
Packet Processing on the GPU

Matthew Mukerjee
Carnegie Mellon University
mukerjee@cs.cmu.edu

David Naylor
Carnegie Mellon University
dnaylor@cs.cmu.edu

Bruno Vavala
Carnegie Mellon University
bvavala@cs.cmu.edu

ABSTRACT
Packet processing in routers is traditionally implemented
in hardware; specialized ASICs are employed to forward
packets at line rates of up to 100 Gbps. Recently, how-
ever, improving hardware and an interest in complex packet
processing has prompted the networking community to
explore software routers; though they are more flexible
and easier to program, achieving forwarding rates com-
parable to hardware routers is challenging.

Given the highly parallel nature of packet processing,
a GPU-based router architecture is an inviting option (and
one which the community has begun to explore). In this
project, we explore the pitfalls and payoffs of implement-
ing a GPU-based software router.

1. INTRODUCTION
There are two approaches to implementing packet

processing functionality in routers: bake the pro-
cessing logic into hardware, or write it in software.
The advantage of the former is speed; today’s fastest
routers perform forwarding lookups in dedicated ASICs
and achieve line rates of up to 100 Gbps (the current
standard line rate for a core router is 40 Gbps) [2].
On the other hand, the appeal of software routers
is programability; software routers can more easily
support complicated packet processing functions and
can be reprogrammed with updated functionality.

Traditionally, router manufacturers have opted for
hardware designs since software routers could not
come close to achieving the same forwarding rates.
Recently, however, software routers have begun gain-
ing attention in the networking community for two
primary reasons:

1. Commodity hardware has improved significantly,
making it possible for software routers to achieve
line rates. For example, PacketShader forwards
packets at 40 Gbps [2].

2. Researchers are introducing increasingly more
complex packet processing functionality. A good

example of this trend is Software Defined Net-
working [5], wherein each packet is classified
as belonging to one or more flows and is for-
warded accordingly; moreover, the flow rules
governing forwarding behavior can be updated
on the order of minutes [5] or even seconds [3].

Part of this new-found attention for software routers
has been an exploration of various hardware archi-
tectures that might be best suited for supporting
software-based packet processing. Since packet pro-
cessing is naturally an SIMD application, a GPU-
based router is a promising candidate. The primary
job of a router is to decide, based on a packet’s
destination address, through which output port the
packet should be sent. Since modern GPUs contain
hundreds of cores [8], they could potentially perform
this lookup on hundreds of packets in parallel. The
same goes for more complex packet processing func-
tions, like flow rule matching in a software defined
network (SDN).

This project is motivated by two goals: first, we
seek to implement our own GPU-based software router
and compare our experience to that described by the
PacketShader team (see §2). Given time (and bud-
get!) constraints, it is not feasible to expect our
system to surpass PacketShader’s performance. Our
second goal is to explore scheduling the execution
of multiple packet processing functions (e.g., longest
prefix match and firewall rule matching).

The rest of this paper is organized as follows: first
we review related work that uses the GPU for net-
work processing in §2. Then we explain the design of
our system in §3. §4 describes our evaluation setup
and presents the results of multiple iterations of our
router. Finally, we discuss our system and future
work in §5 and conclude in §6.

2. RELATED WORK
We are by no means the first to explore the use of

a GPU for packet processing. We briefly summarize
here the contributions of some notable projects.

1

PacketShader [2] implements IPv4/IPv6 forward-
ing, IPsec encryption, and OpenFlow [5] flow match-
ing on the GPU using NVIDIA’s CUDA architec-
ture. They were the first to demonstrate the feasabil-
ity of multi-10Gbps software routers.

A second key contribution from PacketShader is
a highly optimized packet I/O engine. By allocat-
ing memory in the NIC driver for batches of packets
at a time rather than individually and by remov-
ing unneeded meta-data fields (parts of the Linux
networking stack needed by endhosts are never used
in a software router), they achieve much higher for-
warding speeds, even before incorporating the GPU.
Due to time constraints, we do not make equivalent
optimizations in our NIC driver, and so we cannot
directly compare our results with PacketShader’s.

