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Abstract

We present a novel paradigm for statistical machine translation (SMT), based on
a joint modeling of word alignment and the topical aspects underlying bilingual
document-pairs, via a hidden Markov Bilingual Topic AdMixture (HM-BiTAM).
In this paradigm, parallel sentence-pairs from a parallel document-pair are cou-
pled via a certain semantic-flow, to ensure coherence of topical context in the
alignment of mapping words between languages, likelihood-based training of
topic-dependent translational lexicons, as well as in the inference of topic rep-
resentations in each language. The learned HM-BiTAM can notonly display
topic patterns like methods such as LDA [1], but now for bilingual corpora; it
also offers a principled way of inferring optimal translation using document con-
text. Our method integrates the conventional model of HMM — akey component
for most of the state-of-the-art SMT systems, with the recently proposed BiTAM
model [10]; we report an extensive empirical analysis (in many ways complemen-
tary to the description-oriented [10]) of our method in three aspects: bilingual
topic representation, word alignment, and translation.

1 Introduction

Most contemporary SMT systems view parallel data as independent sentence-pairs whether or
not they are from the same document-pair. Consequently, translation models are learned only at
sentence-pair level, and document contexts – essential factors for translating documents – are gen-
erally overlooked. Indeed, translating documents differsconsiderably from translating a group of
unrelated sentences. A sentence, when taken out of the context from the document, is generally more
ambiguous and less informative for translation. One shouldavoid destroying a coherent document
by simply translating it into a group of sentences which are indifferent to each other and detached
from the context.

Developments in statistics, genetics, and machine learning have shown that latent semantic aspects
of complex data can often be captured by a model known as thestatistical admixture(or mixed
membership model [4]). Statistically, an object is said to be derived from an admixture if it consists
of a bag of elements, each sampled independently or coupled in a certain way, from a mixture
model. In the context of SMT, each parallel document-pair istreated as one such object. Depending
on the chosen modeling granularity, all sentence-pairs or word-pairs in a document-pair correspond
to the basic elements constituting the object, and the mixture from which the elements are sampled
can correspond to a collection of translation lexicons and monolingual word frequencies based on
different topics (e.g., economics, politics, sports, etc.). Variants of admixture models have appeared
in population genetics [6] and text modeling [1, 4].

Recently, aBilingual Topic-AdMixture(BiTAM ) model was proposed to capture the topical aspects
of SMT [10]; word-pairs from a parallel document-pair follow the same weighted mixtures of trans-
lation lexicons, inferred for the given document-context.The BiTAMs generalize over IBM Model-
1; they are efficient to learn and scalable for large trainingdata. However, they do not capture locality
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constraints of word alignment, i.e., words “close-in-source” are usually aligned to words “close-in-
target”, under document-specific topical assignment. To incorporate such constituents, we integrate
the strengths of both HMM and BiTAM, and propose a Hidden Markov Bilingual Topic-AdMixture
model, or HM-BiTAM, for word alignment to leverage both locality constraints and topical context
underlying parallel document-pairs.

In the HM-BiTAM framework, one can estimate topic-specific word-to-word translation lexicons
(lexical mappings), as well as the monolingual topic-specific word-frequencies for both languages,
based on parallel document-pairs. The resulting model offers a principled way of inferring optimal
translation from a given source language in a context-dependent fashion. We report an extensive
empirical analysis of HM-BiTAM, in comparison with relatedmethods. We show our model’s ef-
fectiveness on the word-alignment task; we also demonstrate two application aspects which were
untouchedin [10]: the utility of HM-BiTAM for bilingual topic exploration, and its application for
improving translation qualities.

2 Revisit HMM for SMT

An SMT system can be formulated as a noisy-channel model [2]:

e∗ = arg max
e

P (e|f) = argmax
e

P (f |e)P (e), (1)

where a translation corresponds to searching for thetarget sentencee∗ which explains thesource
sentencef best. The key component isP (f |e), the translation model;P (e) is monolingual language
model. In this paper, we generalizeP (f |e) with topic-admixture models.

