ROBUST & SPECULATIVE
BYZANTINE RANDOMIZED CONSENSUS
WITH CONSTANT TIME COMPLEXITY IN NORMAL CONDITIONS

Bruno Vavala
University of Lisbon, Portugal
Carnegie Mellon University, U.S.

Nuno Neves
University of Lisbon, Portugal
CONSENSUS

• Fundamental problem in distributed computing
 • Examples: SM Replication, Leader Election, Coordination, Group Membership, etc.

• Impossible to attain deterministically with crash-faults (partial correctness)

• Termination achievable with:
 • weaker models (ev. synchrony assumption)
 • randomization (almost-surely)
RANDOMIZED CONSENSUS

• Properties

 • Validity: if all correct processes propose v, then v is the only possible decision

 • Agreement: no two correct processes decide differently

 • Probabilistic Termination: all correct processes eventually decide with probability 1

• Assumptions

 • Reliable channels

 • Source-authenticated channels
BRACHA’S ALGORITHM
(PODC 1984)

• Seminal algorithm
• Asynchronous
• Byzantine resistant
• Resilient-optimal (3f+1)
• Correct under the Strong Adversary model
BRACHA’S ALGORITHM
(PODC 1984)

• Seminal algorithm
• Asynchronous
• Byzantine resistant
• Resilient-optimal (3f+1)
• Correct under the Strong Adversary model

1) RBcast value
2) Set majority value

1st phase
(set majority)
BRACHA’S ALGORITHM
(PODC 1984)

- Seminal algorithm
- Asynchronous
- Byzantine resistant
- Resilient-optimal (3f+1)
- Correct under the Strong Adversary model

1st phase
(set majority)

1) RBcast value
2) Set majority value

2nd phase
(try-lock)

4) RBcast value
5) Set quorum value (if any, or default v)
BRACHA’S ALGORITHM
(PODC 1984)

<table>
<thead>
<tr>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) RBcast value</td>
</tr>
<tr>
<td>2) Set majority value</td>
</tr>
<tr>
<td>4) RBcast value</td>
</tr>
<tr>
<td>5) Set quorum value (if any, or default v)</td>
</tr>
<tr>
<td>7) RBcast value</td>
</tr>
<tr>
<td>8) Set decision value (if any, or majority) (if any, or flip coin)</td>
</tr>
<tr>
<td>10) Start new round</td>
</tr>
</tbody>
</table>

- Seminal algorithm
- Asynchronous
- Byzantine resistant
- Resilient-optimal (3f+1)
- Correct under the Strong Adversary model

1st phase (set majority)
2nd phase (try-lock)
3rd phase (try-decide)
IN THEORY

Potential problem: expected exponential time execution under adverse conditions
In reality: it terminates in a constant number of rounds under normal conditions
RELIABILITY VS. PERFORMANCE

WHAT’S THE MODEL?
WHAT IS NORMAL?

- Asynchrony? ✓
- Crash failures? ✓
- Byzantine failures? ✗
- Content-independent message scheduler? ✓
- Full information adversary? ✗
- Adversary message scheduler? ✗
AN EXPERIMENT
FIRST ROUND

first phase

<

second phase

>

third phase

toss a coin
SECOND ROUND

first phase

second phase

third phase

toss a coin 😞
THIRD ROUND

first phase

second phase

third phase

decision
PROBABILISTIC ANALYSIS
INGREDIENTS

• Hypergeometric distribution

\[\mathcal{H}(n, k, n-f) \]

• Binomial distribution

\[\mathcal{B}(n, p) \]

• Normal distribution

\[\mathcal{N}(np, np(1-p)) \]

• Some approximations

\[P(\mathcal{B}(n, p) \leq i) \approx \Phi \left(\frac{i-np}{\sqrt{np(1-p)}} \right) \]
KEY

- Threshold of half plus \(\frac{1}{4} \) of procs proposing \(v \) at the end of 2nd phase
GOING BACKWARDS

• decision on v

message exchange
3rd Phase

• Linear bias of constant 1/4 of procs proposing v

message exchange
2nd Phase

• Procs have constant probability of setting v
 • Linear bias of (just) \textit{positive} constant beyond the average

message exchange
1st Phase

• Square root bias beyond the average of procs proposing v
 • Back to coin tossing, this is a . . .

