BoB: An Improvisational Music
Companion

Belinda Thom

July 2001
CMU-CS-01-138

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Manuela Veloso, Chair
Roger Dannenberg
Tom Mitchell
David Wessel, University of California, Berkeley

Copyright (©) 2001 Belinda Thom

This research was sponsored by the United States Air Force (USAF) Air Force Research Laboratory
(AFRL) under agreement no. F30602-98-2-0135 and no. F30602-97-2-0250, the Defense Advanced
Projects Research Agency (DARPA) under contract no. N66001-94-C-6037, and generous fellowships
from Bell Labs and the National Science Foundation. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the USAF, AFRL, DARPA, NSF, U.S. government or any other

entity.



Keywords: Unsupervised Learning, Interactive Computer Music Systems, Music

Improvisation, Real-time, Stochastic Processes



Without them, my personal life would be lived in black-and-white — thanks to
Robbie Warner, Jazz, Kiwi, and my friends — who paint in the vibrant Technicolor.
Early on, Bill and Carol Thom instilled in me an insatiable love of music; this has

brought me great pleasure. Enjoying research and succeeding at CMU was a blast
under the guidance of my advisor, Manuela Veloso. Fach member of my committee
also generously offered their invaluable expertise, which shaped numerous aspects of

this interdisciplinary endeavor. Thanks everyone!






Extreme  Secret Agent

Kosak: “Government
Denies Knowledge.” )
- &

o







Abstract

In this thesis, I introduce a new melody representation scheme and a
machine learning framework that enables customized interaction between
a live, improvising musician and the computer. The ultimate intent of
these technologies is to provide the infrastructure needed to intimately
couple the computer with a musician’s all-too-transient improvisations;
potential applications range from improvisational exploration to education
and musical analysis. I introduce Band-OUT-of-a-Box (BoB) — a fully
realized agent that trades personalized solos with a simulated user in real-
time.

Musical improvisation is an ill-defined situation- and user-specific prac-
tice whose inherent non-literal basis makes the authoring techniques ex-
ploited in other Al/entertainment systems (e.g., interactive characters or
stories) less helpful when building an improvisational music companion. A
major contribution is BoB’s computational melodic improvisation model,
which configures itself to its users’ unlabeled examples, alleviating some
of the burden associated with defining an appropriate musical aesthetic.

I first describe an abstract perception algorithm that maps short strings
of notes onto a mixture model. The components of this model correspond
to the various playing modes — e.g., tonal, intervallic, and directional
trends — that the user employed during various parts of a warmup ses-
sion. I next describe a crucial technology that closes the perception loop
by integrating the learned model’s parameters into a stochastic process
that, when sampled, can produce sequences that exhibit specific abstract
goals (or playing modes) while seamlessly integrating into the constraints
set, up by the local environment. These algorithms’ musical performances
are evaluated by qualitatively exploring their behavior using two differ-
ent simulations: both the transcriptions of Bebop saxophonist Charlie
Parker and jazz violinist Stephane Grappelli. These algorithm’s quantita-
tive performance are also assessed using more traditional machine learning

techniques.
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Chapter 1
Introduction

This thesis investigates a novel domain for intelligent agents — agents as specific users’
improvisational music companions — and introduces Band-OUT-of-a-Box (BoB),
an agent designed to trade live, customized solos with a specific improvising mu-
sician/user. An unsupervised machine learning algorithm is presented that addresses
a primary technical challenge in this domain — to computationally specify the agent’s
musical intelligence, a highly personalized and context dependent concept — by learn-
ing to model a user’s improvised behavior. This learned model abstracts bars of solos
into user-specific playing modes, providing a technology for perceiving what the user
plays in a musically powerful, musician-specific manner. In isolation, this model does
not provide the agent with the ability to interactively respond to what the user plays.
Another crucial technology that this thesis presents is a mechanism for closing the
learning loop by reversing the user-specific playing mode abstraction. In particular,
the learned model’s parameters are incorporated into a stochastic process that, when
sampled, produces solos that realize specific user playing modes. With these two
technologies, the agent can intelligently respond to the musician’s solos in real-time.
These ideas are fully implemented in BoB, which is used to simulate and evaluate
real-time solo-trading in two contexts: both the improvisations of saxophonist Char-

lie Parker and jazz violinist Stephane Grappelli.
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1.1 Motivation

The vision of my research is to interactively improvise with the computer, using it
as a tool when practicing alone to capture and experiment with my all-too-transient

spontaneous musical ideas.

1.1.1 Improvisational Music Companions

[ want the computer to serve as my own personal improvisational music companion
(IMC), playing music with me, improvising with me, and getting to know my own

unique musical personality in such a way that it could:

.. answer me halfway through my phrase, bringing me to the point where I can
actually sing what its going to play next, and then, instead of playing that, it’ll

play something against it which compliments what I’m singing in my head.

This quote, which inspires my research, paraphrases drummer Keith Copeland’s mus-
ings about improvising with jazz pianist Ahmad Jamal.! Towards this end, I am
creating BoB, an agent that employs novel machine learning techniques to trade solos

with its user in a musician- and context-specific manner.

1.1.2 Interactive Music Systems

Most interactive music systems rely on an author-the-aesthetics paradigm, meaning
that ultimately, the artist, programmer, and/or user is expected to configure the
system’s inner workings, hand-customizing until interesting musical aesthetics result,
e.g., (Dannenberg 1993; Rowe 1993; Pennycook and Stammen 1993).

For example, in many of Dannenberg’s interactive performances, the computer
is programmed to be an extension of his compositions, capable of responding to
the real-time performance decisions and nuances of the human performer. In this
setting, music recognition is either hand-coded and/or trained using human supervised
learning data, e.g., (Dannenberg, Thom, and Watson 1997), and music generation is

generally designed to carry out the composer’s, rather than the performer’s, goals.

! As compiled in (Berliner 1994).
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While more open-ended improvisational experiences are sought in Wessel’s computer-
assisted performance settings, the primary focus is again on human-authored aesthet-
ics. Towards this end, much of his work has revolved around creating technologies
for organizing and controlling the access to musical material so that human computer
musicians can author meaningful musical experiences on-the-fly (Wessel, Wright, and
Kahn 1998; Wessel and Wright 2000).

Situated somewhere between these two approaches is Lewis’ interactive Voyager
system (Casserly 1997; Roads 1985). Improvisationally, Voyager is quite open-ended
and Lewis points out that the emergent properties that arise “when playing with the
thing” are of primary interest to him. This interest coincides more closely with Wes-
sel’s agenda than Dannenberg’s, which relies more heavily on compositional intent.
At the same time, both Dannenberg and Lewis are practicing improvisers that have

spent many years hand-crafting their respective interactive software environments.

Some interactive systems have embodied a more autonomous sense of musical
aesthetics using machine learning (ML) techniques to reduce some of the authoring
burden, e.g., (Biles 1998; Franklin 2001). Although learning provides an additional
layer of flexibility, because these systems are based on carefully constructed musi-
cal representations (in Biles, specialized chord-to-scale based mappings; in Franklin,
hand-coded fitness functions), they are not as flexible as they could be. It is also
unclear how much of these systems’ aesthetically pleasing behavior comes from these

carefully constructed representations.

1.1.3 A New Agenda For Musical Intelligence

Improvised companionship in the soloing practice tool context motivates a different
research agenda (Thom 2000a). By definition, an IMC is a specific musician’s personal
companion; this directly affects how one thinks about the agent and specifies what
is important in simulating its musical intelligence. Using machine learning to replace
explicit authoring is a primary concern and this technology must be developed to
configure a computational improvisation model for a particular arbitrary musician

playing at a particular arbitrary time and in a particular arbitrary context. An IMC
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must provide an extremely flexible and adaptive model of improvised melody that

can:

e leverage off of the spontaneous creativity of its user;
e transform what the user plays in interesting new ways;

o reflect the user’s performance back to them, that such co-mingling might result in

making the user’s spontaneity less transient, more tangible and explorable.

Providing an adaptive and robust basis for reasonably competent musical behavior is
key. This approach is in direct contrast to a more knowledge-intensive one in which

a set of specific rules are fine-tuned for a particular user and setting.

It is simply more important to handle a wide variety of improvisational settings
reasonably well than it is to expertly handle a specific improvisational genre. For

example, I want to be able to use an IMC when improvising on top of:

e the rhythmic, modal types of playing one finds in Ali Farque Toure’s guitar or Dr.Dig’s

didgeridoo music;
e well delineated chord progressions (e.g., blues, bluegrass, folk);

e unaccompanied settings where melodies are completely unconstrained.

To address this need, BoB’s architecture is purposefully designed at its most basic
level to function in the absence of specific codified jazz or blues theories. Instead,
the focus is to develop a computational model of improvisation that tightly
couples with, and fully functions from within the sole context of, the user’s
improvisations. With respect to computer music, one of BoB’s primary distinctions

is this unique agenda.

If machine learning is to be relied on, training data collection must be as natu-
ral and non-obtrusive as possible to easily accommodate amateur improvisers with
varying levels of skill. An IMC cannot require that an expert “twiddle the settings”
or expect a user to directly supervise its musical behavior. Furthermore, a machine
learning algorithm must be able to learn in the presence of little data because this
allows the IMC to learn about the musician’s playing style “right now”, i.e., in the
current solo-trading context. I propose handling smaller datasets by simplifying the

underlying mathematical model that is to be learned, the assumption being that a
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less accurate model trained on more immediately relevant data will provide a more
intimate and appropriate interaction with the user than a more complex model that

is trained on a larger hodge-podge of the musician’s behavior would.

1.2 Band-OUT-of-a-Box

Band-OUT-of-the-Boz (BoB) is the IMC contributed by this thesis. BoB’s task is to
trade live, improvised solos with its user in real time. The BoB experiment explores
the idea that a solo-trading companion can be operationalized — i.e., algorithmically
specified — using a probabilistic melody improvisation model that learns to auto-
matically configure itself to the user’s various playing modes after listening to them

improvise.

1.2.1 Band-in-a-Box

The name ‘BoB’ pays tribute to Band-in-a-Boz (BiB) (PGMusic 1999), a commercial
software product that provides fixed accompaniment to musicians while they impro-
vise. While BiB has enhanced many improvisers’ at-home practice efforts, it neither
listens to nor responds to what the user plays.? BiB’s success has much to do with
the fact that it comes with a huge library of expertly crafted styles, offering a wide
range of choice over the type of accompaniment that is provided (like funk, disco, or
jazz). Should a user care to build a customized accompaniment style, specific licks®
can be recorded and various parameters can be modified to control how these licks are
combined and applied. This product is another example of the author-the-aesthetics
paradigm, requiring the user to explicitly configure the system when non-prepackaged

musical behaviors are desired.

1.2.2 User-Specific Playing Modes

The ultimate key to success is providing an intimate connection between the musician

and BoB — at all times the user must feel listened to and responded to. The

2Although the new version can improvise by creating solos for a specific harmony and/or making

up a new harmony, this “creativity” is non-interactive.
3Musicians use the term lick, riff, or motive to refer to a melodic fragment.
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most basic hypothesis in this thesis is that such intimate coupling can
be simulated provided the agent is powerful and flexible enough to detect
and respond to the various modes of playing that the musician employs
during different parts of their improvisations. For example, a user’s playing
mode might amount to their preference for certain tones in a musical scale arranged

so that a particular melodic shape and set of intervals is used.

BoB will explore playing modes in terms of how various solo segments utilize
different tonal, intervallic, and directional trends. In particular, three different feature

vectors for encoding a pitch sequence are considered:

e a pitch-class® (PC) based view;
e an intervallic (INT) based view;

e a directional (DIR) based view.