An HMM implements the “proximity-bias” assumption — that words “close-in-source” are aligned
to words “close-in-target”, which is effective for improving word alignment accuracies, especially
for linguistically close language-pairs [8]. Following [8], to model word-to-word translation, we
introduce the mappingj → aj , which assigns a French wordfj in positionj to an English word
ei in positioni = aj denoted aseaj

. Each (ordered) French wordfj is an observation, and it is
generated by an HMM state defined as [eaj

, aj ], where the alignment indicatoraj for positionj is
considered to have a dependency on the previous alignmentaj−1. Thus a first-order HMM for an
alignment betweene ≡ e1:I andf ≡ f1:J is defined as:

p(f1:J |e1:I) =
∑

a1:J

J∏

j=1

p(fj|eaj
)p(aj |aj−1), (2)

wherep(aj |aj−1) is thestate transition probability; J andI aresentence lengthsof the French and
English sentences, respectively. The transition model enforces the proximity-bias. An additional
pseudo word ”NULL” is used at the beginning of English sentences for HMM to start with. The
HMM implemented in GIZA++ [5] is used as our baseline, which includes refinements such as
special treatment of a jump to a NULL word. A graphical model representation for such an HMM
is illustrated in Figure 1 (a).
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Figure 1:The graphical model representations of (a) HMM, and (b) HM-BiTAM, for parallel corpora. Circles
represent random variables, hexagons denote parameters, and observed variables are shaded.
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3 Hidden Markov Bilingual Topic-AdMixture

We assume that in training corpora of bilingual documents, the document-pair boundaries are
known, and indeed they serve as the key information for defining document-specific topic weights
underlying alignedsentence-pairsor word-pairs. To simplify the outline, the topics here are sam-
pled at sentence-pair level; topics sampled at word-pair level can be easily derived following the
outlined algorithms, in the same spirit of [10]. Given a document-pair(F,E) containingN parallel
sentence-pairs(en, fn), HM-BiTAM implements the following generative scheme.

3.1 Generative Scheme of HM-BiTAM

Given a conjugate prior Dirichlet(α), the topic-weight vector(hereafter, TWV),θm for each
document-pair(Fm,Em), is sampled independently. Let the non-underscriptedθ denote the TWV
of a typical document-pair(F,E), a collection of topic-specific translation lexicons beB ≡ {Bk},
whereBi,j,k=P (f=fj|e=ei, z=k) is the conditional probability of translatinge into f under a
given topic indexed byz; the topic-specific monolingual modelβ ≡ {βk}, which can be the usual
LDA-style monolingual unigrams. The sentence-pairs{fn, en} are drawn independently from a
mixture of topics. Specifically (as illustrated also in Fig.1 (b)):

1. θ ∼ Dirichlet(α)

2. For each sentence-pair(fn, en),

(a) zn ∼ Multinomial(θ) sample the topic
(b) en,1:In

|zn ∼ P (en|zn; β) sample all English words from a monolingual topic
model (e.g., an unigram model),

(c) For each positionjn = 1, . . . , Jn in fn,
i. ajn

∼ P (ajn
|ajn−1;T ) sample an alignment linkajn

from a first-order Markov
process,

ii. fjn
∼ P (fjn

|en, ajn
, zn;B) sample a foreign wordfjn

according to a topic
specific translation lexicon.

Under an HM-BiTAM model, each sentence-pair consists of a mixture of latent bilingual topics;
each topic is associated with a distribution over bilingualword-pairs. Each wordf is generated by
two hidden factors: a latent topicz drawn from a document-specific distribution overK topics, and
the English worde identified by the hidden alignment variablea.

3.2 Extracting Bilingual Topics from HM-BiTAM

Because of theparallel natureof the data, the topics of English and the foreign language will share
similar semantic meanings. This assumption is captured in our model. Shown in Figure 1(b), both
the English and foreign topics are sampled from the same distribution θ, which is a document-
specific topic-weight vector.

Although there is an inherent asymmetry in the bilingual topic representation in HM-BiTAM (that
the monolingual topic representationsβ are only defined for English, and the foreign topic represen-
tations are implicit via the topical translation models), it is not difficult to retrieve the monolingual
topic representations of the foreign language via a marginalization over hidden word alignment. For
example, the frequency (i.e., unigram) of foreign wordfw under topick can be computed by

P (fw|k) =
∑

e

P (fw|e, Bk)P (e|βk). (3)

As a result, HM-BiTAM can actually be used as a bilingual topic explorer in the LDA-style and
beyond. Given paired documents, it can extract the representations of each topic in both languages
in a consistent fashion (which is not guaranteed if topics are extracted separately from each language
using, e.g., LDA), as well as the lexical mappings under eachtopics, based on a maximal likelihood
or Bayesian principle. In Section 5.2, we demonstrate outcomes of this application.

We expect that, under the HM-BiTAM model, because bilingualstatistics from word alignmenta
are shared effectively across different topics, a word willhave much less translation candidates due
to constraints by the hidden topics; therefore the topic specific translation lexicons are muchsmaller
andsharper, which give rise to a more parsimonious and unambiguous translation model.

