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Abstract. Referral systems have been proposed to assist people in finding poten-
tial experts in person-to-person social networks, in which each user is assigned a
software agent and software agents help automate the process through a series of
referrals. However, most of the existing referral systems have focused on the re-
ferral information generation, and simply consider referrals through path search
in a static graph. An important question is how to efficiently search the social
networks with the help of software agents, while agents only rely on their local
knowledge. In this paper referral networks are proposed to model the social struc-
ture emerging among software agents. We study the referral networks empirically
for the community of AI scientists (as defined in bibliographic data), and show
how to control the searching process by adaptively choosing the referrals.

1 Introduction

Research on the diffusion of information indicates that interpersonal communication
acts as an important channel for gathering information [5, 9]. But if we wish to rely on
interpersonal communication, we still need to figure out how to determine the right per-
son of whom to ask a question. Usually we cannot find the potential expert(s) directly,
and we need some assistance from our friends or friends’ friends to locate them. The
phenomenon ofSix Degrees of Separationtells us that there is a chain of only about six
people between any two people in the country[17]. This relatively small value indicates
that it is possible to use some intelligent software agents, who can interpret the links
between people and follow only the relevant ones, to find the desired experts efficiently
[2].

The importance of referrals on information flow, e.g., in marketing, has been known
for a long time [5, 16, 21]. The ideas of referral systems have also been around since
the early 1980s, e.g., MINDS [4, 7] and ReferralWeb [11, 12]. In a referral system each
user is assigned a software agent and software agents help the people find potential
experts through a series of referrals. MINDS is the earliest agent-based referral system
of which we have knowledge, but ReferralWeb first explicitly used referral chains to
find some people with the needed information[10]. In general, MINDS is giving much
attention to learning heuristics for referral generation while ReferralWeb focuses on the
problem of how to bootstrap the referral system. Neither of them studies the dynamics
of social structure emerging among software agents, especially how to efficiently search
the social network with the help of agents [24, 29, 31].



A referral network is simply a “loose” multiagent system, in which each agent is
associated with a user and the agents can automatically generate and follow referrals
upon some queries. The agents can learn on the shoulder of the user, and they can
adaptively choose their neighbors or update the neighbors’ information, i.e., expertise,
and sociability, upon the feedbacks from the user. Moreover, there is a good chance to
find the needed experts in a referral network than in a human social network. Part of the
reasons is that the query is routed among the software agents in the referral network,
and the user need not worry about disturbing other users, who are shielded from seeing
irrelevant messages by software agents.

Referral networks are intended to be used in a distributed, and dynamic system in
which the structure of the system itself and the member of the system are capable of
dynamically changing. Therefore, traditional approaches like a centralized database or
matchmaker is not feasible in these settings. Similar problems were studied in other
areas and each of them focused on one interesting side of the networks, e.g., peer-
to-peer networks (identical responsibilities of each node) [20, 22, 25, 28], power-law
networks (link distribution of each node) [1, 13], and small-world networks (shortcuts
among any two nodes) [14, 15].

Peer-to-Peer Networks:Distributed searching algorithms in Gnutella1 use a brute
force searching and broadcast the request to all the peers in the network. Chord [25],
CAN [20], and Pastry [22] studied distributed hashing, in which given an object, the
algorithm will guarantee to locate a node (peer) that has that object. In Chord, nodes
are assigned a numerical identifier along a ring, while in CAN, nodes are a subrange
of an N-dimensional torus. For all these techniques, the routing table for each node is
fixed and therefore the network is not reconfigurable. In our approach, the neighbors
are chosen based on how well they respond the queries from the given agent. Moreover,
some networks like referral networks we studied, or more broadly the social networks,
can not be partitioned by IP address.

Yanget al.[28] studied performance and tradeoff of three search techniques in peer-
to-peer networks: iterative deepening, directed BFS, and local indices. Thedirected
BFSis similar to ours, but for their approach, each node only maintains relatively sim-
ple statistics for its neighbors, i.e., the number of results that were received through
the corresponding neighbor for past queries, or the latency of the connection with that
neighbor. Instead, in order to select neighbors more accurately, we model each neigh-
bor in the vector space model. Moreover, Yanget al. did not consider the topology of
the networks, while in referral networks, software agents cooperate together to direct
requests toward appropriate service or person with shortest paths if such short paths
exist.