PC usage can be influenced by an underlying tonality and/or musical scale, so these
terms will also be used to refer to various PC-based qualities. Similarly, INT usage,
which quantifies the absolute semitone distance between adjacent pitches, will also
be referred to in terms of melodic continuity or discontinuity, which are affected by
ones preference for certain arpeggios, triads, or runs of notes within a scale. Finally,
DIR usage, which quantifies how a melody’s pitches ascend, descend, and/or do not
change in pitch over time, will also be referred to in terms of a melody’s contour or

shape. Together, these trends are referred to as a conglomerative (CGL) view.

1.2.3 Musical Input, Time, and Synchronization

General-purpose music systems that interact with human performers present a num-
ber of difficult engineering problems that are the subject of much research e.g., (Win-
kler 1998; Rowe 1993; Cemgil and Kappen 2001b; Raphael 1999). This thesis ignores
three important issues, namely pitch-tracking, tempo-tracking, and rhythmic quantiza-
tion. Since playing modes are defined in terms of pitch sequence content, a discrete,
perceptual notion of pitch is used (based on the equal tempered scale) and simple

MIDI controllers can be used to input melodic data into the computer.

4This use of the word ‘class’ originates in psychoacoustics and should not be confused with the
classes that are inferred by BoB’s learning algorithm.
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Important terms need to be defined to quantify the passage of time in music,
a concept that is crucial if improvisors are to synchronize their playing with one
another. Music often has a pulse and its unit of pulse is called a beat. Beats are
rarely undifferentiated but rather occur in repetitive groups, called bars, and these in
turn define the music’s meter. For example, when one taps their foot to a rock-n-roll
tune, odds are that they are tapping their foot in ‘4/4’ meter, which amounts to
hitting the floor four times per-bar, and probably emphasizing beats one and three.
Tempo quantifies how quickly the beats pass and is typically measured in terms of

beats-per-minute.

With regards to tempo tracking, it is assumed that the user will be able to “keep
up” with BoB’s notion of the beat, synchronizing themselves to a non-interactive
computer accompaniment that BoB provides (a similar scheme was successfully em-
ployed in BiB). Rhythmic quantization will be the first thing addressed in future work
because, without it, live interaction with a user is not possible. Currently, “live”
interaction is simulated in real-time using human transcribed improvisa-

tions.

1.2.4 Interactive Solo Trading

In BoB, interactivity is staged in terms of call and response, mediated by a lead
sheet. The lead sheet specifies high-level aspects of the interaction — what tempo
and harmony or rhythm background to use, in what bars each player is expected to

solo, and so on. This information is specified by the user before interaction begins.

Consider trading fours, a solo trading interaction in which the following is repeated

over and over:

1. Soloist A plays a call, improvising for four bars while soloist B listens.

2. Soloist B improvises a response to this call while soloist A listens.

In reality, the distinction between call and response is blurred because soloist B’s

response can be viewed as a call for soloist A.

Figure 1.1 provides one example, displaying a different staff for each soloist. The
musician has just played their first four bars of solo (top staff). BoB is replying

(bottom staff), having just performed its first two bars of response, now scheduling
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its third, and creating its fourth. The accompanist’s part is listed underneath the

bottom staff in standard chord notation. This part is played non-interactively.
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Figure 1.1: BoB and the Musician Trade Fours

1.2.5 High-Level Architecture

BoB is designed to handle two soloists: itself and the user, only one of whom may
improvise at a given time. In addition, each soloist must play a monophonic melody,
meaning that they only play one pitch at a time. In Figure 1.2, BoB’s architecture is
outlined.

................... )
Offline Learned
Knowledge (OLK)
r Perception History Generation W
: Most Recent
: Transcribed
I Note Sequence

MIDI In
Audio In

Figure 1.2: The Band-OUT-of-a-Box Architecture

The environment consists of everything that lies outside of BoB (the double-lined
box) and includes the musician, the lead sheet, and off-the-shelf MIDI and audio
interfaces. Inside of BoB, real-time MIDI and event processing are handled by the

dashed-box components. This thesis addresses the bold components, which include:
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1. perception;
2. generation;
3. history;

4. off-line learned knowledge;

and are entirely responsible for BoB’s interactive, musically intelligent behavior.

The perception component perceives the musician’s solo call on a per-bar basis,
abstracting each bar into an appropriate user playing mode. As the musician’s call
progresses, a sequence of these abstractions is stored by the history component. His-
tory is in turn used by the generation component to guide BoB’s search for a user-
and context-specific response. The dotted-line connecting the musician to the off-
line learned knowledge component (OLK) indicates that user knowledge was learned

before interactive solo-trading began.

OLK is configured as follows. First, BoB collects training data by transforming
each bar that the user improvises into a conglomerative view. This data collection
is referred to as the warmup session. Next, this data is taken off-line and a model
is learned for mapping conglomerative views into distinct user playing modes. When
BoB goes back online, interactively trading solos with the user in real-time, this
model is used to operationalize both user- and context-specific solo perception and

generation.

1.2.6 Learning a Model of the User

A user-specific training set is created by breaking the warmup data into local seg-
ments, one for each bar of solo. Each segment is transformed into a conglomerative
view. Learning involves probabilistically clustering or partitioning these views into a
specific number of components or classes so that they appear to be maximally likely.
This clustering is done to capture the different playing modes that the musician uses
when spontaneously constructing solos. Since it is not known which bars belong to
what classes, to learn this clustering function is an unsupervised learning (UL) prob-
lem. The goal is not to best predict a target function, but rather to “best” explain

the features contained within the training data.

A mixture-model based approach is used, providing both a mechanism for percep-

tion (estimate what class is most likely to have generated a given view) and generation
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(derive a new solo from a specific class by sampling from an appropriate distribution).
This probabilistic model also comprehends likelihood, which can be used to interpret
how surprising a particular perception appears. An important distinction of this ap-
proach is that the user’s warmup data itself determines how different CGL views will
be perceived as “similar.” In addition, similarity is derived from the data in a very

open-ended, flexible, and context-sensitive way.

1.3 Contributions

As highlighted below, this thesis makes five contributions to the fields of machine

learning, intelligent agents, and interactive music systems.

1.3.1 The Improvisational Music Companion

This thesis formally introduces agents as spontaneous musical companions. The
focus is on a tight, intimate coupling between the improviser and his or her ma-
chine/companion, forcing user-customization, adaptation, and musical sensibility into
the limelight. Just as believable agents presented a new paradigm for artificial intel-
ligence (AI), IMCs present a new paradigm for intelligent music systems. The goal
shifts from engineering an agent with specific musical expertise to providing a flexible,

adaptive, common-sense modicum of musical behavior.

1.3.2 A Hierarchical Set of Melodic Views

This thesis develops a methodology for automatically decomposing a monophonic
solo into a temporal sequence of local segments. The term ‘segment’ instead of ‘bar’
highlights that, although in this thesis, segmentation is per-bar, the technology can

handle arbitrary segmentation schemes.

Each segment is encoded in multiple ways, including:

1. a transcribed string-of-notes;
2. a hierarchal rhythm tree;

3. a pitch sequence;
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4. a conglomerative viewpoint;

5. a user-specific playing mode.

This list is ordered because it is hierarchical. Each successive encoding produces a

more abstract view of the melody than its predecessors.

1.3.3 An IMC Solo-Trading Agent Architecture

The BoB architecture contributes the following technologies:

e a real-time, probabilistic human/computer solo-trading model whose feature space
and abstraction mechanisms are simple and musically meaningful, making the model

easy to understand, reason about, and extend.

e a learning mechanism that configures the model to the musician’s playing modes after

merely listening to him or her improvise.

e an integrated procedure for generating new solos that maintain a particular set of user-
specific abstractions and seamlessly integrate into the evolving musical environment,

domain knowledge, etc.

1.3.4 An Algorithm for User-Specific Perception

A mixture model composed of Multinomial probability distribution components is
introduced for clustering histograms that contain an arbitrary number of counts.

This model is derived and implemented so that:

e The total number of counts in a histogram is a random variable.
e All of the counts within a histogram are modeled as belonging to the same component.

e The learning algorithm can infer a useful model even when histogram data is relatively
sparse, i.e., few counts are distributed among a histogram’s many bins and training

data consists of a limited number of histograms.

This technology is used to customize BoB’s solo-trading model to the user, parti-
tioning the CGL feature space into distinct playing modes. This model is tested on
a variety of datasets, both simulated and musician-specific, including some Charlie

Parker and Stephane Grappelli transcriptions.
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1.3.5 An Algorithm for “In Kind” Response

An “in kind” response to a solo call is obtained in two stages. First, a stochastic
algorithm is introduced to modify the fringe of a call rhythm’s tree while maintaining
important invariants in the tree’s internal structure. A pitch-sequence generation
algorithm that closes the learning loop is derived to fill in the pitch content of the
tree’s leaves. This algorithm is goal driven in that it can produce sequences that map
back into specific user playing modes. This algorithm also maintains a fairly arbitrary
set, of constraints and can be used, for example, to generate a pitch sequence that:
1) starts and ends on specific tones, and 2) “fills in the blanks along the way” in such
a way that the goal’s tonal, intervallic, and directional trends emerge. This algorithm
relies on a heuristic that efficiently integrates what was learned in the user-model
into a Markov chain sampling scheme. This model is tested by simulating a variety
of real-time solo trading interactions using Charlie Parker’s and Stephane Grappelli’s

transcriptions.

1.4 A Reader’s Guide to the Thesis

What follows is a general description of this thesis’ contents, including a brief sum-

mary of each chapter and some guidelines for interpreting mathematical notation.

1.4.1 Outline

e Chapter 2 situates the IMC task within the jazz and blues tradition. The foun-
dational aspirations of a computational improvisation model are described. Various
aspects of the IMC domain are fleshed out and situated within Al

e Chapter 3 expands upon the Band-OUT-of-a-Boz architecture presented in Sec-
tion 1.2. Handling real-time melodic input is addressed in both current (simulated
live) and future (live musician) paradigms. How BoB’s intelligent music components
operate upon and transform this input and interact with one another and the musician

are also presented.

e Chapter 4 introduces the two most basic data structures that encode melodic
segments. A tree-based structure delineates rhythm and is used to produce the
histogram-based structures that encode a segment’s conglomerative pitch-sequence

trends.
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Chapter 5 introduces the algorithm that learns to map conglomerative histograms
into abstract, user-specific playing modes. So as not to detract from its usefulness
in other discrete, temporal domains, this algorithm’s derivation is general. Specific

issues concerning the model’s application to BoB are only presented when necessary.

Chapter 6 introduces the two inter-related stochastic algorithms that are used to
generate an “in kind” response to a solo call. Rhythmic transformation is tree-based,
capable of permuting a call’s rhythm in musically reasonable ways. Goal-driven pitch
sequence generation, which is tightly coupled to the learned user-model, assigns new

pitches to this rhythm.

Chapter 7 assesses the performance of BoB’s customized perception and goal-driven
generation from a musical point of view. The former is assessed qualitatively and the
latter in terms of listening experiments. This chapter is crucial because it validates
that: 1) the ML approach in Chapter 5 infers salient musical structure, and 2) the

heuristic approach in Chapter 6 generates solos that exhibit this musical structure.

Chapter 8 describes related work, limitations of BoB’s current implementation, and

promising directions for future research.

Chapter 9 concludes, summarizing the long-term vision that motivates this thesis
and the contributions that it makes to the fields of machine learning, intelligent agents,

and interactive music systems.

The appendices that accompany the representation (Appendix C), learning (Ap-

pendix D), and music evaluation (Appendices E through H) chapters are referred

to as needed in the main text.

1.4.2 Notation

In addition to the mathematical nomenclature presented below, readers should fa-

miliarize themselves with the appendices that outline pseudo-code (Appendix A) and

musical score (Appendix B) syntax.

Italicized Variables

Most variables are italicized, e.g. z,y, and z. The following names are reserved for

specific contexts:
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1. s is a transcribed segment, and v and z are its corresponding rhythm tree and his-

togram.
2. Histogram z contains a total of sz counts.
3. Data-point = belongs to dataset X.