3



4 Learning and Inference

We sketch a generalized mean-field approximation scheme forinferring latent variables in HM-
BiTAM, and a variational EM algorithm for estimating model parameters.

4.1 Variational Inference

Under HM-BiTAM, the complete likelihood of a document-pair(F,E) can be expressed as follows:

p(F,E, θ, ~z,~a|α, β, T,B)=p(θ|α)P (~z|θ)P (~a|T )P (F|~a, ~z,E,B)P (E|~z, β), (4)

whereP (~a|T )=
∏N

n=1

∏Jn

j=1
P (ajn

|ajn−1; T ) represents the probability of a sequence of align-

ment jumps;P (F|~a, ~z,E,B)=
∏N

n=1

∏Jn

j=1
P (fjn

|ajn
, en, zn,B) is thedocument-leveltranslation

probability; andP (E|~z, β) is the topic-conditional likelihood of the English document based on a
topic-dependent unigram as used in LDA. Apparently, exact inference under this model is infeasible
as noted in earlier models related to, but simpler than, thisone [10].

To approximate the posteriorp(~a, θ, ~z|F,E), we employ a generalized mean field approach and
adopt the following factored approximation to the true posterior: q(θ, ~z,~a) = q(θ|~γ)q(~z|~φ)q(~a|~λ),
whereq(θ|~γ), q(~z|~φ), andq(~a|~λ) are re-parameterized Dirichlet, multinomial, and HMM, respec-
tively, determined by somevariational parametersthat correspond to the expected sufficient statis-
tics of the dependent variables of each factor [9].

As well known in the variational inference literature, solutions to the above variational param-
eters can be obtained by minimizing the Kullback-Leibler divergence betweenq(θ, ~z,~a) and
p(θ, ~z,~a|F,E), or equivalently, by optimizing the lower-bound of the expected (overq()) log-
likelihood defined by Eq.(4), via a fixed-point iteration. Due to space limit, we forego a detailed
derivation, and directly give the fixed-point equations below:

γ̂k = αk +

N
X

n=1

φn,k, (5)

φ̂n,k ∝ exp
“

Ψ(γk) − Ψ(
K

X

k=1

γk)
”

· exp
“

In
X

i=1

Jn
X

j=1

λn,j,i log βk,ein

”

× exp
“

Jn,In
X

j,i=1

X

f∈VF

X

e∈VE

1(fjn , f)1(ein , e)λn,j,ilog Bf,e,k

”

, (6)

λ̂n,j,i ∝ exp
“

In
X

i′=1

λn,j−1,i′ log Ti,i′

”

× exp
“

In
X

i”=1

λn,j+1,i” log Ti”,i

”

× exp
“

X

f∈VF

X

e∈VE

1(fjn ,f)1(ein ,e)
K

X

k=1

φn,k log Bf,e,k

”

× exp
“

K
X

k=1

φn,k log βk,ein

”

, (7)

where1(·, ·) denotes an indicator function, andΨ(·) represents the digamma function.
The vectorφ̂n ≡ (φ̂n,1, . . . , φ̂n,K) given by Eq. (6) represents the approximate posterior of the
topic weights for each sentence-pair(fn, en). The topical information for updatinĝφn is collected
from three aspects: aligned word-pairs weighted by the corresponding topic-specific translation lex-
icon probabilities, topical distributions of monolingualEnglish language model, and the smoothing
factors from the topic prior.

Equation (7) gives the approximate posterior probability for alignment between thej-th word in
fn and thei-th word in en, in the form of an exponential model. Intuitively, the first two terms
represent the messages corresponding to theforward and thebackwardpasses in HMM; The third
term represents theemissionprobabilities, and it can be viewed as a geometric interpolation of the
strengths of individual topic-specific lexicons; and the last term provides further smoothing from
monolingual topic-specific aspects.