Power-Law Networks: Adamic et al. [1] and Kim et al. [13] studied the power-
law link distribution of the networks, and introduced a number of local search strategies
which use high degree nodes. We argue that these intuitive strategies might be helpful
for people, who can decide to ask the friends who are better connected than others, but
they cannot readily be used in the design of referral networks. Our approach captures the
intuition via the notion ofsociabilityand each agent learns about which of its neighbors
is better connected.

1 http://gnutella.wego.com/



Small-World Networks: Small-world phenomenonhas been known for a long time,
however, an explanation of the phenomenon [17] remains relatively unexplored until
1998. Watts & Strogatz [27, 26] found that small-world networks are neither fully reg-
ular nor fully random. Such networks are highly clustered (like regular graphs) with
just a few random short paths (like random graphs). Later, Kleinberg [14, 15] found
that it was possible to find short paths for the model only after randomly rewiring a
two-dimensional lattice in a decentralized fashion. The topology of referral networks is
similar to a two-dimensional lattice, but in our settings there is no global information
about the position of the target, and hence it is not possible to determine whether a move
is toward or away from the target.

The rest of this paper is organized as follows. Section 2 defines some backgrounds
and notations which will be useful for the remainder of the paper. Section 3 describes
some preliminary results we have got in the simulation. The future work for our research
is given in Section 5, and is followed by a short conclusion.

2 Framework

In referral networks each user is represented both by expertise (ability to provide good
service) and sociability (ability to provide good referrals). Queries from the user are
first seen by his agent who decides the potential contacts to whom to send the query.
The agent who receives a query can decide if it suits his user and let the user see that
query. If not, the agent may respond with referrals to other users.

A query includes the query content as well as the requester’s contact information
(i.e., email address). A response may include an answer or a referral, or neither (in
which case no response is needed). Note that the referring process in referral networks
is different from that in peer-to-peer networks. In referral networks, all referrals are sent
back to the requesting agent and the requesting agent can decide which referral should
follow next and when to stop the referring process.

The initial queries by an agent are sent only to its immediateneighbors. It must
therefore keep models for these neighbors. In addition, the agent may keep more models
of other agents as well. The models of these other agents are considered the agent’s
acquaintance. The number of neighbors for each agent is limited, but the number of
acquaintance is unlimited. The models for each neighbor and acquaintance are learned
from interactions with the other agents, e.g., when they ask or answer a query. The
acquaintances are not directly contacted for a query, but may be contacted if they are
referred to by someone else. By maintaining additional models of acquaintances, the
agent in effect tracks these acquaintances who may become closer associates.

2.1 User Modeling

We adapt vector space model to locate people rather than documents. In our formula-
tion, each agent maintains two kinds of models: aprofile for its user; and anacquain-
tance modelfor each of its neighbors or acquaintances. The expertise of each user is
modeled as an expertise vector. Given a query vector and an expertise vector, the sim-
ilarity between the two vectors is defined as the cosine of the angle between those



vectors. We give a slightly different definition. This definition also captures the cosine
of the angle, but scales it by the length of the expertise vector. The idea is that a person
whose expertise for a query is twice as large as another person is twice as desirable as
a source of information. Under the traditional model, two users would be considered
equally desirable as long as the angles of their expertise vectors were the same.

Definition 1. Given a query vectorQ = 〈q1, q2, . . . , qn〉 and an expertise vectorEi =
〈e1, e2, . . . , en〉, the similarity betweenQ andEi is defined as:

Q3Ei =
∑n

t=1 qtet√
n

∑n
t=1(qt)2

For example, given a query vectorQ = 〈0.1, 0.9〉 and two expertise vectorsE1 =
〈0.5, 0.5〉 andE2 = 〈1, 1〉. In traditional vector space model, the two expertise vectors
have equal similarity with the query vectorQ, but in our framework,E2 is better than
E1 sinceQ3E2 > Q3E1.