4. yis the classification of z, z and 1 are its corresponding indicator and posterior vectors
(defined in Sections 5.4.1 and 5.4.2), and [ and u are its corresponding labeled and
unlabeled likelihoods (defined in Section 5.4.1). Y and Z contain the corresponding

values for each data-point in X. L and U are entire dataset likelihoods.

5. Probability distribution G is parameterized by €2, which might contain probability
vectors 0, m, and/or n. When sampling a single data-point from this distribution,
notation 2 ~ G(2) is used. When independently sampling an entire dataset, notation
x N G(€2) is used.

Rather than using longer variable names, whenever possible, descriptive subscripts

provide additional information, e.g., x . or z . . Descriptive subscripts appear in

T in’

italicized font.

Variables With Special Fonts
Non-italicized variables are used in the following situations:

e Pseudo-code functions are identified by the Terminal type font.

e Probabilistic functions, e.g., Pr(z), and musical pitches, e.g., B or Db, are identified

by the Roman type font.

e Except for the italicized sets already mentioned, sets are identified by calligraphic
letters, e.g., S. The number of items a set contains is correspondingly notated, e.g.

ng. Operator # returns the number of items in a set.

Indexing Variables

When variables appear in San Serif type font, they refer to a particular index within

a set, sequence, or vector. A variable’s name implies its meaning;:

e n refers to a particular data-point in a fixed-size dataset. When iterating over index n, the

range is 1 < n < N.
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m refers to a specific dimension in a fixed-size vector. The corresponding rangeis 1 < m < M.

k refers to a specific class within a set of components. The corresponding range is 1 < k < K.

Since s refers to a specific item in set S, its range is 1 <s <ng.

e r refers to an arbitrary real-time segment.

t refers to a particular element in an arbitrary-length sequence. For example, supposing the
sequence corresponds to bar r, then the range would be 1 <t < T .°

Special Superscripts

When a variable is superscripted by one (or both) of the following fonts, certain
information is implied. The first font type indicates what training set a variable is

based on. For example:

e X7P refers to the Charlie Parker training set, and so Q¥ refers to the model learned using this

data, Y contains the results of using this model to classify the training set, etc.
e XG OF Y€ etc., are similarly defined for Stephane Grappelli’s data.

The second FONT TYPE indicates what part of the conglomerative feature set is being

used. For example:

e XP s a training set’s PC data.
e X!is a training set’s INT data.
e XP is a training set’s DIR data.

e XY is the the training set composed out of all of the above.

5This distinction is needed so that sequence lengths can vary from segment to segment.

37



38



Chapter 2
Improvisational Music Companions

This chapter introduces the improvisational music companion (IMC) domain in more
detail. To begin, the solo-trading task is situated within the jazz and blues tradition.
From within this context, the foundational aspirations of my computational melodic
improvisation model are described. With these foundations in place, various aspects
of the IMC domain are fleshed out and situated within the Al community. I first
consider how believable-agent methodologies contribute to IMC agents and identify
ways in which the IMC domain forces one to extend and modify this methodology.
Next, I examine how machine learning is typically used to aid in operationalizing
musically intelligent behavior and identify how IMCs force one to significantly alter

this paradigm.

2.1 Jazz and Blues Improvisation

The jazz or blues jam session, where during which musicians trade solos and play
off of one other over a fixed harmonic background, is a useful context in which to
think about BoB. Because jazz and blues are long-standing cultural traditions, when
evaluating BoB’s performance from within these contexts, care must be taken not to
let ones expectations about genre get in the way of objectively appreciating all that
BoB can do.

For example, in the jazz context, a listener who is asked to compare a specific mu-
sician’s solo with a BoB-generated solo response might observe that “BoB’s response

does not complement the musician’s solo as a jazz soloist would.” When asked to de-
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fine the notion of complement, an answer like “there should be some sort of contrast

or shift in emotion” might come up.

While complementing is an important musical skill, it is a fairly abstract and
intentional notion. I believe that this type of behavior is better served later on,
after BoB’s more instantaneous and immediate musical perception and generation
mechanisms are firmly in place. Similar arguments can be made for other abstract
intentional notions, e.g., emotionally coloring a performance’s realization (Bresin and
Friberg 2000) or communicating high-level notions like “lyrical” or “bluesy” (Dan-
nenberg, Thom, and Watson 1997).

2.2 Modeling Melodic Improvisation

BoB’s most powerful technologies include its:

1. open-endedness and flexibility;
2. automated user- and context-specific model;

3. constrained stochasticity.

My current focus is to provide a highly constrained, self-configuring, stochas-
tic mechanism by which the computer can spontaneously interact with the
musician on a very basic level. Rather than relying on rule-based, symbolic rea-
soning, this basic, more primitive technology generates short segments of notes using
a self-configuring, distributed mechanism that, when sampled, can produce note se-
quences that exhibit specific abstract goals and integrate into the context of the
evolving musical exchange. I consciously chose this approach because I believe that

it captures the essence of improvisation:

The ability to improvise [...] seems to come out of the end of ones fingertips

[...] its main components are profoundly unconscious. (Sudnow 1978)

My approach whole-heartedly embraces the psychological theory of Johnson-Laird
(1991), which opposes the view that jazz improvisation can be adequately modeled
by rearrangement and simple transformation of pre-acquired licks so as to meet the

exigencies of the current harmony. Johnson-Laird (1991) also makes a convincing
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argument concerning the computational plausibility of a stochastic model that is
based on a greedy search through a highly constrained “what to play next” space.
This argument leads to the important question of from where such constraints would
come. In my experience improvising on the violin, the more I practice, the more things
just start to “come out of the ends of my fingertips.” As these physical motions sink
in, my ability to generalize them to different settings comes naturally. My constraints
have somehow emerged from a lengthy period of committed practice, genre immersion,
and so on. BoB will derive its constraints from the user via the learning algorithm

and the environment.

2.3 Believable Agents

Just as believable agents (BA) presented a new paradigm to the AT community (Mateas
1999), IMCs present a new paradigm for intelligent music systems. Important paral-
lels can be drawn between BAs and IMCs and such comparison is valuable because
it:

1. provides deeper insight into the nature of the IMC domain;

2. identifies BA-centric perspectives that naturally simplify the task of building an IMC;

3. identifies important differences between traditional BAs and IMCs, forcing existing

paradigms to be extended and/or reinvented.

In both domains the primary concern is resolving the inherent conflict that arises when
an intelligent system and an artist interact, the key issue of the conflict being to find
the right balance between artistic control (authoring) and autonomous intelligence.

For an IMC, this amounts to automating musically-appropriate behavior.

The concept of a believable agent, originally developed by the Oz Project at
Carnegie Mellon University (Bates 1992), explores building interactive virtual worlds
whose characters and story lines are believable. While the nature of believable agents
is debated, a central theme is creating interactive, autonomous agents that exhibit rich
and compelling personalities (Elliot and Brzezinski 1998; Frank, Stern, and Resner
1997; Mateas 1999). A fundamental reason why believable agents stimulate an appro-
priate way of thinking about IMCs is their audience- and artist-centered philosophy,
whereby:

41



[...] building a new kind of cultural experience: engaging, compelling, and
hopefully beautiful and profound [...] (Mateas 1999)

is embraced. Of enormous benefit here is the belief that artistic goals are at
least as valuable as purely technical ones, that good art (transformed into
a computational setting) breeds good science, but that the converse is not
necessarily true (Mateas 2001a).

2.3.1 Useful Methodologies

In creating autonomous interactive characters with the same rich personalities as
those created by artists, BA researchers have attempted to understand the reflections
of practicing character artists and to integrate these insights into their methodology.
Not surprisingly, the reflections of practicing improvisers have proven similarly useful
in my research, e.g., (Bailey 1992; Berliner 1994; Sudnow 1978; Johnson-Laird 1991).

How inherently artistic pursuits influence BA methodology is instructive. Because
there is an emphasis on building interactive characters, an important goal is to provide
character artists with the same level of artistic control that, for example, animators
have. In BoB, a similar goal is pursued: to tightly couple the agent and improviser
so that an intimate musical exchange can take place while providing the agent with

enough freedom to generate novel material.

Useful believable agent methodologies include:

1. Stress specificity. While traditional Al systems seek to capture the general
theory of some domain, an IMC must capture the notable aspects of its user’s

improvisations. Bailey (1992) highlights this point:

There is no general widely held theory of improvisation and I would have
thought it self-evident that improvisation has no existence outside of its

practice.

Typically, computational jazz systems have been rule-based, instantiating some
combination of textbook theories about jazz, (Pennycook and Stammen 1993;
Levitt 1981; Russell 1959; Coker 1970), making this methodology a significant

point of departure.
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2. Measure success in terms of audience perception. Classical Al systems
seek to optimize some form of objective measure. An IMC must first be built

and then evaluated in terms of how engaging its interactions with the user are.

3. Have strong affinities with behavioral AI. In particular, an IMC should
prefer the broad, shallow capture of musical capabilities. Fortunately, this in-
sight makes the task of building an IMC more doable. While a more traditional
Al-based music approach would focus on realizing a musical expert, an IMC
merely needs to be able to provide a modicum of customized musical appropri-

ateness in a variety of improvisational settings.

4. Assume the audience is willing to suspend their disbelief. This insight is
perhaps the most important one because it directly affects how to think about
the user (Sengers 1998). With BoB, it is safe to assume that the musician
wants to use it to share an engaging musical exchange. As such, the user will be
more likely to overlook BoB’s shortcomings (such as performing an otherwise
interesting solo mechanically). A measure of BiB’s success is owed to this fact
— many of its accompaniment styles are somewhat canned, yet the experience
of playing with a “cheesy” band versus playing with no band at all is a powerful

one.

2.3.2 Points of Departure

Believable agents research focuses on character, personality, and story — expressive
mediums that heavily rely on language-based, literal reasoning. As a result, many BA
technologies do not provide viable solutions for controlling the spontaneous generation

of musician- and context-specific melodic response.

In an interview with Bailey (1992), jazz saxophonist Steve Lacy noted that:

The difference between composition and improvisation is that in composition
you have all the time you want to decide what to say in fifteen seconds, while

in improvisation you have exactly fifteen seconds.

This observation prompts me to question the usefulness of authoring in IMC do-
mains. With BAs, the specific details of an interactive story or character may be

decided in the last fifteen seconds, however the ease in which they can be literally
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expressed and concretely reasoned about provides an opportunity for in-depth spec-
ification. As such, the focus on authorship — e.g., providing artists with a set of
abstractions, tools, and programming language constructs that allow them to cre-
ate the interactive, artistic experience they envision — is a key part of BA-related
research, e.g., (Mateas 2001b; Loyall 1997; Sengers 1998).

BA researchers could technically address improvised story telling (Weyrauch 1997;
Hayes-Roth and van Gent 1997; Mateas 2001b) because significant amounts of infor-
mation can be reasoned about and authored within a reactive programming language
like Hap (Loyall 1997). For example, in Oz a character artist could specify that the
shy Woggle always quivers when frightened, except when their fear is larger than some
internally specified amount; in that case they become paralyzed. Operationally useful
aspects of these behaviors can also be written down: shake a certain number of cycles

per minute, enlarge the eyes by a certain percentage when paralyzed, etc.

In improvised musical expression, these more tangible aspects of character and
personality break down. Although musicians do speak of personality, they usually
do so in frustratingly vague terms. Imagine trying to operationalize jazzist Ronnie

Scott’s notion of such a concept:

“I would like ideally to express my, I don’t know, personality or whatever,
musically, to the limits of my ability [.... to ...] play in such a way that it would
be recognizable as me, and it would express something to people about the way
I feel about things.” (Bailey 1992)

In an IMC, it makes sense to author those things that can be easily specified
in advance (like tempo) via the lead sheet abstraction. The crucial challenge is to
provide a mechanism that can operationalize the construction of spontaneous context-
and musician-specific melody. It is simply unreasonable to expect a musician to
operationalize details concerning what note sequence to play next. Bailey (1992),
who interviewed an extensive range of a practicing improvisers in his book (Bailey
1992), sums it up best:

[...] The improvisers I spoke to, in almost all cases, did not find any sort of tech-
nical description adequate. It wasn’t that they weren’t interested in technical
matters. They just did not find them suitable for illuminating improvisation.
They finally chose to describe it in so-called ‘abstract’ terms. And it became

clear that, whatever its deficiencies, this is the best method available.