Gnort [11] ports the Snort intrusion detection sys-
tem (IDS) to the GPU (also using CUDA). Gnort
uses the same basic CPU/GPU workflow introduced
by PacketShader (see §3); its primary contribution
is implementing fast string pattern-matching on the
GPU.

Hermes [12] builds on PacketShader by implement-
ing a CPU/GPU software router that dynamically
adjusts batch size to simultaneously optimize multi-
ple QoS metrics (e.g., bandwidth and latency).

3. BASIC SYSTEM DESIGN
We use the same system design presented by Pack-

etShader and Gnort. Pictured in Figure 1, packets
pass through our system as follows: (1) As packets
arrive at the NIC, they are copied to main memory
via DMA. (2) Software running on the CPU copies
these new packets to a buffer until a sufficient num-
ber have arrived (see below) and (3) the batch is
transferred to memory on the GPU. (4) The GPU
processes the packets in parallel and fills a buffer of
results on the GPU which (5) the CPU copies back
to main memory when processing has finished. (6)
Using these results, the CPU instructs the NIC(s)
where to forward each packet in the batch; (7) fi-
nally, the NIC(s) fetch(es) the packets from main
memory with another DMA and forwards them.

3.1 GPU Programming Issues
Pipelining. As with almost any CUDA program,
ours employs pipelining for data transfers between
main memory and GPU memory. While the GPU
is busy processing a batch of packets, we can uti-
lize the CPU to copy the results from the previous

NIC

CPU

Main Memory GPU

Global Memory

SM SM SM

SM SM SM

Incoming packets (DMA)1

2 Fill bu!er
of packets

3 Copy pkts to GPU

4 Process
packets
on GPU

5 Copy results back

5 Copy
results

Outgoing
packets (DMA)

7

Forward packets6

Figure 1: Basic System Design

time

CPU

GPU

H → D

Process

D → HH → D

Process

D → HH → D

Process

D → H

Host to Device
Memory Copy

Device to Host
Memory Copy

Figure 2: Pipelined Execution

batch of packets from the GPU back to main mem-
ory and copy the next batch of packets to the GPU
(Figure 2). In this way, we never let CPU cycles go
idle while the GPU is working.

Batching. Although the GPU can process hun-
dreds of packets in parallel (unlike the CPU), there
is, of course, a cost: non-trivial overhead is incurred
in transferring packets to the GPU and copying re-
sults back from it. To amortize this cost, we process
packets in batches. As packets arrive at our router,
we buffer them until we have a batch of some fixed
size BATCH SIZE, at which point we copy the whole
batch to the GPU for processing.

Though batching improves throughput, it can have
an adverse effect on latency. The first packet of a
batch arrives at the router and is buffered until the
remaining BATCH SIZE-1 packets arrive rather than
being processed right away. To ensure that no packet
suffers unbounded latency (i.e., in case there is a lull
in traffic and the batch doesn’t fill), we introduce
another parameter: MAX WAIT. If a batch doesn’t
fill after MAX WAIT milliseconds, the partial batch is
transferred to GPU for processing. We evaluate this
tradeoff in §4.

Mapped Memory. Newer GPUs (such as ours)
have the ability to directly access host memory that
has been pinned and mapped, eliminating steps (3)
and (5). Though data clearly still needs to be copied
to the GPU and back, using mapped memory rather
than explicitly performing the entire copy at once
allows CUDA to copy individual lines “intelligently”

2

as needed, overlapping copies with execution. We
evaluate the impact of using mapped memory in §4
as well.