When a user agent receives a query, it tries to match the query against the expertise
vector in itsprofile. If there is a good match, the query is passed on to its owner directly.

Definition 2. Given a query vectorQ and a thresholdωi (for filtering), where0 ≤ ωi ≤
1, it says there is a good match between the userPi and the queryQ if Q3Ei ≥ ωi.

The relevance of a neighbor to a given query depends not only on the similarity
of the query to the user’s expertise, but also on what weight is assigned to the user’s
sociability, which reflects how much we can trust the referrals produced by this user.

Definition 3. Given a query vectorQ, the relevance ofQ to any neighborPj of the
user is computed asQ4Pj = (1− η)(Q3Ei) + ηSj , whereSj is the sociability of the
neighborpj ; andη and(1 − η) are the weights given to the sociability and expertise,
respectively.

Further, the user may be allowed to specify an absolute relevance threshold. The
threshold can be adjusted to tune the number of purported experts found and to limit the
number of referrals that userPi will give other users. Note that usually we haveΩi ≥ ωi.

Definition 4. Given a query vectorQ and a thresholdΩi (for referring), a neighborPj

of userPi is relevant toQ if Q4Pj ≥ Ωi for a special value ofη.

2.2 Referral Graph

The acquaintance model and profile must be learned by the agent through the inter-
actions of its users with other users. Areferral graphencodes how the computation
spreads as a query originates from an agent and referrals or answers are sent back to
this agent. Note that we will use the terms userPi and agentAi interchangeably, except
when we are referring to users who will give an answer.

Definition 5. A referral r to agentAj returned from agentAi is defined as〈Ai, Aj〉,
we sayAi is aparentof Aj andAj is achild of Ai.



For convenience we call〈Ar, Ai〉 a referral, where the requesting agentAr sends
a query to one of his neighborsAi. Let Q be a query from agentAr. We assume that,
after a series ofl referrals, colleagueAj produces a responseR. The entire referral
chain in this case would be〈Ar, . . . , Aj〉, with the lengthl. We use thedepthof a
referral to represent the order in which agents are contacted in a referral graph (the root
is the requesting agent with depth zero). Sometimes a referral may cause a cycle if it is
appended to the referral graph. We can avoid cycles by representing theancestorof an
agent in a referral graph.

Definition 6. Given a referral chain〈Ar, Ar+1, . . . , Aj〉 from Ar to Aj , then any node
Ak (except forAj itself) on the referral chain fromAr to Aj is called anancestorof
agentAj , denoted asancestor(Aj). If any agentAk is an ancestor of agentAj , thenAj

is a descendant of agentAk, denoted asdescendant(Ak).

Definition 7. A referral graphG is defined as a directed graphG(Ar, Λ, R,Q), where
Ar is the requesting agent,Λ is a finite set of agents{A1, A2, . . . , An}, R is a set of
referrals{r1, r2, . . . , rm} and Q is the query (Ai (1 ≤ i ≤ n) is called a node in the
referral graphG. Similarly, r (∈ R) is called an edge in the referral graph G.).

Definition 8. Given a referral graphG(Ar, Λ, R,Q), a referralr = 〈Ai, Aj〉 is redun-
dant for G if and only if (1) agentAi andAj are some nodes in graphG, and (2)Aj is
one of the ancestors ofAi.
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Fig. 1. The redundant referrals in a referral graph

Figure 1 shows an example of redundant referrals in a referral graph, where referral
〈A4, A1〉 is redundant sinceA1 is one of ancestors ofA4. Referral〈A4, A2〉 looks like
a redundant referral, but it is not.



Definition 9. A given referral graphG(Ar, Λ, R,Q) is non-redundantif and only if for
any referralr ∈ R, r is not redundant forG.