44



Whether or not a usable ontology for IMC authoring could exist, we certainly do
not have the ability to specify such behaviors in operational terms at the moment.
However, it is imperative that BoB understand the musical abstractions in which its
user speaks, develop an operational musical vocabulary that allows it to abstractly
perceive what the musician is doing, and respond accordingly. My strategy for dealing
with this is to rely more heavily on machine learning (ML) than is traditionally
done when dealing with character and story-based mediums to reduce the authoring
burden. This contrasts with the philosophy adopted by some BA researchers who
discount ML as undesirable because it might hinder, or automate away aspects of,

character and plot that the author explicitly wishes to control.

Another distinction between IMCs and BAs is that a BA is typically authored by a
team of experts (character artists, graphic artists) and the audience that experiences
their world is a completely separate entity. With IMCs, the improviser is both the
audience and the author of the experience. In this context ‘author’ does not imply one
who uses some authoring tools for an IMC’s configuration. Rather the word reflects
the fact that the musician’s own improvisations contain within them the essence of

what constitutes musically appropriate behavior.

Another difference is how BAs and IMCs can be evaluated. It is not clear that
an improvisational musical experience can be critiqued outside of the physical con-
text within which it was played (Bailey 1992; Sudnow 1978). For example, while it
makes sense to focus on a user’s engagement with a personality post-facto — much
in the same way that it makes sense to ask a viewer to summarize a movie’s plot
after experiencing it — it is not clear that anything but an improvisor’s transitory,
immediate musical experience is worthy of attention. On this point, organist Stephen

Hicks notes that, with respect to the evaluation of his improvisations:

“It’s either good or bad but if you listen to an improvisation over and over
again, it just gets worse. [...] It’s something that should be heard, enjoyed or

otherwise, and then completely forgotten.” (Bailey 1992)

One way in which I might address this issue in the future is to monitor a musician’s
feedback on-the-fly. For instance, for this purpose, Franklin (2001) proposes using

real-time facial expression detectors.
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2.4 Machine Learning & Intelligent Music Systems

As we transcribe and analyze music in symbolic terms, it may seem natural to apply
knowledge-based methods to an IMCs development. However, spontaneously creating
melody, as simple an act as improvised humming, is fundamentally as much about
ingenious use of exceptions as it is about adherence to a set of rules (Loy 1991;
Papadopoulos and Wiggins 1999). For this reason, in BoB, a primitive technology
that generates short segments of notes using a probabilistic learning model whose
structure is distributed among various components and feature vectors is pursued. At
the same time, the user model that is built was carefully designed to make
it easy to understand and reason about musically; this will allow higher-

level musical knowledge and/or user desires to be incorporated later.

Because of the difficulties involved in hand-coding musical behavior, ML tech-
niques are commonly used when engineering an intelligent music system. Typically,

one or more of the following tenets are embraced when applying ML to music:

e Tenet I: Use supervised learning to predict the next note (chord, musical event, etc.)
in a composed and/or performed musical sequence, e.g., (Hild, Feulner, and Menzel
1991; Feulner and Ho6rnel 1994; Thom 1995; Widmer 1996; Reis 1999; Weigend and
Gershenfeld 1993);

e Tenet II: Base learning on a large musical corpus, for example, sets of jazz tunes,
J.S. Bach chorales, etc., e.g., (Hild, Feulner, and Menzel 1991; Feulner and Hornel
1994; Thom 1995; Widmer 1996; Reis 1999; Cope 1992; Weigend and Gershenfeld
1993; Bellgard 1993);

e Tenet III: Explicitly incorporate higher-level features into the representation, for
example (Feulner and Hornel 1994; Hornel and Menzel 1998; Rolland and Ganascia
1996; Cope 1992) all employ features that rely on human-derived harmonic function-

ality.

[ will now argue why, for an IMC, these tenets are not necessarily appropriate.

2.4.1 Predictive Learning

In (Thom 1995), I tried to learn a mapping from a recent sequence of chords into

the next chord in a harmonic jazz sequence. A key issue in this type of learning
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scenario is what cost to use when penalizing a prediction that does not match its
target value in the training set. I (as well as many others) had used zero-one cost,
meaning that, in (Thom 1995), all chord values except the target were penalized
equally. Improvisers, however, sensibly report that the appropriateness of a specific
chord is not all-or-nothing, but depends on many things, including: harmonic and

melodic context, evolving trends in tension and relaxation, etc.

Although a probabilistic model and cross-entropy cost function addresses the all-
or-nothing problem (Bishop 1995; Hornel and Menzel 1998), it does not address the
fact that each chord does not exist in isolation but rather is situated within, and in-
spired by, a surrounding local chunk of chords. This argument also applies to melody,
where musical thoughts are composed of licks, phrases, motives, etc. Ultimately, this
line of thinking leads me to question the suitability of using a string-of-events based

prediction scheme to simulate the creative behavior required of an IMC.

With interactive improvisation, the goal is to “listen to me, but not to play my
stuff back at me”! — to do something a little bit different, which can range from
transforming a situation into something unexpected to bringing it back to the norm.
Novelty, outliers, and average behaviors are equally important, yet prediction-based
paradigms will explicitly attempt to memorize their training sequences and, fail-
ing that, estimate sequences that best describe the data’s average sequential behav-
ior. While all learning schemes attempt to balance generalization and memorization
needs, I fear that “predicting-the-next-thing” contains a more myopic, anti-

creative bias than a less rigid approach.

2.4.2 Large Training Sets

The main reason to train with a larger corpus is to minimize the chance of over-fitting,
which results when there is not enough data upon which to base inference. While
this approach has been useful in learning to predict if something is in the style of,
for example, J.S. Bach (Hoérnel and Menzel 1998), with an IMC this notion of style
breaks down. For example, seasoned improvisors have told me that a musician might
play very differently at different times. Furthermore, the causes of this variation are
no doubt diverse and fickle (what did they eat for dinner that night? who are they

are listening to these days? etc.).

! Jazzist John McNeil, as quoted in Berliner (1994).
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Interestingly, recent research has reflected upon the benefits of per-song based
training, e.g., (Thom 1995; Widmer 1996; Cunha and Romalho 2000). An important
issue seems to be that, although there are underlying trends to identify particular
genres, players, and composers, much of what makes a song cohesive is the structure
found within itself.

By collecting data in a preliminary warmup session, as was done in (Dannenberg,
Thom, and Watson 1997), I hope to capture the musician’s most recent state-of-
mind. The primary disadvantage of this approach is that a training set’s size is now
inherently limited. This issue will be addressed by learning a simpler model. The
assumption is that inference with a smaller, more relevant set of data will
compensate for the model’s simplifying assumptions. Ultimately, an IMC’s
learning task shifts from one of learning a broad-based, stylistic notion of its user to

a much finer one — to in essence learn their playing style “right now.”

2.4.3 Higher-Level Harmonic Knowledge

Clearly, a system’s ability to generalize will be improved when pertinent higher-level
features are included because the system no longer needs to learn them from a more
basic set of features. However, when the musical common sense contained within
these features are obtained from a human expert, these features cannot necessarily
be used in an IMC.

Consider the significant amount of musical common sense that is automatically in-
cluded when an improvisational melody learning system is told what chords were tran-
scribed to accompany a soloist’s improvisation. In improvised settings, this knowledge
is especially important because chord substitutions abound, roots are often missing,
color-tones are common, etc. With IMCs it is not even clear when a quintessential
transcription of an accompaniment exists. With respect to the chords in Parker’s Om-

[13

nibook, a seasoned improviser once told me “...oh, we always used to change those.”

It can be safely argued that BoB would exhibit more musical aptitude if, for
example, when a 12-bar blues progression in the key of B» was being used as the basis
of accompaniment, the learning algorithm was made explicitly aware of this fact
(for more discussion, see Section 3.2.3). With a lead-sheet that contains harmonic
information and a computer-provided tempo, such knowledge would not even require
real-time chord transcription because BoB could simply look up the chords. Why
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then do I explicitly avoid providing such knowledge to BoB’s learning algorithm?

One reason is my primitive melodic focus. I want BoB to spontaneously generate
solos in arbitrary settings, including situations where harmonic structure does not
exist or is not so important (e.g., when improvisations are more vertical or modally
based, when melodic improvisation takes place on top of a tabla drum or other rhyth-
mic backdrop, etc.). I also believe that there is great value in relying first
and foremost on the content within the musician’s improvisations when
inferring salient tonal features about them. Certainly, such an approach can
only be more flexible, adaptive, and self contained. On the other hand, because har-
monic knowledge is such an important part of much improvised music-making, care
is taken to ensure that BoB’s model lends itself naturally to being extended so that
harmonic knowledge can be incorporated, when appropriate, at a more abstract level
(Section 6.3.5).
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Chapter 3

The BoB Solo-Trading

Architecture

A high-level view of BoB’s musically intelligent components was presented in Chap-
ter 1 (Figure 1.2). This chapter begins by discussing the transformation of a musi-
cian’s live audio into an input that BoB can use. An important assumption is that
BoB receives transcribed input, and since the automation of this task is beyond this
thesis’ scope, “live” interaction is simulated in real-time using human-transcribed im-
provisations. How BoB’s intelligent music components operate upon and transform

this input and interact with one another and the musician are also presented.

3.1 User Input

Live improvisers produce audio signals that the computer needs to understand. This
is a very difficult problem and a subject of active research, e.g., (Winkler 1998; Rowe
1993; Cemgil and Kappen 2001b; Raphael 1999). At the least, BoB needs to convert
audio into a sequence of pitches that can be aligned on top of the music’s underlying

beat in a meaningful way.

It is assumed that off-the-shelf MIDI devices and/or software can acceptably per-
form the audio to pitch sequence conversion. Rhythmic alignment involves both
tempo tracking and rhythm quantization, and this topic is a Ph.D. thesis in and of

itself.! Tempo-tracking can be avoided by requiring that the musician synchronize

I This subject is the topic of A.T. Cemgil’s current thesis work.
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themselves to the agent’s notion of beat. Rhythmic quantization is the serious re-
maining issue, and this will be the first thing addressed in future work. Without
this functionality, BoB is cannot parse a live musician’s solos, which is a necessary
precursor to live interaction. Currently, interaction is simulated in real-time using
human transcriptions of improvisations whose rhythms are known to parse in ad-
vance. This simulated real-time scheme, and the ways in which it will be extended to

accommodate live performance, are now described.

3.1.1 Raw Solo Input

BoB can already buffer a stream of MIDI (Association 1989) solo data in real-time,
but it cannot yet convert this data into a format that is guaranteed to parse into the

tree structure required of the perception component.

Although transforming audio into MIDI can be difficult and error-prone, especially
for an instrument like the violin, e.g., (Yoo and Fujinaga 1999), reasonable success
has been reported for acoustic instruments like voice and flute using the Sound2Mid:
software (AudioWorks 1999; Franklin 2001). I assume that such a technology can
provide BoB with a live stream of MIDI note-on and note-off events and that this

technology will be able to handle a reasonable range of performance situations.

When BoB buffers MIDI, it time-stamps events using a low-latency multimedia
timer thread whose resolution is on the order of 2 [ms].?2 This functionality provides

BoB with raw solo input data, a real-time stream comprised of the following pair of
fields:

1. a discrete pitch value (note — on) or silence (note — off);

2. an onset, or equivalently, a duration time.

Since the agent sets tempo, time is immediately expressible in terms of the music’s

underlying beat; per-bar segmentation is trivial.