3.2 Packet Processing
A router performs one or more packet processing

functions on each packet if forwards. This includes
deciding where to forward the packet (via a longest
prefix match lookup on the destination address or
matching against a set of flow rules) and might also
include deciding whether or not to drop the packet
(by comparing the packet header against a set of fire-
wall rules or comparing the header and payload to a
set of intrusion detection system rules). In our sys-
tem we implement two packet processing functions:
longest prefix match and firewall rule matching. We
pick longest prefix match, because it is the core al-
gorithm used by routers to determine which port to
forward a packet on. We additionally choose fire-
wall rule matching as it is a very common feature
on commodity routers that is simple to implement
(only requiring packet header inspection).

3.2.1 Longest Prefix Match
Long Prefix Match is an algorithm for route lookup.

It performs a lookup on a data structure, whose
entries are prefix-port pairs. The prefixes identify
routes and have the form IP address/mask (e.g.,
192.168.1.0/24). The ports represent the link to
reach the correct the next hop, possibly the destina-
tion. Once the router receives a packet to forward,
it selects an entry in the data structure such that
the prefix is the longest (i.e., with the largest mask)
available that matches the destination address in
the packet. Then, the associated output port is re-
turned.

We adapted the algorithm from [9] for our work.
The algorithm uses a binary trie. It is a tree-like
data structure that keeps the prefixes ordered for
fast lookup. In particular, the position of each inter-
nal node in the trie defines a prefix which is constant
in the subtree associated to such node. The depth
of a prefix is the length of its mask (i.e., between 0
and 32, in our case), which is thus a bound for the
lookup time.

The lookup procedure is extremely simple. A depth-
first search in run on the trie using the destination
address of the packet being processed. So each node
lying on the path describing the associated prefix is
visited. At each step, it updates the output ports, if
an entry is stored (i.e., longest match). Clearly, the
last update is returned, possibly none as there may
be no matching prefixes.

3.2.2 Firewall Rule Matching
A firewall rule is defined by a set of five values

(the “5-tuple”): source and destination IP address,
source and destination port number, and protocol.
The protocol identifies who should process the packet
after IP (e.g., TCP, UDP, or ICMP). Since most traf-
fic is either TCP or UDP [10], the source and des-
tination port numbers are also part of the 5-tuple
even though they are not part of the network-layer
header. If the protocol is ICMP, these fields can in-
stead be used to encode the ICMP message type and
code.

Each rule is also associated with an action (usually
ACCEPT or REJECT). If a packet matches a rule
(that is, the values in the packet’s 5-tuple match
those in the rule’s 5-tuple), the corresponding ac-
tion is performed. Rather than specifying a partic-
ular value, a rule might define a range of matching
values for one of the fields of its 5-tuple. A rule
might also use a wildcard (*) for one of the values
if that field should not be considered when deciding
if a packet matches. For example, a corporate fire-
wall might include the following rule: (*, [webserver-
IP], *, 80, TCP):ALLOW. This rule allows incom-
ing traffic from any IP address or port to access the
company’s webserver using TCP on port 80.

Our rule matching algorithm is incredibly simple.
Rules are stored in order of priority and a packet is
checked against each one after the next in a linear
search. Though this sounds like a näıve approach, [7]
claims that it is the approach taken by open source
firewalls like pf and iptables and likely other com-
mercial firewalls as well. We discuss how we generate
the rules used in our tests in §4.1.4.

4. EVALUATION

4.1 Experimental Setup

4.1.1 Hardware
We ran our tests on a mid-2012 MacBook Pro with

a 2.6 GHz Core i7 processor, 8GB RAM, and an
NVIDIA GeForce GT 650M graphics card with 1GB
memory.

4.1.2 Router Framework
We implemented a software router framework ca-

pable of running in one of two modes: CPU-only or
CPU/GPU. We use the router in CPU-only mode to
gather a baseline against which we can compare the
performance of CPU/GPU mode. In either mode,
the framework handles gathering batches of pack-
ets, passing them to a “pluggable” packet processing

3

function, and forwarding them based on the results
of processing.

We implemented three processing functions: one
that does longest prefix match, one that does firewall
rule matching, and one that does both. For each we
implemented CPU version and a GPU version (the
GPU version is a CUDA kernel function).