2.3 Weighted Referral Graph
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Fig. 2. The order ofA5 andA6 in a referral graph

If we look at the referral graph more carefully, we can find all agents can be cate-
gorized as follows: (1) requesting agentAr (black); (2) agents who have been visited
(gray); (3) agents who have not been visited (white). One interesting question is for
each leaf agent (who has not been visited) in the referral graph, needAr expand all of
them? Suppose each time one agent will return four referrals, there could be at most
4 ∗ 4 ∗ 4 ∗ 4 = 256 leaf agents for a referral graph with maximal depth four. Is there any
way to control which leaf agent should be expanded first, so that the requesting agent
can send fewer messages, but do not sacrifice the possibility of locating the desired
experts.

Figure 2 shows a simple referral graph with only two leaf agentsA5 andA6, the
question is which one should be expanded first. One intuition is that if bothA2 andA4

saidA6 was good, it is very likelyA6 is better thanA5, andAr should askA6 first.
Following this intuition, we introduce weighted referral graphs in which each node
(agent) and edge (referral) are assigned a weight.

Definition 10. Given anon-redundantreferral graphG(Ar, Λ, R, Q) and a referralr =
〈Ai, Aj〉, then the weight of referralr is defined aswr = Q4Pj , which was computed
at the side of agentAi and returned toAr.

Next we define the weight of each agent in the referral graph. The default weight of
requesting agentAr is 1.



Definition 11. Given a referral graphG(Ar, Λ,R, Q), for any agentAj , the weight of
agentAj is defined aswj =

∑
wi ∗ wr, for all referralr = 〈Ai, Aj〉 to Aj , wherewi

andwr are the weighs of agentAi and referralr, respectively.

Definition 12. A weighted referral graph̄G is defined as a non-redundant referral graph
G(Ar, Λ, R,Q) and plus a weight mappingAi|r → w for any agentAi and referralr,
wherew ∈ (0,∝).
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Fig. 3. Weights of each node (agent) in a weighted referral graph

Figure 3 shows an example of a weighted referral graph. The weight of agentA6 is
0.4∗0.5+0.15∗0.5 = 0.275, while the weight ofA5 is0.09. We should be careful when
we try to append some referrals to a referral graph. Suppose in Figure 3,〈A2, A6〉 comes
back first. When we append〈A4, A6〉 to the referral graph, we have to recompute the
weight ofA6. In order to facilitate the referring process, each referral graph has exactly
one pool to store all non-visited nodes (leaf agents), and there could be more than one
pool for the requesting agentAr.

Definition 13. Given a weighted referral graph̄G(Ar, Λ, R,Q), and a new referralr =
〈Ai, Aj〉, Aj is acut-pointnode ofḠ if and only if Aj ∈ Λ.

In the above case,A6 is the last agent on the referral chain〈Ar, A2, A6〉. It will be
more complex if agentA4 refers toA2 instead ofA6, which has been visited before and
returns the referral toA6 (hereA2 is acut-pointnode). Can we just update the weight of
A2 and then stop. The answer is NO. We have to updateA6 sinceA6 is the descendant
of A2. An operationrelax is introduced to check each descendant of the cut-point node
or himself, and update their weights if needed.



 

Assumption: An agent who gives an answer won’t make a referral. 

 

Suppose agent Ar is the requesting agent, set Λ is the agents being visited. Then given a 

series of referral {r1, r2, …, rm},  for each referral r  = 〈Ai , Aj〉, agent Ar  will update the 

expertise and sociability of other agents according to the following rules, 

 

(1) If Aj ∉ Λ and Aj returns an answer, then  

1) appends r to the referral graph, and Aj  into Λ,  

2) evaluates the answer and updates the expertise of agent Aj and the 

sociability of any agent on the referral chain to agent Aj; 

3) otherwise go to (2), 

(2) If Aj ∉ Λ and Aj doesn’t return an answer, then just appends r to the referral graph, 

and Aj  into Γ; otherwise, go to (3) 

(3) If Aj ∈ Λ and Aj ≠ ancestor (Ai), then appends  rk to the referral graph, and Aj  into 

Λ, relax Aj and descendants of (Aj); otherwise, go to (4) 

(4) Ignore the referral r. 
 

