool creates a file with a header 
including the information provided by the user, and the 
script code. Next, it uses the Gaia Context File System to 
make it available to the active space. 

In order to use the bridges, we provide a tool that lists 
all available bridges. When the user selects one, the 
application retrieves the description (stored by the 
developer’s GUI) and presents it to the user. Furthermore, 
based on the source and target application types (stored 
also by the GUI), the application presents a list of 

1. function(targetController,  sourceModel,  
                   sourceEvent)  

2.   local pos = strfind(sourceEvent," ") 
3.   name = "" 
4.   if (pos~=null) then 
5.      name = strsub(sourceEvent,1,pos) 
6.   end 
7.   targetController:defaultSetItem(sourceEvent, 

                                                   name+”.jpg") 
8.   end 

Figure 10. Location to ticker tape 
application bridge script.
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compatible applications running in the space. If the 
developer provided application names, the tool 
automatically highlights the applications (if they are 
present). The end user has to select two applications from 
the list, or accept the pre-selected applications. The tool 
also provides information about currently running bridges, 
and allows users to disable them. 

We currently have fifteen bridges. Our current 
bridging mechanism monitors both source and target 
applications. If any of them crashes, the bridge disables 
itself automatically.  

As part of our future work we plan to extend the end-
users tool with functionality to enable bridges 
automatically based on certain user-defined events such 
as users entering or leaving the space, or new applications 
being started.  

In order to allow end users to define their own 
bridges, we need to provide additional support (e.g., a 
“wizard” like tool) that leverages the infrastructure 
presented in this paper, and automatically generates the 
bridge script. For example, the tool would display a list of 
applications currently running in the active space. Users 
would choose a pair of applications (source and target) 
and would select the actions to take on the target 
(methods to call), based on the notifications fired by the 
source application model. Such a tool requires further 
research and therefore we leave it for a future paper. 

5. Related Work 

There are a number of projects [5] [6] [7] [8] [13] 
that provide a software infrastructure for ubiquitous 
computing environments. The closest to Gaia are BEACH 
[7] and iROS [8], in that they consider physically 
bounded spaces such as offices and meeting rooms, and 
both of them provide low-level functionality. iROS does 
not provide explicit support for application development 
and management, instead, they rely on service 
synchronization using their event heap. BEACH[7] 
implements application-level functionality and provides 
an application framework (based on MVC) to support the 
development of document-based collaborative 
applications. Our approach provides a generic active 
space application framework with support for both 
collaborative and non-collaborative applications. 
Furthermore, it provides support for inter-application 
interaction (active space behavior-level functionality), 
which is not present in iROS and BEACH. 

The concept of application bridging is similar to 
scripting languages such as LuaOrb, which implements 
language bindings between Lua[14]  and CORBA[15], 
COM[16], and Java. LuaOrb simplifies the coordination 
of existing components, and therefore supports the 
development of applications that reuse COTS components. 

The application bridge reuses existing applications and 
defines coordination rules among these applications. 

Cooperstock et al. [17] propose a software 
infrastructure to manage computer-augmented 
environments, including videoconference environments. 
They mention the difficulty of using these spaces due to 
the large amount of devices, and propose a system that 
adapts automatically and reacts to certain user actions. 
The application bridging mechanism described in this 
paper provides the tools to customize the reaction of the 
active space. The framework described by Cooperstock et 
al. is customized for a specific type of environment, while 
application bridges can be used in different environments. 

6. Conclusion and Future Work 

In this paper, we discuss the relevance of active space 
application interaction as a mechanism to customize the 
behavior of active spaces. We present a mechanism called 
an application bridge to define interaction rules among 
applications, and describe our experience with a number 
of applications that use the mechanism. Application 
bridges do not require modifications of the applications 
they bridge, and are independent of the functionality 
implemented by the applications. 

Current results show that application interaction 
provides an effective mechanism to customize the 
behavior of active spaces. The ability to reuse existing 
applications unmodified and defining the interaction rules 
as scripts allows us to easily obtain new functionality by 
defining different interaction rules. Furthermore, defining 
new interaction rules is fast and does not require 
extensive programming knowledge. For example, the 
bridge to connect the slide show manager to the x10 
application was built and deployed in around five minutes, 
and the script contains around twenty lines of code. 

As users of the prototype active space, we have 
clearly observed a great change since the installation and 
utilization of the bridges. We perceive the active space as 
a reactive environment with some well defined behavior. 
The results are encouraging because there is still room for 
further experimentation (e.g., AI techniques) and 
improvement. 

As part of the future work, we plan to continue 
experimenting with new bridges, integrating new 
applications, providing mechanisms to automate the 
installation and monitoring of bridges, and building 
applications to allow non-expert end-users create their 
own bridges. We plan to develop more sophisticated 
bridges that leverage the low-level functionality provided 
by the Gaia OS (e.g., context, presence, and security). All 
current bridges alter the application domain functionality 
of the target application (e.g., display items in the ticker 
tape, and control the lights). We plan to extend our 
experiments with bridges that interact with the 



coordinator of the target application to modify the 
composition of the application (application meta-level). 
For example, a bridge between the location and the music 
application can move the audio from the room speakers to 
the user’s laptop when it detects that the user is not alone, 
and can move the audio back to the room when 
everybody else leaves. Finally, and also as part of our 
future work, we plan to work on how to resolve conflicts 
among bridges. We currently solve conflicts via social 
interaction, i.e., having the parties to agree on what bridge 
to keep (we exploit the collocated nature of user 
interaction). However, this option is not feasible in 
environments were people do not know each other. One 
of the options is to use user priorities to enforce what 
bridge to keep.  
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