4.1.3 Packet Generation
We use the Click Modular Router [4] to generate

packets for our software router framework to process.
We modify the standard packet generation functions
in click to output UDP packets with random source
and destination addresses as well as random source
and destination ports. We have click generate these
randomly addressed packets as fast as it can and
have it send the packets up to our software routing
framework via a standard Berkeley socket between
both locally hosted applications.

Note that this “full-on” kind of workload is essen-
tial to test the maximum throughput of our router
framework, but does not necessarily model a partic-
ular kind of real-world workload. However, in the
case of our system, we wish to measure the feasi-
bility of processing packets in software at the same
speed as specially-designed hardware ASICs. Thus
our evaluation focuses on comparisons of maximum
throughput.

4.1.4 Packet Processing
Longest Prefix Match. First of all, since CUDA
provides limited support for dynamic data structures
such as a trie, we adapted the algorithm to run on
the GPU. In particular, in the initial setup of the
trie, we serialize the data structure into an array,
so that it can be easily transferred on the GPU’s
memory.

In order to work with a realistic dataset, we ini-
tialized the FIB with the prefixes in the Internet
belonging to actual Autonomous Systems. The list
has been retrieved from CAIDA [1], which period-
ically stores a simplified version of its RouteViews
Collectors’ BGP tables. Overall, the size of the trie
turns out to be a few tens of megabytes large. Once
built, the serialized trie is transferred to the GPU to
be used during lookup.
Firewall Rule Matching. To evaluate the perfor-
mance of our router’s firewall rule matching func-
tion, we generate a set of random firewall rules. The
5-tuple values for our random rules are chosen ac-
cording to the distributions in [7]. For example, we
use the probabilities in Table 1, taken from [7], to
pick a new random rule’s protocol. Similar statistics
were used to pick source/destination address/port.

Protocol Prevelance in Rules

TCP 75%
UDP 14%
ICMP 4%
* 6%
Other 1%

Table 1: Protocol distribution in firewall rules

4.2 Evaluation Metrics
We use three different metrics to evaluate our router’s

performance. The results in §4.3 present these val-
ues averaged over 30 seconds of router operation.

Bandwidth. No router performance evaluation would
be complete without considering bandwidth, and so
we measure the number of 64 byte packets forwarded
by our router per second, from which we calculate
bandwidth in gigabits per second. For comparison,
the norm for core routers is about 40 Gbps with
high-end routers currently maxing out around 100
Gbps.

Latency. Bandwidth only tells part of the story,
however; the delay a single packet experiences at a
router is important as well (for some applications,
it is more important than bandwidth). Since some
optimizations aimed at increasing our router’s band-
width increase latency as well (such as increasing
batch sizes), measuring latency is important.

We measure both the minimum and maximum la-
tencies of our router. The maximum latency is the
time from the arrivial of the first packet of a batch
to the time it is forwarded; the minimum latency is
the same but for the last packet of a batch.

Processing Time. We also consider a microbench-
mark: the time spent in the packet processing func-
tion itself (i.e., doing the longest prefix match lookup
or matching against firewall rules). This is largely
a sanity check; we expect to see the GPU perform
much better here, though actual performance (mea-
sured by bandwidth and latency) depends on many
other factors (like the time spent copying data to/from
the GPU).

4.3 Results
Our router went through four iterations, each one

introducing optimizations based on what we learned
from the results of the last. We therefore present our
results in four stages, guiding the reader through our
design process.

4.3.1 Iteration One
We began by näıvely implementing the design pre-

sented in §3; at this point, we made no optimizations

4

— the goal was building a functioning GPU-based
router.

Not surprisingly, it performed underwhelmingly.
The GPU version of our router achieved roughly
80% of the bandwidth the CPU version did (Fig-
ure 3(a)) and its (max and min) latencies were 1.3X
longer (Figure 3(b)). The processing time is not to
blame; as expected, the GPU performs the actual
packet processing much faster than the CPU (Fig-
ure 3(c) — the GPU processing time is so small it
hugs the X axis). A quick examination of the time
spent performing different functions (Figure 3(d))
explains where the GPU router is losing ground: al-
though it spends less time processing, it has to copy
packets to the GPU for processing and copy the re-
sults back, tasks the CPU version doesn’t need to
worry about (Figure 3(e)).