20n the NT operating system, a resolution within 2 to 4 [ms] can usually be maintained, although

every hour or so, an occasional half-second glitch might occur.
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3.1.2 Melodic Content

BoB’s concern is handling melodic content in an intelligent manner. Melodic content
is defined as the “musically appropriate” solo transcription that one would obtain if
a reasonably competent improviser had been asked to write out their improvised solo
using commonly employed musical notation. For example, the staves in Figure 1.1
were obtained by recording myself trading solos with myself and then transcribing
what I heard.

For BoB to handle live performance, it must be able to clean up the raw solo input
data, converting it into a format whose melodic content BoB can parse. Tasks that

this cleaning process must perform are now described.

Monophonicity and Rests

First, the data stream must be monophonic. For example, on a MIDI keyboard, even
when a monophonic melody is performed, the next note — on might arrive a fraction
of a second earlier than the last note — off. Another related issue is determining
when a note — off is long enough to be interpreted as a rest versus ignored. Using an
approach similar to the one introduced by Longuet-Higgens (1987), I plan to handle

both of these issues using simple threshold functions.

Rhythm Quantization

The serious challenge is to convert a monophonic stream of performed durations into
their “musically sensible” temporal hierarchy. The problem is that rhythms are hi-
erarchical, so events should align with various integer subdivisions of the music’s
beat. However, musicians rarely perform rhythms mechanically, which in the the
non-interactive case, would refer to playing exactly what was written in a score. For
example, a pair of eighth note durations might be “swung,” the first duration held
about twice as long as the second, even though altogether they occupy on the order of
a quarter note worth of time. In contrast to playing from a score, with improvisation,
one can expect rhythmic deviations to be all the more likely, for the musician is even

less constrained.
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3.1.3 Encodable Solo Input

A rhythmic quantizer performs a many-to-one mapping — transforming multiple
performed duration sequences into the same hierarchical abstraction — so BoB only
needs to be able to parse the limited set that the quantization module produces.
Or, conversely, the set of encodable rhythms defined in Section 4.3.1 specifies those
rhythms that BoB can parse, so the rhythmic quantizer will need to map inputs onto
this range of outputs. Given the way encodable rhythms are defined, in 4/4 meter,

quantization is a 1-in-32 classification task.

The more difficult part of the problem is to perform this mapping in a “musically
sensible” manner. This task is difficult because rhythmic performance deviates from
mechanical for a variety of reasons, be it expressive, aesthetics, or stylistic in nature, or
the result of human error. As a result, performed duration deviations are not random
(Desain, Aarts, Cemgil, Kappen, and van Thienen 1999), and so the traditional grid-
based quantizer approaches used in many commercial sequencers can produce non-
sensical results (Trilsbeek and Thienen 1999; Cemgil, Desain, and Kappen 2000).

The notation for encodable input segment n is:

Sn = <8n,17 .. .78n,t7 .. .78n,Ta’>'

The n that subscripts T” indicates that different segments can contain different num-

bers of events. The t-th event, s, contains two fields: a discrete pitch or rest, and

a duration value. When constructing the input features for bar r, the most recently
performed previous pitch (MRP) is needed. Because of the way MRP is defined, the
value for segment n, mrp , can be queried before the data for s arrives. Similar

notation is used for both training data (bar n) and real-time interaction (bar r).

3.1.4 Simulated Live Input

For the time being, a musician’s spontaneous input — during both warmup and
interactive solo trading — is simulated by using data obtained from a transcription
file that contains an encodable transcription of a particular musician’s improvisation.
For listening purposes, BoB provides an extra track of MIDI in addition to its own

solo track so it can play back the musician’s solo as well as its own.

With respect to timing and data flow, this simulation of a live musician behaves

just as a live interaction would — a musician’s bar of solo is only provided as input
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to the musically-intelligent components when it is played back. On the one hand, one
might expect these simulations to produce behavior that looks better than it really
should because the musician’s calls and the training data are obtained from the same
file. However, the “intimacy” that emerges from this “live” simulation will never be
as good as with live musical exchange — for the musician does not “respond” to what
BoB plays.

3.2 Off-line Learned Knowledge

Off-line Learned Knowledge (OLK) infers the parameters for a probabilistic mixture
model from a set of warmup data collected from the musician prior to on-line inter-

action.

3.2.1 Data Collection

A typical warmup might last on the order of 5 to 10 minutes. Data collection involves

the following steps:

1. The user specifies a restricted set of lead sheet information — e.g., tempo, rhythm,
and (optional) harmonic information — that the computer will use to provide accom-

paniment.

2. The musician improvises freely on top of this accompaniment, the only restriction

being that they synchronize to the accompanist’s beat.

3. In real-time, BoB records what the musician plays, in total obtaining N encodable

transcriptions:

S:<81’...7Sn’...’SN>'

4. Using the procedure described in Chapter 4, BoB converts .S into training set
X = <$1’...,$n,---,$N>.

With simulated input, steps 1 through 3 are replaced by a parse of the appropriate
transcription file.
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3.2.2 Training Data

To justify the added complexity that musician-specific learning brings, BoB will be
separately trained and evaluated on two musicians: Charlie Parker and Stephan Grap-
pelli (Table 3.1). Parker, already studied in other machine learning contexts (Hérnel,
Langnickel, Sandberger, and Sieling 1999; Rolland and Ganascia 1996), was a natu-
ral choice. Grappelli was chosen because I play the violin; he is one of my favorite
improvisers on that instrument, and I would like to be able to “play with Grappelli

through BoB” someday.

Table 3.1 also summarizes important properties of the transcription files compiled
for both musicians. Each warmup was created from their improvisations over a single
tune in order to increase the odds that the content would be relevant, i.e., that it would
provide a cohesive set of behaviors from which the musician could be simulated “right
now.” For Parker, two independent improvisations over Mohawk were concatenated
together® to form training set X¥. For Grappelli, training set X ¢ was obtained

from a single improvisation. A score of each source improvisation is presented in the

appendix.
‘ Musicians: ‘
Charlie Parker Stephane Grappelli
Instrument: saxophone violin
Genre: Bebop Swing
Transcription Files:
Tune: Mohawk I've Found a New Baby
Harmonic Progression: 12-bar blues 32-bar AABA form
Key: Bb F
Appendix: E.1 F.1
Source: Mohawk I, Mohawk IT I've Found a New Baby I
(Goldsen 1978) (Glaser and Grappelli 1981)

Table 3.1: Musician Training Data

3Repeats were ignored.
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3.2.3 Training Data and Harmonic Structure

In Section 2.4.3 I argued against presently giving BoB explicit harmonic knowledge.
As a result, the current learning system knows nothing about the harmonic context
in which a warmup session was collected. However, in both Parker’s and Grappelli’s
improvisations, it is quite likely that the underlying harmonic context does influence
how their underlying tonality unfolds in time — some bars’ pitch content are more

likely to be correlated with one another than others.*

In what follows, highlights of the harmonic structure found in Mohawk and [’ve
Found a New Baby are presented. The point of this discussion is three-fold. My
first intention is to shed light on the improvised contexts that take place in harmonic
settings (as opposed to what Derek Bailey calls “free improvisation” (Bailey 1992)).
Second, this structure is important because it is later used to musically assess the
quality of learned tonal model (Section 7.2.1). Finally, at a high level, this structure
can be used to modify a musician’s call so that, when it is used to drive the system’s
search for a response, the response is more likely to fit into the underlying harmonic

context.

Mohawk

Figure 3.1 illustrates how Charlie Parker played his improvisation in time. After an
introductory pick-up note (not shown, bar 1), Parker sequentially played from bar 2
(top-most left box) to bar 121 (lower-most right box). The crucial point is that the
solo is aligned in chunks, 12 bars per row. Each of these rows is another chorus of
solo, and each chorus is structured in time with respect to the the tune’s underlying

harmonic progression (in the case of Mohawk, a 12-bar blues).

Parker’s training data contains ten choruses. 1-5 were obtained from the first
transcription and 6-10 were obtained from the second. During each transcription’s
initial chorus (1 and 6), the tune’s main melody, i.e., its head, was played, following
which Parker would improvise, each improvised solo differing significantly from the
others. In contrast, aside from the fact that the second head was transcribed down

an octave, choruses 1 and 6 were identically transcribed.

4This observation is part of what led me to consider the mixture model in the first place.
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Figure 3.1: Parker’s Training Data: Bars Structured in Time

The 12-Bar Blues

At a most basic level, the 12-bar blues progression can be divided into five key regions

(Gridley 1988), each serving one of the following harmonic functions:

e tonic, I;
o sub-dominant, TV,

e dominant, V.

These regions, identified by the Roman numerals at the top of Figure 3.1, should
be interpreted in the context of the tune’s underlying key. For Mohawk, these func-
tions correspond to the chords: Bb7, E»7, and F7. These chords in turn contain the
following pitch-classes: {Bb, D, F, Av}, {Eb, G,B>, Db}, and {F,A,C,Eb}. Because
these functions are aligned with the training data on a per-column basis, one expects

harmonic context to influence how Parker’s tonality unfolds in time.

Generally, the blues progression begins and ends on the tonic chord. The dominant
and the sub-dominant chords, sharing only one common pitch class with the tonic,

indicate regions of harmonic tension, setting up a context in which the tonic “cries
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out” to be returned to. Although each bar in column 12 is labeled as a tonic, in
reality, resolution to the tonic only occurs when the improvisation finally comes to a
close (chorus 5 and 10). The rest of the time, the accompaniment performs a turn-
back — a special, short chord sequence that further sets the stage for returning to the

tonic in bar 1 of the next chorus.

If this simple harmonic explanation was the end of the blues story, it might make
sense to engineer this knowledge directly into BoB. To do so, however, would limit
its generality somewhat (making the agent more of a blues expert). In reality, how-
ever, the series of chords transcribed for Parker’s accompaniment changed much more
quickly than these harmonic functions indicate.® As is the case with melodic impro-
visation, blues accompaniment has an infinite variety of realizations, chord substitu-
tions, extensions, transformations, etc. While the simple harmonic view presented
here is musically salient in the context of Mohawk, in general, to transform chords

transcribed at the surface of a tune into this higher-level blues abstraction is difficult
(Pachet 2000).

I've Found a New Baby

Grappelli’s improvisation was played on top of another temporal structure commonly
found in jazz: the 32-bar AABA form. Each chorus, comprises 32 bars, is broken into
four equal parts, the third comprised of a harmonic progression that is significantly
different than the other three, which are, roughly speaking, identical. Grappelli’'s
training data contains four choruses. Although one can interpret his first chorus as
the tune’s head (as is typical in many of Grappelli transcriptions) this introductory

chorus is a significantly embellished version of the tune’s main melody.

3.2.4 Off-line Learning

Off-line, using the the procedure described in Chapter 5, BoB customizes itself to the
user by fitting the parameters, €2, of a mixture model to X. After learning, BoB uses

this model to perceive and generate new solos on-line.

This approach assumes that the probability distribution over the user’s behavior

during warmup and solo trading does not change. However, because of the model’s

5In Bebop, chords typically change twice per bar.
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natural Bayesian interpretation, this assumption could easily be relaxed. A procedure
for modifying €2 on-line, incorporating new bars of evidence into a parameter updating

procedure as they arrive, is straightforward.®

3.3 On-line Interaction

During on-line interaction with the user, BoB’s classification and generation tech-
niques (Chapters 5 and 6) rely on using 2 to operationalize how it listens to what

the musician plays and how it responds to what it hears “in kind.”

3.3.1 Perception

The perception component converts each segment of a musician’s solo into a more

abstract representation. This process receives two inputs:

1. the parameters of the user model, 2 (from OLK);

2. an encodable sequence, s, and corresponding mrp (from the environment).
Two stages of output are produced:

1. a basic representation (chapter 4), which is comprised of a tree-based encoding, v,

and related set of histograms, z.

2. a user-customized representation (chapter 5), which includes:

(a) an estimate of which playing mode, y, is most likely to have generated z;

(b) given this mode, the corresponding degree of musical surprise (Section 5.10.5), I, con-
tained in x.