Fig. 4. An algorithm for constructing a referral graph

Definition 14. The operationrelax (nodeAi) is defined as: (1) update the weight of
nodeAi; (2) if nodeAi is not a leaf agent, for each child of nodeAi, relax(child(Ai)).

Figure 4 shows an algorithm of constructing a referral graph upon a series of re-
ferrals. Note that we actually consider the length of referral chains when we tried to
expand some leaf agents in a referral graph. Our algorithm prefers the leaf agents with
shorter referrals if both agents have no accumulating weights from others.

2.4 Credits/Penalties Propagation

Now we talk about how the requesting agent propagates the rewards/penalties to all
relevant agents in case there are some answers returned. First we introduce an operator
Π, which was used to update the sociability. The intuition behind the formula is that
we want to model the change of sociability which is hard to be built up but easy to
be destroyed. Also the maximal value of the sociability should be bounded by one, no
matter how many successful answers come through the agent.

Definition 15. Given any two variableX andY , where0 ≤ X ≤ 1, the operatorΠ
was defined asΠ(X, Y ) = X + Y −XY if 0 ≤ Y , or X + XY /(1 + Y ), otherwise.

Given a referral graph G (or̄G), suppose userPj returns an answerR, then the
requesting agentAr will update expertise and sociability as follows, whereα is the
rating given by the user,β is the learning rate,−1 ≤ α ≤ 1, and0 ≤ β ≤ 1.



– Expertise:On the side of userPr, agentAr will update the expertise vector for
Pr in the profile as(1 − β)Er + βQ, and the expertise vector for userPj as(1 −
β)Ej + αβR. On the side of userPj , agentAj will update the expertise vector for
Pj as(1− β)Ej + βR.

– Sociability: Supposel is the depth ofAj , the following algorithm will propagate
the credits to his ancestors according to the distance to him, invoked by backProp
(Aj , l − 1, α).

backProp (NodeAi, int l, double credits){
for each parent of nodeAi {

if (l ≥ 0) and (i 6= Ar) then{
NodeAj = parent(Ai);
Sj = Π(Sj , credits)
backProp(parent(Aj), l-1, credits/2)

}
}

}

Note that we give more rewards or penalties to the agents who are near to the an-
swering agent. For example, in figure 3, supposeA6 is referred byA2 first andA6

returns an answer with qualityα, then agentA2, andA4 will get creditα, respectively.
A3 andA1 will not get any credit since they are too far fromA6. However, ifA6 refers
to A4 (A4 does not refer toA6) andA5 returns an answer with qualityα, thenA4 and
A6 will get creditα, A3 andA2 will get α/2 andA1 will get α/4.

If there is no answer from userPj , there will be no penalties for the expertise of
agentAj , and sociability of all members on the referral chain. In our another paper we
introduce another parameter, calledcooperativeness factor. We decrease its coopera-
tiveness factor if there is no answer returned [30].

3 Experimental Results

The networks of scientific collaborations have been studied recently by Newman [19],
and Barab́asiet al. [3]. They focused on the statistical properties of the networks, i.e.,
numbers of papers written by authors, numbers of authors per paper, typical distance
from one scientist to another, and the time evolution of these qualities. In our experi-
ments we reconstructed the social networks for all AI scientists and then evaluated the
performance of expert location techniques starting with the networks.

The data is from the proceedings of AAAI(1980-2000) and IJCAI(1981-2001) con-
ferences. In referral networks, one author is considered another author’s neighbor if
they have coauthored one or more papers together. However, some authors may know
each other, but they may never coauthor a paper in the proceedings. In order to catch
this phenomenon, we introduced some random links among the authors. In our initial
networks, the number of random links equals the number of links due to coauthorship.
Further, we initialize the expertise vector for each author depending on the number of
papers written by the author and the total number of papers in that domain.