4.3.2 Iteration Two
Since both of our packet processing functions op-

erate only on the data carried by the packet header,
we can reduce the time spent copying data to the
GPU by copying only the packet headers. Unfor-
tunately, the results do not contain unnecessary in-
formation, and cannot easily be condensed (this is
not completely true — it is probably possible to
compress the results, though we do not explore this
here).

Figure 4 shows the performance of the second it-
eration of our router. Reducing the number of bytes
copied to the GPU has closed the gap between the
CPU-only and the CPU/GPU routers in terms of
bandwidth and latency, but the CPU/GPU router
still doesn’t perform any better. Even though we
have all but eliminated copy time to GPU, Figure 4(c)
suggests that we should try to cut down copy time
from the GPU as well.

4.3.3 Iteration Three
Unfortunately, there is no unnecessary data be-

ing copied back from the GPU as there was being
copied to it; we must find another way to reduce
the copy-from-GPU overhead. Instead, we modify
our router’s workflow to take advantage of mapped
memory (§3.1).

This gives the CPU/GPU router a tiny edge over
the CPU-only router (Figure 5), but the gains are
small (as Amdahl’s Law would suggest — the copy-
from-device time we eliminated was a small portion
of the total time in Figure 4(c)).

4.3.4 Iteration Four
Having eliminated the overhead of copying data

to and from the GPU, the third iteration of our

 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 10000

 20000

 30000

 40000

 50000

 60000

 70000

Ba
nd

w
id

th
 (G

bp
s)

Batch Size (packets)

Bandwidth vs. Batch Size

GPU
CPU

(a) Bandwidth vs. Batch Size

 0
 50

 100
 150
 200
 250
 300

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000

La
te

nc
y

(m
s)

Batch Size (packets)

Latency vs. Batch Size

GPU Max Latency
CPU Max Latency
GPU Min Latency
CPU Min Latency

(b) Latency vs. Batch Size

 0
 5

 10
 15
 20
 25
 30

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000

Pr
oc

es
si

ng
 T

im
e

(m
s)

Batch Size (packets)

Processing Time vs. Batch Size

GPU
CPU

(c) Processing Time vs. Batch Size

 0

 20

 40

 60

 80

 100

32 64 128
256
512
1024
2048
4096
8192
16384
65536

%
 T

im
e

Batch Size (packets)

GPU % Time Breakdown vs. Batch Size

Gather Packets
Process

Send Packets
Copy to Device

Copy from Device

(d) Breakdown of Relative GPU Time

 0

 20

 40

 60

 80

 100

32 64 128
256
512
1024
2048
4096
8192
16384
65536

%
 T

im
e

Batch Size (packets)

CPU % Time Breakdown vs. Batch Size

Gather Packets
Process

Send Packets

(e) Breakdown of Relative CPU Time

Figure 3: Iteration 1 Results

5

 0

 50

 100

 150

 200

 250

32 64 128
256
512
1024
2048
4096
8192
16384
65536

Ti
m

e
(m

s)

Batch Size (packets)

GPU Time Breakdown vs. Batch Size

Gather Packets
Process

Send Packets
Copy to Device

Copy from Device

(a) Breakdown of Absolute GPU Time

 0

 50

 100

 150

 200

 250

32 64 128
256
512
1024
2048
4096
8192
16384
65536

Ti
m

e
(m

s)

Batch Size (packets)

CPU Time Breakdown vs. Batch Size

Gather Packets
Process

Send Packets

(b) Breakdown of Absolute CPU Time

Figure 6: Iteration 3 Breakdown

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 10000

 20000

 30000

 40000

 50000

 60000

 70000

Ba
nd

w
id

th
 (G

bp
s)