The left plot in Figure 3.2 shows how BoB might perceive a musician’s fours. The
discrete symbols emphasize each mode’s discrete, nominal character. The right plot
illustrates where most of the perception component’s generalization takes place. In
particular, many different transcriptions may map into the same user-specific playing

mode (when a finer level of distinction is desired, musical surprise is available).

5What is more difficult is to on-line modify the number of components in the model.
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Figure 3.2: Perception

3.3.2 Local History

The history component is responsible for storing the current musical environment —
the call — into a local, temporally ordered memory. For each bar r in a call, the

following information is retained:

e a tree, v,, and its related set of histograms, ., and mrp ;

e an estimated playing mode, y,, and surprise, [,.

With this information, the history component has the potential to compile more

abstract sequences, e.g. (Y,,¥,,,," ), {mrp, mrp_ ), etc.

3.3.3 Generation

The generator component creates a musically-appropriate, novel, and stimulating solo
response to the musician’s most recent call. BoB’s generator produces a response a

segment at a time.

Generation for bar r receives the following inputs:

the very most recent context to link into, mrp ;

a context that includes some perception, v, y, and [;

the parameters of the user model, €2;

high-level search parameters (how long to search, etc.);

a fairly general set of optional constraints (Section 6.3.5).
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Generation produces two outputs:

1. transcription s,, which is played back in real time during bar r;

2. the internal representation, v,, y,, [,, and the new mrp .

Abstract Cut-and-Paste

Figure 3.3 displays a very simple interaction scenario for how BoB might generate
a response to a musician’s call in the context of trading fours. In this scenario,
length, the number of segments in both the call and the response, is four. Generation
proceeds from left to right. In this figure, the second bar of response (r + 5) has just
been determined and is awaiting playback in the real-time buffer. The third bar of

response (r + 6) is currently being calculated.

This type of high-level interaction, referred to as abstract cut-and-paste, is per-
haps naively simple because it assumes that an adequate response can be obtained
by merely reusing a musician’s call context in bar r as the input to the generator’s
response in bar r 4 length. . However, there is nothing inherent in BoB’s archi-
tecture that keeps it from accommodating more sophisticated interaction schemes
(Section 6.4.3). Besides, one of the most exciting things about this scheme is that it
offers a viable compromise to the conflict that arises when the user, who needs some
degree of artistic control, and BoB, who needs an operational method for responding
autonomously, interact. This compromise is only possible because the generator syn-
thesizes two types of information: that which the musician directly controls via their

call, and that which they indirectly affect through their warmup data.

Real-time Issues

With abstract cut-and-paste scenarios, each call/response pair must occupy an iden-
tical number of bars. In addition, each call must occupy at least two bars. This latter
requirement arises because, during the musician’s first call bar, BoB must wait to
receive the entire segment before parsing and perceiving it. In subsequent call bars,

multi-threaded techniques are used to simultaneously:

1. Buffer the currently performed call bar.

2. Perceive the previously played call bar.
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3. Use this perception to compute an appropriate response for that bar.

Harmonic Structure

When an external harmonic structure drives an interaction, the abstract cut-and-
paste scheme described above is modified so as to consider this underlying context.
Specifically, that part of the call’s playing mode that relates to a segment’s tonality

is overridden by an appropriate abstraction from the training set.

For example, when BoB generates a response to a call that Parker played in the
first four bars of the Mohawk progression, the tonal aspect that drives this response is
taken from a ”corresponding column” of training data (Figure 3.1). As before, melodic
continuity and contour abstractions are copied directly from the musician’s call. This
modification illustrates one reason why a conglomerative modeling approach, i.e., an
approach that individually considers tonal, intervallic, and contour-based aspects, is
beneficial to the agent, offering an additional degree of power and flexibility. This

modification is described further in Section 6.4.2.
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Chapter 4
Basic Representation

This chapter introduces BoB’s basic representation, those aspects of a solo’s encod-
ing that occur prior to learning. This chapter presents two data structures. The
first is a tree that explicitly encodes a melodic segment’s rhythmic hierarchy. The
second is a conglomeration of histogram-based views that encodes deeper aspects
of a melody’s structure than are present when its melodic surface is presented as a
string- or sequence-of-pitches. The primary purpose of these histograms is to provide
an adequately rich set of features to the learning algorithm (Chapter 5), so that it
can transform them into a more abstract, user-specific encoding that differentiates

between salient aspects of their playing modes.

4.1 Overview

Figure 4.1 displays a segment of solo and its transformation into BoB’s basic repre-
sentation. This transformation is hierarchical in that each successive step produces a

more abstract view of the melody than its predecessors:

1. obtain an encodable segment of solo, s, and transform it into wvariable length tree
(VLT) v;

2. convert this tree into a conglomerative (CGL) set of features, z©, which consists of:
(a) a pitch-class (PC) histogram, z%;
(b) an intervallic (INT) histogram, x;

(c) and a directional (DIR) histogram, .
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Figure 4.1: Converting a Bar of Solo Into Its Basic Representation

v is a hierarchical tree whose internal nodes encode a segment’s rhythm and whose
in-order walk of its leaves specifies the melody’s pitch/rest sequence. By itself, this
walk is nothing but a pitch/rest string, providing no generalization. z“, however,
maps this variable number of leaves into three fixed-size vectors so that deeper struc-
tural aspects of the melody might be operated upon. In particular,z® provides a
generalized tonal view of the sequence. z' and 2P do the same for melodic continuity

and contour.

In this thesis, segmentation is per-bar, but this basic representation can handle
arbitrary segmentation schemes, an important issue in many temporal domains. As
per-bar segments are relatively short, this scheme provides a highly-localized view of

a solo. This representation was first introduced in (Thom 1999).

4.2 Segmentation Window Size

While smaller segmentation windows produce more local views, and thus can provide
lower latency (which in turn enables the system to be more responsive), smaller
windows necessarily contain less information because any averages inferred from them
are based upon less data.! Clearly, window length can directly impact how a temporal
model performs. In BoB’s computational model, care is taken to treat window size
as an arbitrary variable so that in future work the relationship between window size

and performance can be easily investigated.

Computationally, arbitrary window sizes allow different solo segments to occupy

LA similar phenomenon occurs with Fourier Transforms, where the trade-off between time versus

frequency resolution is a function of window length.
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different time spans and/or circumscribe different numbers of events. This function-
ality is musically powerful because it allows more salient segmentation schemes to be

considered (e.g., segment per-phrase or per-motive).

Because of BoB’s real-time scheduler, which must know how long it has to think
about each segment before responding, BoB’s segmentation scheme is per bar. The
disadvantage of this scheme is that, in jazz, motivic ideas often cross bar lines. How-
ever, since bars do correspond to predominant metrical patterns, this scheme has
some musical merit. Per-bar segmentation has also been successfully used by other
researchers, e.g., (Biles 1998; Franklin 2001; Hornel, Langnickel, Sandberger, and
Sieling 1999).

4.3 Variable Length Trees

A VLT provides the system’s lowest-level view of a segment’s melody. VLT v is
obtained by parsing encodable input s with the makeVLT procedure (Appendix C). A

VLT stores information using two different constructs:

1. Leaf nodes encode pitch information.

2. Internal nodes encode durational information.

A VLT is shown in Figure 4.1. Each internal node, e, is connected to its children.

Leaves are drawn at the bottom, and the root node is drawn at the top.

4.3.1 Internal Structure

A key aspect of VLTs is that their rhythms are entirely determined by the structure
of their internal nodes. A specific node’s duration is encoded by its location in a
tree. In particular, at each split, the current node’s duration becomes an appropriate

subdivision of its parent’s duration.

In detailing VLT rhythmic concepts, a 4/4 meter and per-bar segmentation scheme
is assumed. Trees contain exactly four beats worth of solo, which simplifies various
aspects of the tree’s construction. Although it would be straightforward to extend

these concepts to handle other meters and segmentation schemes, to do so will require
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some thought.?

Deciding how to limit rhythmic structure was based on my experience playing
published improvised transcriptions (ranging from the blues, folk, jazz, bluegrass,
swing, Cajun, and gypsy violinists covered by Fiddler magazine to artist-specific
compendiums, e.g., Charlie Parker, Jeff Beck, Stephan Grappelli, Vassar Clements,

Jimmy Page, Carlos Santana). A VLT’s internal structure is restricted as follows:

e Restriction I: Each internal node must have 2 or 3 children.

e Restriction II: A leaf node can occupy no less than % or % of a beat.

These restrictions limit the number of duration nodes that can be used to construct

a tree.

Those node durations that a VLT can represent are shown in Figure 4.2. These
nodes are referred to as wvalid durations. In this figure, each duration is shown as
both its fraction of a beat and its musical notation. Durations that descend to the
left (long dashed lines) correspond to division by two, and those that descend to the
right (short dashed lines) correspond to division by three. The top-most duration at
tree-depth zero corresponds to a VLT’s root node (occupying four beats). A tree’s
bottom-most leaf can never be smaller than either a thirty-second of a beat (%), or a
sextuplet (). When building and modifying trees, the values in this figure need to
be accessible. Function:

isValid(num, den, dur)

is used for this purpose, only returning true when duration dur multiplied by num
and divided by den is valid.

The trees that can be built using restrictions I and II define the set of tran-
scribed rhythms that is encodable. Because individual nodes can be combined to
form compound durations (Section 4.3.4), this set is rich enough to encode almost all
of the transcriptions that I have encountered. A notable exception is Parker’s and
Grappelli’s occasional use of the pentuplet.> To encode pentuplets, I modified their

transcription, representing them as rhythms composed of two and three equal parts.

For example, perhaps the rightmost tree in Figure 4.2 would be more appropriate in certain 3/4

meter contexts.
3The pentuplet divides a beat into five equal parts.
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Figure 4.2: Node Durations (Per-bar; 4/4 Meter)

4.3.2 Uniqueness

Because there are multiple paths from the root to certain durations in Figure 4.2, an

additional restriction on a VLT’s internal structure is imposed:

e Restriction III: a VLT must be constructed from the smallest possible number of

nodes.

This restriction ensures that a rhythm mapped into a VLT is unique or canonical.
For example, without this restriction, it would be ambiguous which tree should be

used to encode the rhythm in Figure 4.3.

d d
; 3 1 3
composed of 11 nodes composed of 12 nodes

Figure 4.3: A Rhythm With Two Realizations

4To prove that this additional definition provides a canonical encoding, one needs to show that
for any encodable rhythm, one cannot produce two different trees using Restrictions I and II that,
on the one hand, contain an identical number of nodes and, on the other hand, have unique internal

structures.
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4.3.3 Leaves

Leaf nodes store one of the following leaf values: a pitch, or a rest.

When a leaf stores pitch, it encodes it using the following fields:

e pitch class, a value from the set: {C,Db,D,Eb, E,F, Gb, G, Ab, A, Bb, B}. This scheme
does not make pitch-spelling distinctions (e.g., F# is encoded as Gb).

e octave, an integer value in the range [0,7]. This range is aligned so that the value 4

corresponds to the pitches between and including middle C up to the B above it.

In Figure 4.1, pitch class and octave fields are separated by a colon.

VLTs can only encode monophonic solos because each leaf is defined to contain at
most one pitch value. With the exception of musical passages comprised of double-
stops or chords, this encoding accommodates the transcriptions mentioned earlier.
However, any additional expressive information that might be transcribed is lost. For
example, dynamics and articulation — e.g., slurs, staccato, accents — are ignored.®
Similarly ignored are pitch altering transcription devices, e.g., ghost, blue, or bent

pitches are encoded as a discrete pitch alone.

4.3.4 Ties

Notice that there are two Ab:3 leaves in Figure 4.1. Both leaves are needed to represent
the dotted-quarter note because this duration does not exist by itself in Figure 4.2.

This example motivates why pitch values have an additional tie field.