Basic property of the Normal Distribution: \(p = \frac{2}{5} \) (or \(2.5 \) rounds)
EVALUATION
PERFORMANCE

• Cluster of 6 nodes
• Up to 100 processes

• $n = 3f + 1$
• Divergent initial configuration

2.5 rounds
PERFORMANCE

• Analysis says 2.5 rounds after coin flipping
• Baseline at 1 round
• Theoretically satisfactory, but practically not precise, constant complexity
LOOK AT THE CONSTANTS

• Approximations are theoretically good
• Loss of precision when computing constant values

\[P(\mathcal{H}(n, k, n-f) \leq i) \leq \Phi\left(\frac{i-\mu_B}{\sigma_B} \right) \]

• A better approximation is available

\[P(\mathcal{H}(n, k, n-f) \leq i) \approx \Phi\left(\frac{i-\mu_H}{\sigma_H} \right) \]

• A multiplicative constant impacts noticeably just on constants

\[\Phi\left(\frac{i-\mu_H}{\sigma_H} \right) = \Phi\left(\frac{i-\mu_B}{\sigma_B} \sqrt{3} \right) \]
PERFORMANCE

• Analysis says 1.59 rounds after coin flipping
• Baseline at 1 round
• Theoretically satisfactory and practically rather precise constant complexity
High Level View

<table>
<thead>
<tr>
<th>Model</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>WA</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>SMO</td>
<td>1 round</td>
</tr>
</tbody>
</table>
HIGH LEVEL VIEW

strong adversary

<table>
<thead>
<tr>
<th>Model</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>WA</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>SMO</td>
<td>1 round</td>
</tr>
</tbody>
</table>
HIGH LEVEL VIEW

- Strong adversary
- Synchronous msg order

<table>
<thead>
<tr>
<th>Model</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>WA</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>SMO</td>
<td>1 round</td>
</tr>
</tbody>
</table>
HIGH LEVEL VIEW

<table>
<thead>
<tr>
<th>Model</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>$O(2^n)$</td>
</tr>
<tr>
<td>OA</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>SMO</td>
<td>1 round</td>
</tr>
</tbody>
</table>

Complexity values are all relative to the Bracha’s algorithm.
LET’S GO BEYOND
OVERVIEW

Termination in \{ 1-2 rounds \checkmark \text{ (good)} \}

3-6 phases \xmark \text{ (bad)}

Objective: can we improve phase complexity in normal conditions while maintaining reliability?

- (oblivious) crash-failures may happen
 - Decision in 1 phase possible in a weaker model
- Focus on the set of \((n-f) \) received messages
SPECULATION

1st Phase

- broadcast and set majority

2nd Phase

- broadcast and try lock value
- speculate v is locked
- broadcast (3s)
- try decide v
- no decision
- quorum reached
- decision

3rd Phase

- broadcast and try decide v
• 2-phase termination more frequent with more msgs
BENEFITS AND DRAWBACKS

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 phases/round in the best case</td>
<td>Algorithm complexity increased due to speculation</td>
</tr>
<tr>
<td>3 phases/round if speculation fails</td>
<td>Fragile for near divergent proposals</td>
</tr>
<tr>
<td>Does not compromise original algorithm’s properties</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARIZING

• Bracha’s algorithm (PODC 1984) terminates in constant time (1.59 expected rounds) in normal conditions
 • First cross-model (non-trivial) analysis
 • Enhanced detection of anomalous/malicious behavior
• (Almost) matching upper-bound with respect to Attiya-Censor’s lower bound (PODC 2008)
• Improved algorithm through inexpensive Speculation
THANK YOU!