Batch Size (packets)

Bandwidth vs. Batch Size

GPU
CPU

(a) Bandwidth vs. Batch Size

 0

 50

 100

 150

 200

 250

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000

La
te

nc
y

(m
s)

Batch Size (packets)

Latency vs. Batch Size

GPU Max Latency
CPU Max Latency
GPU Min Latency
CPU Min Latency

(b) Latency vs. Batch Size

 0

 20

 40

 60

 80

 100

32 64 128
256
512
1024
2048
4096
8192
16384
65536

%
 T

im
e

Batch Size (packets)

GPU % Time Breakdown vs. Batch Size

Gather Packets
Process

Send Packets
Copy to Device

Copy from Device

(c) Breakdown of Relative GPU Time

Figure 4: Iteration 2 Results

e

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 10000

 20000

 30000

 40000

 50000

 60000

 70000
Ba

nd
w

id
th

 (G
bp

s)

Batch Size (packets)

Bandwidth vs. Batch Size

GPU
CPU

(a) Bandwidth vs. Batch Size

 0

 50

 100

 150

 200

 250

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000

La
te

nc
y

(m
s)

Batch Size (packets)

Latency vs. Batch Size

GPU Max Latency
CPU Max Latency
GPU Min Latency
CPU Min Latency

(b) Latency vs. Batch Size

 0

 20

 40

 60

 80

 100

32 64 128
256
512
1024
2048
4096
8192
16384
65536

%
 T

im
e

Batch Size (packets)

GPU % Time Breakdown vs. Batch Size

Gather Packets
Process

Send Packets
Copy to Device

Copy from Device

(c) Breakdown of Relative GPU Time

Figure 5: Iteration 3 Results

6

CPU/GPU router only displays meager gains over
the CPU-only version. We turn to a breakdown by
function of the absolute runtime of each (Figure 6)
to understand why.

The CPU-only router clearly spends more time in
the processing function; however, both spend nearly
all their time performing packet I/O (that is, re-
ceiving packets from Click and forwarding them af-
ter processing), so the difference is processing times
has little effect. This suggests that our Click-based
packet generator is the bottleneck. (Indeed, Pack-
etShader spent a great amount of time developing
highly optimized drivers for their NIC [2].) To test
this hypothesis, we implemented a version of our
packet generator that pre-generates a buffer of ran-
dom packets and returns this buffer immediately
when queried for a new batch; similarly, when re-
sults are returned so that packets may be forwarded,
the call returns immediately rather than waiting for
the whole batch to be sent.

Sure enough, the CPU/GPU router now operates
at 3X the bandwidth of the CPU-only version and
with 1/5th the latency (Figure 7). Of course, the
bandwidth achieved by both is completely unreal-
istic (instantaneous packet I/O is impossible), but
these results indicate that with optimized packet I/O
drivers like PacketShader’s, our CPU/GPU router
would indeed outperform our CPU-only one.

5. DISCUSSION AND FUTURE WORK
Multithreaded CPU Processing. The compari-
son of our CPU/GPU router to the CPU-only base-
line is not completely fair. Our CPU-only router op-
erates in a single thread, yielding misleadingly low
performance. Any CPU-based software router in the
real world would certainly spread packet processing
across multiple cores, and we would be surprised if
any core software router were run on a machine with
fewer than 16 cores.

A simple extension of our project would be to par-
allelize our CPU-only packet processing functions
with OpenMP to provide more realistic baseline mea-
surements.

We have implemented a simple multi-threaded ver-
sion. Our preliminary results show that OpenMP
can dramatically improve the performance. By tun-
ing the number of threads and the batch size, we
could increase the bandwidth up to one order of
magnitude, with respect to the mono-thread ver-
sion. However, the packet processing on the GPU
still outperforms that on the CPU, being around
20% faster. More investigation is however required
to understand the impact of the parameters on the
performance.