When a pitched leaf is followed by another leaf whose pitch and octave are iden-
tical, a boolean tie variable indicates whether or not the two durations are treated

as:

e compound, in which case the two leaves are played back as one longer tone;

e composite, in which case the two leaves are played back with a brief silence between
them.

A slur, which indicates that two distinct pitches should be played back smoothly, with no space
separating them, should not be confused with the tie, which will be introduced to create compound

durations.
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With compound durations, the rhythms that a VLT can encode significantly increases.

When transcribing segment s into v, adjacent identical notes are assumed to be
tied unless the first of the two is explicitly identified as composite. This default
behavior provides an important semantic benefit when computing new solo segments
in real time. In particular, when the last pitch in the most recently generated response

bar is turned off solely depends on what BoB decides to do in the next response bar.

4.4 The Conglomerative Feature Set

The CGL feature set, ¢, converts a sequence that contains an arbitrary number
of pitches into three fixed-size histogram vectors. The purpose of this abstraction
is to transform the string-of-pitches in v into a set of local averages that captures
deeper levels of structure than is available on the melody’s immediate surface. This
representation’s primary function is capturing various aspects of the pitches’ ordering
in v. As a result, rthythm only indirectly affects 2 (influencing how many leaves

there are and introducing syncopation); rests are ignored.

4.4.1 Pitch Sequences

Given an in-order walk, p, , of the VLT in segment r:

b= (s s P10 )

Pitch sequence (, is defined to be the sequence that results when all the rest leaves

are ignored:
Cr = <Cr,17 R N I r,Tr>'

When computing intervallic and directional histograms, the MRP will also be needed.

For convenience, this value is referred to by index t =0, e.g.,

r,t=0"

4.4.2 Variable Sample Size

The number of counts distributed among a histogram’s bins is its sample size,® sz:

Sz = me.
m

5Do not confuse a histogram’s sample size, sz, with the number of histograms in a dataset, N.
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Variable sample size indicates that different histograms may contain different numbers

of counts.

4.4.3 Pitch-Class Histogram
The PC histogram records the distribution of pitch classes in (:

P #{1 <t < T,lpc((,) == m}.

r,m

pc converts a pitch into an index that identifies its PC value (octave is ignored). x
captures essential aspects of the tonality in segment r. This abstraction is 0-order
Markovian because it entirely ignores the ordering of pitches in the sequence. This
histogram has MY = 12 bins, one for each element in the pitch class set (Section 4.3.3).
Sample size is determined by the number of events in segment r, sz = T,. A segment

taken from Parker’s training data and its corresponding VLT and PC histogram are

shown in Figure 4.4.

segment .S, _..

0cC l’:lllllu "

8
el
8

Figure 4.4: Conglomerative Feature Set Example
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4.4.4 Interval Histogram

The INT histogram records the distribution of absolute intervals between adjacent

pairs of pitches in ( :

ol =#{1<t<Tfabs((, ¢ ) ==m}.

abs returns an index that identifies its absolute difference in semi-tones. er captures
essential aspects of the melodic continuity in segment r. This abstraction is 1st-order

Markovian, concerned with pairs of adjacent pitches. Because ( ,_, is included in this

r,t=0

calculation, sz' = sz”.
This histogram has M! = 13 bins, one for each of the following intervals:
{u, m2, M2, m3, M3, P4, tt, P5, m6, M6, m7, M7, o}.

All but ‘u’, ‘tt’, and ‘0’ are typical music notation. ‘u’, the unison interval, indicates
that two adjacent pitches are identical. ‘o’ includes any internal greater than or equal

to an octave. ‘tt’ refers to the tritone.

An INT example is also shown in Figure 4.4. The intervals for each pair of pitches
are also identified by the jagged, dotted line that links the leaves in v. The intervals

associated with this histogram’s bins increase from left to right.

4.4.5 Melodic Direction

Each interval between a successive pair of pitches has a corresponding sign. Interval

signs are recorded using an alphabet comprised of set:
D ={+,0,—}.
Function sym(¢,_,,¢,) assigns symbols to intervals as follows:
e ‘+’ indicates intervals with upwards motion (¢,_, < (,);
e ‘0’ indicates the unison interval, i.e., zero motion (¢, , == (,);

e ‘—’indicates intervals with downwards motion (¢,_, > ().

sym is used to create direction sequence:

do=(d, - d,.d.) (4.1)

from pitch sequence (.
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4.4.6 Melodic Direction Histogram

The DIR histogram records essential aspects of the melodic contour in segment r. In
D

r

particular, ” records the transitions that d produces when parsed by the Markov
Chain of Figure 4.5. This abstraction provides a variable sized Markovian view of
sequence (,, considering anywhere from two to four of the most recent pitch values

depending on context. z° has MP = 27 bins, one for each transition in Figure 4.5.

Figure 4.5: Relevant Directional History Markov Chain

The relevant directional histories that this chain observes come from the set:
H - {+7 ++7 ++ +7 0,00,000, —y ——, — — _}

In total, n,, = 9 states. This Markov chain is highly constrained. Rather than
being fully connected, there are only three transitions out of each state, one for each
symbol in D. (In contrast, a fully connected chain would have 81 transitions.) These
constraints reduce the dimension of zP, which makes learning its structure more

feasible and sampling from its distribution more efficient.

The dotted arcs in this figure correspond to downwards motion transitions (solid
arcs to upwards motion; dot-dashed arcs to zero motion). It would clutter up the
graph to connect every transition to its appropriate input state. Rather, all dotted
arcs that do not terminate end in state ‘—’. (Solid arcs end in state ‘+’, and dot-

dashed arcs end in state ‘0’.) From this figure, it is easy to see what aspects of melodic
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contour DIR bins capture — they count repeated directions of up to length three,

resetting back to length one anytime a change in direction occurs.

Each bin in DIR records a different tuple, (i,j), where i € H and j € D. A
one-to-one mapping between index m and this tuple is obtained via m = dInd(i, j).
Function hs is used to recursively generate the sequence of states, h, , that are obtained

when d, is parsed by the Markov chain:

hr = <hr,17 T h’r,t’ T hr,Tr—1>'
With this sequence in hand, z is calculated:

rit—1

2P :#{2§t§Tr|h

r,m=dInd(z,j)

==tand d,k == }

This equation’s indices range from 2 to T,; szP = sz” — 1.

hs(h
if t ==
len =1

d,)

t—17 7t

sym = d,
else
len = number of repeated symbols in state h, ,
sym = direction symbol associated with state h,_,
if sym ==d,
len = min(len + 1,3)
else
len =1
sym = d,
end
end

hist = that h € H that contains sym repeated len times in a row

return hist

Table 4.1: A Recursive Relevant History Procedure

A DIR example is also shown in Figure 4.4. Bin labels in this figure are abbrevi-
ated. The ‘/’ in each label separates a relevant history (left of slash) from its melodic
direction transition (right of slash). For example, bin ‘+/—"is the downwards transi-
tion out of state ‘+’. The next two bins to the right, ‘2/—" and ‘3/—’, correspond to
longer upwards relevant histories, i.e., ‘++’ and ‘4 4 +’ respectively. The transitions

recorded by these bins are also downwards.
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4.4.7 Conglomerative Histogram

The CGL tuple comprises the three preceeding histograms. x¢ is obtained for segment

r using function featuresCGL (Table 4.2).

featuresCGL (mrpr , C)

calculate =¥ from

¢' = ¢, with mrp_inserted onto the front
calculate 2! from ('

calculate zP from ('

€ = (2P 2!, D)

¢

return x

Table 4.2: The featuresCGL Pitch Sequence to CGL Algorithm

In total, ¢ has:
M€ =52 = MY + M} + MP = 52

bins and contains:

SZrCZSZF—FSZ}—i—SZP:?)'Tr—l

counts.

4.4.8 Syncopation and Repeated Tones

Syncopated rhythms must be encoded as compound rhythms, and so the pitch class
histograms built from these rhythms necessarily contain more counts than their non-
syncopated counterparts would (e.g., rather than having one A»:3 count in Figure 4.1,
there are two). The increased PC weighting for syncopation makes sense because the
syncopation tends to draw more attention to these pitches. Compound rhythms also

produce unison interval counts and relevant histories that contain zero motions.

Currently, no distinction between compound and composite durations are made:
both produce additional PC counts, unison intervals, and zero motion trends. How-
ever, note repetition, e.g., composite durations, plays an important part in music
perception (Cross 1999; Narmour 1990). At some point, syncopation and repetition

induced counts will need to be distinguished.
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4.5 The Complete Basic Representation Algorithm

BoB'’s real-time basic perception algorithm, basicRepr, is outlined in Table 4.3. Ini-
tially, tree v is empty. makeVLT constructs this tree from s,. From the resulting tree,
leaf and pitch sequences are constructed. z¢ is constructed from this pitch sequence
and the MRP. This table provides insight into the reasoning behind the various primed

sequence lengths. Assuming that s, is in its smallest possible form: 7", < T", < T,.

bastepr(mrpr, s, = <sr‘1, S, sr’T:, >)

v is empty

remove the first element from s, and store it in curr
make d the total duration of a single bar
makeVLT(curr, s,, v, d)

obtain p, = (p, ,, =, P, ,pr’T:> from v

obtain ¢ = <Cr’1, Gy Cr,Tr> from p,

¢ = featuresCGL(mrp , ()

return <v,xc>

Table 4.3: The Basic Representation Algorithm

4.6 Discussion

4.6.1 Transcribed Melodic Segments and the VLT

A VLT’s highly restricted internal structure provides important real-time benefits,

reducing the computation associated with:

e transcription, because fewer encodable rhythms mean that fewer transcpriptions need

to be considered;
e tree building, because a tree’s maximum size is bounded;

e generation, because the search space over possible solos is significantly restricted.

The cost paid for these benefits is that BoB can only function when it receives en-
codable transcriptions as inputs. Another downside is that expressive aspects of a

performance, e.g., accent, articulation, dynamics, timbre — important parts of the
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improvised music making experience — are ignored. This lack of expressive power
is a primary reason why BoB’s current audio demos sound so mechanical.” While
these are significant drawbacks, I believe there are compelling reasons to investigate
computer improvisation on top of such a restricted bases. Initially, it was my own
improvisational experiences that motivated this line of thinking. For example, when
I perform a transcription of Parker or Grappelli, my realization of it is much more
expressive than what is printed on the page. Somehow, other aspects of my musical
being are able to combine with this abstraction to produce a powerful result. Simi-
larly, when I look at these transcriptions, using them as a guide when improvising,
their content has a strong impact on the types of notes, rhythms, and motivs that I
play, even though I am spontaneously making up my solo. In short, the transcription

abstraction is a very powerful one, even in improvised contexts.

Another motivation for this agenda is the observation that in music research,
performance has only recently started to receive much attention, and people are fi-
nally beginning to recognize the value in doing so. Performance investigations often
compare performed timings to scores (Heijink, Desain, Honing, and Windsor 2000;
Widmer 2000). Although an effective argument can be made that an obsessive pre-
occupation with written scores — for example, to the extent that audio content is
ingored — might hamper computer music research, it is the presence of scored no-
tation that allows expressive deviations to be quantified in the first place. While in
improvised music it is more difficult to justify why a spontaneous melody should be
viewed in a scored notation, I believe that developing this abstraction is a crucial

next step to extending what is rigorously researched in music.

Another important benefit of VLTs is that they present rhythmic structure in an
explicit, hierarchical manner. In contrast, many computer systems require that each
musical pitch occupy a fixed duration (Franklin 2001; Hornel, Langnickel, Sandberger,
and Sieling 1999), and if a system is to generate a long note, it must know how to
generate a long sequence of identical, tied pitches. BoB’s explicit hierarchy provides

a much more succinct rhythmic view.