In our dataset, we have 4933 scientists whose papers are classified according to
the 19 domains of AI2. For any expertise vectorEj = {e1, e2, . . . , en}, each element
ei (1 ≤ i ≤ n) is weighted using the “TFIDF” (term-frequency inverse document
frequency) [23]. That is, the weight ofei in a vectorEj is derived by multiplying a term
frequency (“TF”) component by an inverse document frequency (“IDF”) component. In
our settings there are two cases, (1) ifEj is an expertise vector in userPj ’s profile, then
for anyek, ek = tfPj ∗ idfk, wheretfPj = number of papers authored byPj in domain
k, andidfk = log(N/nk), whereN = 4933, andnk equal to the number of papers in
domaink; (2) if Ej is an expertise vector in userPi’s acquaintance model forPj , then
for anyek, ek = tfPj

∗ idfk, whereidfk is similar as above, buttfPj
= is defined as

the number of papers coauthored byPi andPj in domaink.
The original data is available in HTML format.3 First, we automatically converted

them into bibtex files with four fields for each entry: author, title, keyword and pages.
We then categorized each paper into one of the 19 domains based on the AI ontology
we constructed. For example, a paper with the keyword “case-based reasoning” will be
identified as “knowledge representation and reasoning.”

Next, we manually checked the consistency of the names. One assumption is that no
two authors have the same names. We did five kinds of clean up: (1) spelling differences
for the first name, e.g., “Dimitri Achlioptas” appeared in AAAI-01, but in AAAI-00 it
was written as “Dimitris Achlioptas”; (2) first name did not always use abbreviated
form, e.g., “A. Bagchi” in AAAI-88 and “Amitava Bagchi” in AAAI-86; (3) middle
name did not always be used, e.g., “Ranan Banerji” in IJCAI-81 and “Ranan B. Banerji”
in IJCAI-87; (4) inconsistent ordering of first and last name, e.g., “Liu Xuhua” in IJCAI-
89 and “Xuhua Liu” in IJCAI-95; (5) harder cases for which we had to consult the web
or ask the author(s) directly, e.g., “M. Fox” appeared in AAAI-86 should be “Mark
S. Fox,” instead of “Maria Fox.”

Third, we identified the experts among the4933 authors in the whole dataset. An
author is an expert in one domaink if and only if the weight ofek is above a certain
threshold. In our case, the threshold was set as8, and about 223 out of 4933 authors
were identified as “experts.” The ratingα is equal to1 if an expert found. The other two
thresholdsωi (for filtering) andΩi (for referring) for each agentAi are both set as0.1.
The learning rateβ is 0.1.

We consider queries corresponding to vectors of length19 that are1 in one dimen-
sion and0 in all other dimensions. For example,[1, 0, . . . , 0] would be a query in the
domain of “AI architecture.” Usually each author only has papers in one or two do-
mains. Therefore the queries could be distinguished into two categories:Home queries

2 The 19 domains and corresponding number of papers are: AI architecture (224), agents and
multiagent systems (265), applications (614), art and music (49), cognitive science (254),
constraint satisfaction (271), expert systems (226), foundations (93), game playing (29), ge-
netic algorithms (43), human-computer interaction (65), information retrieval (91), knowledge
representation and reasoning (1692), logic programming (80), machine learning (806), natu-
ral language processing (549), neural networks (87), planning and search (537), vision and
robotics (660).

3 from the websites http://dblp.uni-trier.de/db/conf/ijcai/ and
http://www.aaai.org/Press/Proceedings/AAAI/
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Fig. 5. Average number of experts found for different branching factors

- queries from the same domain where the author has some papers;Foreign queries-
queries from other domains where the author has no papers.

3.1 Effect of Branching Factors

The first question is that how many neighbors will need to be referred by an agent during
the referring process. Following Kautz et al., we called this thebranching factorand
denoted it byF . Figure 5 shows the number of experts found (averaged over all agents)
for different branching factors when keeping the depth of referral graph as6. We found
that, for home queries, the number almost reached the highest value whenF = 3, but
for foreign queries, at least4 was needed forF . In the following experiments the value
of F (unless specified) will be4 for both home and foreign queries.