Parallelism
LPM

Firewall

Packet 1 LPM

Firewall
Packet 2 LPM Firewall

Packet 1 LPM Firewall

Packet 2

LPM

Firewall
Packet 2

LPM

Firewall

Packet 1

Our processing functions aren’t strenuous enough. Future work: IDS or IPsec.

(a) Per-packetParallelism
LPM

Firewall

Packet 1 LPM

Firewall

Packet 2 LPM Firewall
Packet 1 LPM Firewall

Packet 2

LPM

Firewall

Packet 2

LPM

Firewall

Packet 1

Our processing functions aren’t strenuous enough. Future work: IDS or IPsec.

(b) Per-function per-packet

Figure 8: Scheduling Multiple Processing
Functions

Harder Processing Functions. Even in the final
iteration of our router, the CPU/GPU version only
achieves slightly more than three times the band-
width of the CPU-only version. Though this is by
no means an improvement to scoff at, the speedup
strikes us as being a tad low. We suspect the cause
is that our packet processing functions are not tax-
ing enough; the harder the processing function, the
more benefit we should see from the massively par-
allel GPU. This suggests that GPU-based software
routers might be best suited for complex packet pro-
cessing like IDS filtering (which requires pattern match-
ing against packet payloads) and IPsec processing
(which requires expensive cryptographic operations).

One of our goals was to explore the best way to
schedule multiple packet processing functions on the
GPU. As a simple example, to schedule both LPM
and firewall lookup, you could imagine parallelizing
per-packet or parallelizing per-function (Figure 8).
We began testing these schemes, but, as our pro-
cessing functions turned out to be “easy,” there was
little difference. We think this is still an interest-
ing question to explore with more taxing processing
functions.

Faster Packet I/O. By far the largest issue we
noted is that generating and gathering packets from
Click contributes to the majority of the latency, be-
coming the dominant part of both CPU and GPU
overall latency. As seen in Figure 7, removing the
overhead contributed by generating and gather pack-
ets, our GPU implementation performs much better
than our CPU implementation. This is the same
conclusion that the authors of PacketShader [2] came
to. Thus in their system, they focused on reimple-
menting the driver for their NIC to alleviate these
issues. In our framework we could similarly emu-

7

 0
 100
 200
 300
 400
 500
 600
 700

 0 10000

 20000

 30000

 40000

 50000

 60000

 70000

Ba
nd

w
id

th
 (G

bp
s)

Batch Size (packets)

Bandwidth vs. Batch Size

GPU
CPU

(a) Bandwidth vs. Batch Size

 0

 5

 10

 15

 20

 25

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000

La
te

nc
y

(m
s)

Batch Size (packets)

Latency vs. Batch Size

GPU Max Latency
CPU Max Latency
GPU Min Latency
CPU Min Latency

(b) Latency vs. Batch Size

Figure 7: Iteration 4 Results

late newer NIC technologies (like RDAM) to allow
zero-copy access to DRAM that is memory mapped
in the GPU. We could emulate this by having Click
copy packets directly to application DRAM rather
than first sending the packets to the application via
a socket.

Streams. The typical use of a GPU involves the
following operations: a set of tasks and input data
is first collected, transferred to the GPU, processed,
and eventually the output is copied back to the host
device. These operations are performed cyclically,
often on independent data, as in the case of our
packet processing applications. Since the CUDA and
host device are separate processing unit, it is criti-
cal for performance to maximize the concurrency of
such operations.

CUDA Streams provide an interesting mechanism
to optimize GPU-based applications. Basically, CUDA
allows to assign operations (like kernel execution
and asynchronous data transfer to and from the de-
vice) to streams. Then, the stream executions are
overlapped in such a way that similar operations of
different streams do not interfere with each other
(i.e., a kernel execution in stream1 and a data trans-
fer in stream2 can be performed in parallel). The
high level idea is quite similar to that of instruction
pipelining.