Inference of optimum word-alignment One of the translation model’s goals is to infer the op-
timum word alignment:a∗ = arg maxa P (a|F,E). The variational inference scheme described
above leads to anapproximatealignment posteriorq(~a|~λ), which is in fact a reparameterized HMM.
Thus, extracting the optimum alignment amounts to applyingan Viterbi algorithm onq(~a|~λ).
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4.2 Variational EM for parameter estimation

To estimate the HM-BiTAM parameters, which include the Dirichlet hyperparameterα, the
transition matrixT , the topic-specific monolingual English unigram{~βk}, and the topic-specific
translation lexicon{Bk}, we employ an variational EM algorithm which iterates between com-
puting variational distribution of the hidden variables (the E-step) as described in the previous
subsection, and optimizing the parameters with respect to the variational likelihood (theM-step).
Here are the update equations for the M-step:

T̂i”,i′ ∝
N

X

n=1

Jn
X

j=1

λn,j,i”λn,j−1,i′ , (8)

Bf,e,k ∝
N

X

n=1

Jn
X

j=1

In
X

i=1

K
X

k=1

1(fjn , f)1(ein , e)λn,j,iφn,k, (9)

βk,e ∝

N
X

n=1

In
X

i=1

Jn
X

j=1

1ei,eλnjiφn,k. (10)

For updating Dirichlet hyperparameterα, which is a corpora-level parameter, we resort to gradient
accent as in [7]. The overall computation complexity of the model is linear to the number of topics.

5 Experiments
In this section, we investigate three main aspects of the HM-BiTAM model, including word align-
ment, bilingual topic exploration, and machine translation.

Train #Doc. #Sent.
#Tokens

English Chinese

TreeBank 316 4172 133,598 105,331
Sinorama04 6367 282176 10,321,061 10,027,095
Sinorama02 2373 103252 3,810,664 3,146,014
Chnews.2005 1001 10317 326,347 270,274
FBIS.BEIJING 6111 99396 4,199,030 3,527,786
XinHua.NewsStory 17260 98444 3,807,884 3,915,267

ALL 33,428 597,757 22,598,584 20,991,767

Table 1:Training data statistics.

The training data is a collection of paralleldocument-pairs, with document boundaries explicitly
given. As shown in Table 1, our training corpora are general newswire, covering topics mainly about
economics, politics, educationsandsports. For word-alignment evaluation, our test set consists of
95 document-pairs, with627 manually-aligned sentence-pairs and14,769alignment-links in total,
from TIDES’01 dryrun data. Word segmentations and tokenizations were fixed manually for optimal
word-alignment decisions. This test set contains relatively long sentence-pairs, with an average
sentence length of40.67words. The long sentences introduce more ambiguities for alignment tasks.

For testing translation quality, TIDES’02 MT evaluation data is used as development data, and
ten documents from TIDES’04 MT-evaluation are used as the unseen test data. BLEU scores are
reported to evaluate translation quality with HM-BiTAM models.

5.1 Empirical Validation

Word Alignment Accuracy We trained HM-BiATMs with ten topics using parallel corporaof
sizes ranging from 6M to 22.6M words; we used the F-measure, the harmonic mean of precision
and recall, to evaluate word-alignment accuracy. Following the same logics for all BiTAMs in [10],
we choose HM-BiTAM in which topics are sampled at word-pair level over sentence-pair level. The
baseline IBM models were trained using a18h543 scheme2. Refined alignments are obtained from
both directions of baseline models in the same way as described in [5].

Figure 2 shows the alignment accuracies of HM-BiTAM, in comparison with that of the baseline-
HMM, the baseline BiTAM, and the IBM Model-4. Overall, HM-BiTAM gives significantly better
F-measures over HMM, with absolute margins of 7.56%, 5.72% and 6.91% on training sizes of

2Eight iterations for IBM Model-1, five iterations for HMM, and three iterations for IBM Model-4 (with
deficient EM: normalization factor is computed using sampled alignment neighborhood in E-step)
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Figure 3: Comparison of likelihoods of data under
different models. Top: HM-BiTAM v.s. IBM Model-
4; bottom: HM-BiTAM v.s. HMM.

6 M, 11 M and 22.6 M words, respectively. In HM-BiTAM, two factors contribute to narrowing
down the word-alignment decisions: the position and the lexical mapping. The position part is
the same as the baseline-HMM, implementing the “proximity-bias”. Whereas the emission lexical
probability is different, each state is a mixture of topic-specific translation lexicons, of which the
weights are inferred using document contexts. The topic-specific translation lexicons are sharper
and smaller than the global one used in HMM. Thus the improvements of HM-BiTAM over HMM
essentially resulted from the extended topic-admixture lexicons. Not surprisingly, HM-BiTAM also
outperforms the baseline-BiTAM significantly, because BiTAM captures only the topical aspects
and ignores the proximity bias.