3.2 Depth of Referral Graphs

The next natural question is how deep do the referral graphs need to be for this network?
We found that for home queries, the depth of referral graphs needs to be at least five, but
for foreign queries, the depth needs to expand to six. Figure 6 illustrates the power of
referral chaining. For home queries, if an agent only asks his neighbors directly, he only
has a 14% chance of finding an acceptable answer. But with the help of software agents
in referral networks, the agent has a 55% chance, reflecting a significant improvement.
Referrals are even more important when seeking an expert in an area that is different
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Fig. 6. Average number of experts found for different depth of referral graphs

from one’s own area. For foreign queries, we find that there is an almost 30 times
greater chance of success when using referrals than by just asking neighbors directly
(18% versus 0.6%).

3.3 Accuracy of Referral Chains

Everyone has only incomplete knowledge of his community. This is why social net-
works are useful in the first place. Some agents may not be good experts, but may be
well connected and may give good referrals. Sociability was introduced to credit the
ability to give good referrals. During the referring process we consider both expertise
and sociability. The authors send queries, referrals, and responses to one another, all the
while learning about each others’ expertise and sociability. After each agent sends out
about 10 home queries or 10 foreign queries, we run the experiment again for different
depths of referrals. Figure 7 shows that, even with only10 queries, the number of ex-
perts found can be surprisingly improved. This suggests learning could be effective in
practice, especially for home queries. Note that the number of neighbors for each agent
remains constant, but the set of neighbors is updated to promote the most promising
acquaintances to be neighbors.

3.4 Minimizing Referral Graphs

Our last experiment will talk about how to minimize the referral graphs. In our third
experiment we appended all non-redundant referrals to the referral graph. One interest-



0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

A
ve

ra
ge

 n
um

be
r 

of
 e

xp
er

ts
 fo

un
d

Depth of referral graphs

home queries, no learning
home queries, with learning
foreign queries, no learning

foreign queries, with learning

Fig. 7. Average number of experts found in a dynamic referral networks

ing question is for each leaf agent in the referral graph: need we expand all of them?
In this setting we introduce weighted referral graph and the weights of each referral
and agent are depended onexpertiseandsociabilityof each agent and the topology of
the referral graph. When the requesting agentAr receives a series of referrals, each
timeAr will choose referrals with the highest weight one by one. The referring process
stopped when one expert was found. Figure 8 summarized the results whenF = 4. We
can find that average number of referrals for per expert found is significantly improved
after minimizing the referral graph.

4 Conclusion

We study the referral networks empirically and show how to control the searching pro-
cess by adaptively choosing the referrals in terms of expertise and sociability. One rea-
son to believe that referral networks would be useful is that it basically models the
manner in which expertise location actually works, while allowing more people to be
contacted without causing unnecessary disturbance. We discussed the upper bounds of
the number of the neighbors should be selected in each step (branching factor), and
the distance of search (depth of referral graphs) in search of appropriate service or per-
son. Moreover we found the performance of the network can be surprisingly improved
through learning and neighbor selection. The referral network can evolve into a larger
and more effective community for information seeking through the interactions among
software agents.
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The present approach to referral networks is not only useful for building social net-
works of humans, but we expect can also be applied in building multiagent systems
in general. The conventional way to implementing a multiagent system is to use spe-
cialized agents such as brokers or facilitators [8, 6]. Despite the considerable research
that has gone into the theories and architectures for such multiagent systems, there is
relatively little experience with building a multiagent system with people together. A
referral network approach, being perfectly decentralized, extend the stand-alone multi-
agent systems with users, and enable them to share their knowledge and experience on
a wide scale.

We hope that our work will stimulate further studies of referral networks. Referral
networks help to develop an effective, naturally occurring knowledge management sys-
tem in the organizations, while each agent automatically learns one another’s domains
of expertise. The rapid change of organizational structure makes agent-based referral
networks even more important in which workers rely on their personal social networks,
rather than unstable, weakening ”organization charts” [18]. Moreover, referral networks
are a natural next step in the evolution of peer-to-peer computing, in which agents can
help computing networks dynamically work together, i.e., prioritizing tasks, controlling
traffic flow, and searching for files or objects.
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