We have implemented a version of our router using
CUDA streams. Our preliminary results show that
streams indeed increase the parallelism and through-
put. Operation overlapping is quite visible in the
Visual Profiler. The number of processed packets
increases substantially (around 30-40%). However,
more investigation is required on this subject, par-
ticularly on the packet generator and on the new
issues related to resource management, highlighted
by the NVidia Visual Profiler.

Integrated Graphics Processors. One tempting
idea to explore is the use of integrated graphics pro-
cessors rather than dedicated discrete GPUs. Mod-
ern processors (Intel Core i-series, etc.) include a
traditional multi-core GPU directly on the proces-
sor itself. In essence, this shifts the position of the
GPU from being on the PCI-express bus to being co-
located with the CPU on the quickpath interconnect
(QPI). As the QPI can potentially provide more bus
bandwidth to memory, and integrated graphics pro-
cessor could obtain even higher maximum through-
put, as memory constraints are the biggest source of
potential slowdown after packet I/O at the NIC.

6. CONCLUSION
Software routers are no doubt poised to start play-

ing a larger and larger role in real systems. The pop-
ularity of software defined networks like OpenFlow
alone is a big enough driver to ensure this, though
software routers might find other niches as well. To
our knowledge, GPU-based software routers are cur-
rently limited to the research lab, and we are unsure
whether this is likely to change. Our experience (and
PacketShader’s success) suggests that they might be
a viable option, though the effort required to opti-
mize them may in the end outweigh the benefits.

8

7. REFERENCES
[1] CAIDA. Route Views,

http://data.caida.org/datasets/routing/routeviews-
prefix2as/2012/01/,
2012.

[2] S. Han, K. Jang, K. Park, and S. Moon. Packetshader:
a gpu-accelerated software router. In Proceedings of the
ACM SIGCOMM 2010 conference, SIGCOMM ’10,
pages 195–206, New York, NY, USA, 2010. ACM.

[3] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow
random host mutation: transparent moving target
defense using software defined networking. In
Proceedings of the first workshop on Hot topics in
software defined networks, HotSDN ’12, pages 127–132,
New York, NY, USA, 2012. ACM.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The click modular router. ACM
Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[5] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[6] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[7] D. Rovniagin and A. Wool. The geometric efficient
matching algorithm for firewalls. IEEE Trans.
Dependable Secur. Comput., 8(1):147–159, Jan. 2011.

[8] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W.-m. W. Hwu. Optimization
principles and application performance evaluation of a
multithreaded gpu using cuda. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, PPoPP ’08, pages
73–82, New York, NY, USA, 2008. ACM.

[9] S. D. Strowes. LPM Trie,
http://svn.sdstrowes.co.uk/pub/longest-prefix/, 2011.

[10] K. Thompson, G. Miller, and R. Wilder. Wide-area
internet traffic patterns and characteristics. Network,
IEEE, 11(6):10–23, 1997.

[11] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis. Gnort: High performance
network intrusion detection using graphics processors.
In Proceedings of the 11th international symposium on
Recent Advances in Intrusion Detection, RAID ’08,
pages 116–134, Berlin, Heidelberg, 2008.
Springer-Verlag.

[12] Y. Zhu, Y. Deng, and Y. Chen. Hermes: an integrated
cpu/gpu microarchitecture for ip routing. In
Proceedings of the 48th Design Automation Conference,
DAC ’11, pages 1044–1049, New York, NY, USA, 2011.
ACM.

APPENDIX
A. DISTRIBUTION OF CREDIT

Group Member Portion of Credit

Matt 33.3%
David 33.4%
Bruno 33.3%

9

	Introduction
	Related Work
	Basic System Design
	GPU Programming Issues
	Packet Processing
	Longest Prefix Match
	Firewall Rule Matching

	Evaluation
	Experimental Setup
	Hardware
	Router Framework
	Packet Generation
	Packet Processing

	Evaluation Metrics
	Results
	Iteration One
	Iteration Two
	Iteration Three
	Iteration Four

	Discussion and Future Work
	Conclusion
	References
	Distribution of Credit