Notably, HM-BiTAM also outperforms IBM Model-4 by a margin of 3.43%, 3.64% and 2.73%,re-
spectively. Overall, with 22.6 M words, HM-BiTAM outperforms HMM, BiTAM, IBM-4 signifi-
cantly,p=0.0031, 0.0079, 0.0121, respectively. IBM Model-4 already integrates the fertility and
distortion submodels on top of HMM, which further narrows the word-alignment choices. However,
IBM Model-4 does not have a scheme to adjust its lexicon probabilities specific to document topical-
context as in HM-BiTAM. In a way, HM-BiTAM wins over IBM-4 by leveraging topic models that
capture the document context.

Likelihood on Training and Unseen Documents Figure 3 shows comparisons of the likelihoods
of document-pairs in the training set under HM-BiTAM with those under IBM Model-4 or HMM.
Each point in the figure represents one document-pair; they-coordinate corresponds to the negative
log-likelihood under HM-BiTAM, and thex-coordinate gives the counterparts under IBM Model-4
or HMM. Overall the likelihoods under HM-BiTAM are significantly better than those under HMM
and IBM Model-4, revealing the better modeling power of HM-BiTAM.

We also applied HM-BiTAM to ten document-pairs selected from MT04, which were not included in
the training. These document-pairs contain long sentencesand diverse topics. As shown in Table 2,
the likelihoods of HM-BiTAM on these unseen data dominates significantly over that of HMM,
BiTAM, and IBM Models in every case, confirming that HM-BiTAMindeed offers a better fit and
generalizability for the bilingual document-pairs.

Publishers Genre IBM-1 HMM IBM-4 BiTAM HM-BiTAM

AgenceFrance(AFP) news -3752.94 -3388.72 -3448.28 -3602.28 -3188.90
AgenceFrance(AFP) news -3341.69 -2899.93 -3005.80 -3139.95 -2595.72
AgenceFrance(AFP) news -2527.32 -2124.75 -2161.31 -2323.11 -2063.69
ForeignMinistryPRC speech -2313.28 -1913.29 -1963.24 -2144.12 -1669.22
HongKongNews speech -2198.13 -1822.25 -1890.81 -2035 -1423.84
People’s Daily editorial -2485.08 -2094.90 -2184.23 -2377.1 -1867.13
United Nation speech -2134.34 -1755.11 -1821.29 -1949.39 -1431.16
XinHua News news -2425.09 -2030.57 -2114.39 -2192.9 -1991.31
XinHua News news -2684.85 -2326.39 -2352.62 -2527.78 -2317.47
ZaoBao News editorial -2376.12 -2047.55 -2116.42 -2235.79 -1943.25

Avg. Perplexity 123.83 60.54 68.41 107.57 43.71

Table 2:Likelihoods of unseen documents under HM-BiTAMs, in comparison with competing models.

5.2 Application 1: Bilingual Topic Extraction

Monolingual topics: HM-BiTAM facilitates inference of the latent LDA-style representations of
topics [1] in both English and the foreign language (i.e., Chinese) from a given bilingual corpora.
The English topics (represented by the topic-specific word frequencies) can be directly read-off
from HM-BiTAM parametersβ. As discussed in§ 3.2, even though the topic-specific distributions
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of words in the Chinese corpora are not directly encoded in HM-BiTAM, one can marginalize over
alignments of the parallel data to synthesize them based on the monolingual English topics and the
topic-specific lexical mapping from English to Chinese.

Figure 4 shows five topics, in both English and Chinese, learned via HM-BiTAM. The top-ranked
frequent words in each topic exhibit coherent semantic meanings; and there are also consistencies
between the word semantics under the same topic indexes across languages. Under HM-BiTAM,
the two respective monolingual word-distributions for thesame topic are statistically coupled due
to sharing of the same topic for each sentence-pair in the twolanguages. Whereas if one merely
apply LDA to the corpora in each language separately, such coupling can not be exploited. This
coupling enforces consistency between the topics across languages. However, like general clustering
algorithms, topics in HM-BiTAM, are not necessarily to present obvious semantic labels.
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(sports)

(career)

(water)
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Figure 4:Monolingual topics of both languages learned from paralleldata. It appears that the English topics
(on the left panel) are highly parallel to the Chinese ones (annotated with English gloss, on the right panel).

Topic-Specific Lexicon Mapping: Table 3 shows two examples of topic-specific lexicon mapping
learned by HM-BiTAM. Given a topic assignment, a word usually has much less translation candi-
dates, and the topic-specific translation lexicons are generally much smaller and sharper. Different
topic-specific lexicons emphasize different aspects of translating the same source words, which can
not be captured by the IBM models or HMM. This effect can be observed from Table 3.

Topics
“meet” “power”

TopCand Meaning Probability TopCand Meaning Probability

Topic-1 $Ä¬ sports meeting 0.508544 >å electric power 0.565666
Topic-2 ÷v to satisfy 0.160218 >� electricity factory 0.656
Topic-3 ·A to adapt 0.921168 �9 to be relevant 0.985341
Topic-4 N� to adjust 0.996929 åþ strength 0.410503
Topic-5 ¬� to see someone 0.693673 åþ strength 0.997586
Topic-6 - - - - - -
Topic-7 ÷v to satisfy 0.467555 � Electric watt 0.613711
Topic-8 $Ä¬ sports meeting 0.487728 ¢å power 1.0
Topic-9 - - - Ñ to generate 0.50457
Topic-10 ¬� to see someone 0.551466 åþ strength 1.0

IBM Model-1 $Ä¬ sports meeting 0.590271 >� power plant 0.314349
HMM $Ä¬ sports meeting 0.72204 åþ strength 0.51491
IBM Model-4 $Ä¬ sports meeting 0.608391 åþ strength 0.506258

Table 3: Topic-specific translation lexicons learned by HM-BiTAM. We show the top candidate (TopCand)
lexicon mappings of “meet” and “power” under ten topics. (The symbol “-” means inexistence of significant
lexicon mapping under that topic.) Also shown are the semantic meanings of the mapped Chinese words, and
the mapping probabilityp(f |e, k).

5.3 Application 2: Machine Translation

Theparallelismof topic-assignment between languages modeled by HM-BiTAM, as shown in§ 3.2
and exemplified in Fig. 4, enables a natural way of improving translation by exploiting semantic
consistency and contextual coherency more explicitly and aggressively. Under HM-BiTAM, given
a source documentDF , the predictive probability distribution of candidate translations of every
source word,P (e|f, DF ), must be computed by mixing multiple topic-specific translation lexicons
according to the topic weightsp(z|DF ) determined from monolingual context inDF . That is:

P (e|f, DF ) ∝ P (f |e, DF )P (e|DF )=
K

X

k=1

P (f |e, z = k)P (e|z = k)P (z = k|DF ). (11)

We usedp(e|f, DF ) to score the bilingual phrase-pairs in a state-of-the-art GALE translation system
trained with 250 M words. We kept all other parameters the same as those used in the baseline. Then
decoding of the unseen ten MT04 documents in Table 2 was carried out.
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Systems 1-gram 2-gram 3-gram 4-gram BLEUr4n4
Hiero Sys. 73.92 40.57 23.21 13.84 30.70
Gale Sys. 75.63 42.71 25.00 14.30 32.78
HM-BiTAM 76.77 42.99 25.42 14.56 33.19
Ground Truth 76.10 43.85 26.70 15.73 34.17

Table 4:Decoding MT04 10-documents. Experiments using the topic assignments inferred from ground truth
and the ones inferred via HM-BITAM; ngram precisions together with final BLEUr4n4 scores are evaluated.

Table 4 shows the performance of our in-house Hiero system (following [3]), the state-of-the-art
Gale-baseline (with a better BLEU score), and our HM-BiTAM model, on the NIST MT04 test
set. If we know the ground truth of translation to infer the topic-weights, improvement is from
32.78 to 34.17 BLEU points. With topical inference from HM-BiTAM using monolingual source
document, improved N-gram precisions in the translation were observed from 1-gram to 4-gram.
The largest improved precision is for unigram: from75.63% to 76.77%. Intuitively, unigrams have
potentially more ambiguities for translations than the higher order ngrams, because the later ones
encode already contextual information. The overall BLEU score improvement of HM-BiTAM over
other systems, including the state-of-the-art, is from32.78 to 33.19, an slight improvement with
p = 0.043.

6 Discussion and Conclusion
We presented a novel framework, HM-BiTAM, for exploring bilingual topics, and generalizing over
traditional HMM for improved word-alignment accuracies and translation quality. A variational in-
ference and learning procedure was developed for efficient training and application in translation.
We demonstrated significant improvement of word-alignmentaccuracy over a number of existing
systems, and the interesting capability of HM-BiTAM to simultaneously extract coherent monolin-
gual topics from both languages. We also report encouragingimprovement of translation quality
over current benchmarks; although the margin is modest, it is noteworthy that the current version of
HM-BiTAM remains a purely autonomously trained system. Future work also includes extensions
with more structures for word-alignment such as noun phrasechunking.
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