With this encoding, it is also much more natural to think about rhythmic modifi-

cation — merely grow or collapse some part of a tree’s fringe (Section 6.1). Marsden

"While people have commented that much better playback could have been easily achieved —
swinging eighth-notes, improving the accompaniment, using better MIDI patches (or, better yet,
having a real musician perform BoB’s solos) — I have resisted the temptation to make these modi-
fications because it is in this state that listeners hear the same abstraction that the computer does.
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(1999) pointed out the value of thinking about melodies in terms of these types of
embellishments, but has yet to build an algorithm that can automatically infer how
such embellishments could be used to relate various segments of music (he could eas-
ily generate examples by hand). The VLT framework provides one mechanism for

exploring the operationalization of such ideas.

4.6.2 The Conglomerative Feature Set

CGL transforms a VLT’s string-of-pitches into a set of averages that provides a more
general view of local tonal, intervallic, and contour-based behavior. Initially, the ap-
propriateness of this scheme was motivated by my sense that, when improvising with
others or when transcribing improvised solos from CDs, I often remembered a more
localized, general essence of the solo’s content than an exact memory of individual

notes themselves.

Others have recognized the importance of providing multiple views of a pitch
sequence. For example, Cambouropoulos, Crawford, and Iliopoulos (1999) exam-
ined the pros and cons of various pitch-, intervallic-, and contour-based encodings.
Sophisticated encodings that combine pitch-class, intervallic, and directional based
views have also been used in real systems, e.g., (Hornel and Menzel 1998). Since each
view is readily perceived by humans (Deutsch 1999; Krumhansl 1990; Bartlett 1993),
to ignore any one of them might violate a user’s musical common sense, making it
more difficult for them to “suspend their disbelief.” In addition, by explicitly includ-
ing each of these multiple, musically meaningful viewpoints into the same encoding

scheme, the system becomes easier to understand and extend.

The histogram generalization mechanism ignores a segment’s exact, pitch-by-pitch
temporal behavior, focusing instead on more locally general ideas about the segment’s
scalar, intervallic, and directional properties. Thus, it is not surprising that different
notions of similarity emerge when using string-of-pitches and CGL-based features.
String-of-pitches based comparisons naturally lead to an edit-based distance metric,
e.g., count how many insertions and deletions are needed to transform one sequence
into another (Rolland and Ganascia 1996; Rolland and Ganascia 2000; Mongeau and
Sankoff 1990). Although to some extent CGL-based comparisons can be interpreted
in an edit-based framework, for insertions and deletions add, remove and/or rearrange
histogram counts, an important distinction is that it is straightforward to probabilis-

tically model histograms. As demonstrated in Chapter 7, when real music data is
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modeled in this way, a coarser, less ”brittle” view of melodic likeness emerges.

The fact that histograms transform variable-sized sequences into fixed-dimensional
feature vectors also impacts the types of machine learning algorithms that can be
used. Typically, variable-sized inputs require some kind of decomposable, recursive
learning technique, e.g., (Elman 1991), and such technologies are notoriously hard to
train. Many in the computer music community have avoided this issue by restricting
themselves to fixed-size inputs, either continuously adjusting the window size to au-
tomatically contain a fixed number of events, e.g., (Rowe 1993), or limiting oneself to
a specific duration and resolution of inputs, e.g., (Franklin 2001; Hornel, Langnickel,
Sandberger, and Sieling 1999). The VLT /CGL combination provides a more flexible
and powerful way to learn structure from a highly structured, temporal, contextual

medium.

On the other hand, this fixed-size transformation is, by definition, ignorant of cer-
tain aspects of a segment’s temporal ordering — this is the very reason it generalizes.
As a result, it can be difficult or impossible to construct a viable pitch sequence from
a CGL feature vector (Section 6.3.2). Together, fortunately, the trio of histograms
provides a fair amount of temporal information (ranging from 0- to 3rd-order Marko-
vian), and this is why BoB can generate pitch sequences that sound as good as they
do.
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Chapter 5

Learning Musician-Specific

Perception

This chapter introduces the mechanism by which BoB transforms its basic represen-
tation of a solo segment into a user-specific representation. A probabilistic mizture
model composed of Multinomial probability distribution components is introduced
for clustering histograms that contain an arbitrary, variable numbers of counts. An
Expectation-Maximization (EM) based method is derived to infer the parameters of
this model, enabling a user-specific clustering function to be learned from the user’s

warmup data.

From a ML point of view, this model’s primary distinction is that it treats all
counts within a given histogram as correlated. Because of this distinction, the model
provides more information to the learner than a method like Autoclass would because
all counts are explicitly modeled as coming from the same underlying distribution.
This fact is especially important because of the inherent sparsity of the training data
that BoB is expected to collect. Such sparsity-related issues are investigated by first
introducing simulation-based methods for quantifying a learning solution’s quality,
and then using these methods to quantify learning performance in the context of the

transcriptions of Charlie Parker and Stephane Grappelli.

This model is important to computational musical intelligence because it provides
a mechanism for clustering based upon the content of an entire segment. This tech-
nology is used to customize BoB’s solo-trading model to its user, partitioning the

space of conglomerative histograms into distinct playing modes that capture impor-

81



tant distinctions in tonal, intervallic, and directional usage.

5.1 Overview

Figure 5.1 displays a many-to-one mapping of conglomerative features into discrete
clusters. This mapping is customized to a particular user by fitting a mixture of
Multinomial components to the PC, INT, and DIR histograms collected for them
during a warmup session. Since these histograms’ class memberships are unknown,
learning is unsupervised — estimation amounts to partitioning their tonal, intervallic,
and directional trends so that the training data is “well explained.” This clustering
scheme was first presented in detail in (Thom 2000b) and (Thom 2000a).

CGL Feature Set: Dlscr(.ate Shusters
(playing modes):
5 ~
T onality .
T \\:
Continuity C
xI : > i / @
Contour
5D - /
! B

Figure 5.1: User-Specific Playing Mode Classification

The purpose of this mapping is to capture the various playing modes that the
musician uses during different parts of their improvisations to make their solos in-
teresting. For example, a user’s playing mode might amount to their preference for
certain tones in a musical scale, arranged in such a way that a particular melodic
shape and set of intervals is used. The terms cluster, class, component, and playing
mode are used interchangeably.

5.2 Training Data and Sparsity

BoB is independently trained and evaluated on Parker and Grappelli using the datasets
described in Section 3.2.2, X® and X ¢ respectively. Both datasets are relatively

82



sparse in terms of their dimensionality (the number of PC, INT, and DIR bins). Train-
ing set sparsity concerns how many histograms that the dataset contains, and sample
size sparsity concerns how many counts are distributed among each histogram’s bins.
Sparsity has an important impact on learning performance, so each of these aspects
is further quantified to formalize what kind of “representative data” BoB should be

able to learn from.

5.2.1 Training Set Sparsity

Those bars that produce VLTs with less than two pitch leaves are not included in
the training data because their DIR histograms contain no counts. A transcription’s
initial pick-up bar was also not used. The remaining bars are used to construct PC,
INT, and DIR datasets, producing a total of NP = 119 histograms for Parker, and
N = 126 for Grappelli.

5.2.2 Sample Size Sparsity

The distribution over sample size for PC histograms are summarized in Table 5.1 for
both Parker and Grappelli.!. To get a feel for how sparse these histograms are, see
Figure 4.4.

Sample size sparsity is caused by BoB’s per-bar segmentation window, which in-
volves the adaptation versus averaging trade-off discussed in Section 4.2. In the
context of histogram clustering, this trade-off becomes even more important because
the degree to which histograms can be segregated into distinct clusters will depend on
their underlying segments coinciding with unique and distinctive trends. Although
larger windows provide more data upon which to estimate a histogram’s underlying
generative component, they increase the odds that several competing trends will con-
tribute to the same histogram’s counts, muddling up the very structure that is to be

inferred.

!The PC distribution completely specifies how the INT and DIR distributions behave.
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PC sz Statistics
Parker Grappelli
dim Ave Std Min Max Ave Std Min Max
PC 12 7.3 3.0 2 17 6.9 1.8 2 12
INT | 13 7.3 3.0 2 17 6.9 1.8 2 12
DIR | 27 6.3 3.0 1 16 5.9 1.8 1 11
Parker PC Distribution Grappelli PC Distribution
025 0.45
0.4r
0.2f 0.351
0.3} M
20.15¢f M =
£ Z o025}
= S o2
a 0.1 =
0.15
0.05} H o1r H
0.05}
oL ool Ol .0 HH o
0 5 10 15 20 o 5 10 15 20
PC sample size PC sample size

Table 5.1: Representative Sample Sizes
5.3 Clustering Background

In the last thirty years, the quantity of literature on cluster analysis has exploded,
with contributions coming from a wide range of different fields e.g., (Dubes and Jain
1980; Kaufman and Rousseeuw 1990; Duda and Hart 1973). McLachlan and Basford

(1988) presents a good overview of the mixture model based clustering approach.

A definition of cluster analysis is as varied as the field’s interdisciplinary nature.

I employ (McLachlan and Basford 1988)’s definition:

In cluster analysis, multivariate techniques are used to create groups amongst
the entities, where there is no prior information regarding the underlying group
structure, or at least where there is no available data from each of the groups

if their existence is known. (page 6)

In machine learning terms, this means that no data-points are labeled. The algorithm

that operates upon the data infers these labels, an unsupervised learning scenario.

Clustering algorithms can be categorized as either hierarchical (tree based) or
non-hierarchical (fixed partition). In the tree-based scheme, an algorithm attempts

to grow some sort of tree to “explain” the data, each level in the tree merging or
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splitting a particular cluster into a sub- or super-set. From root to leaves, this tree
provides a monotonically increasing strength of clustering as more and more clusters
are formed. This type of strategy will always optimize a route between the root and
leaf extremes (McLachlan and Basford 1988) (page 7).

In the fixed partition scheme, the number of clusters, K, is fixed up front. Learning
amounts to searching for an optimal clustering of the data into this many partitions.

The sole optimization focus is finding structure for K individual groups in the data:

concentrat[ing] on the role of clustering where the partitioning of the data into
relatively homogeneous groups is a data reduction exercise in its own right,
or part of an attempt to shed light on the phenomena of interest through a
particular grouping. (McLachlan and Basford 1988) (page 6)

Regardless of which scheme is used, the open question of how to “best” pick the
number of clusters in dataset X remains. However, once K is chosen, either clustering

strategy provides a mechanism for mapping dataset X into labeling Y.

5.4 Clustering With Mixture Models

Mixture models provide a fixed-partition based approach to clustering. This approach
is model-based in that a different component probability distribution is estimated
for each cluster. In addition to the standard probabilistic benefits, e.g., knowledge
about uncertainty, mixture models are also generative, meaning that new data can

be sampled from the model.

Mixture model G is composed out of some fixed number of underlying component
distributions K:

G:<g“...,gk7...7gK>_

A specific model is defined by parameter €2, composed out of:

e mixture weights: 7 = <7r1, Cee T, ,7rK>. 7, specifies how likely component g, is

to be chosen as a data-point’s generator;

e component parameters: 6,,---,0,,---,0,. 0, specifies the parameterization for the

g.-th component.
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5.4.1 Sampling

Mixture models assume that data is generated according to a two stage sampling

process. First, a component is chosen:
y ~ Mnom(1, 7). (5.1)
Next, this component is used to produce feature vector x:
xr e~ gkzy(ﬁk). (5.2)

The Mnom function is fully described later (Section 5.7.1). For now, suffice it to say

that equation 5.1 selects from one of the following outcomes:
ye {172,...,k7...,K}‘
It will sometimes be convenient to present y in its equivalent indicator vector form:

Z:<Z17.'.7Zk7.'.7ZK>7

where z is defined so that all dimensions have value zero except for z,_ = 1. Notation
y and z will be used interchangeably. Thus, whenever y appears, indicator vector z

is implied and vice versa.

Under this sampling scheme, the mixture model’s joint probability is:

Pr(z;y|Q) = ,_, - Pr(zlg, (6,))-

Marginalizing produces the unlabeled likelihood:
u(z|Q) = > Pr(z;y = k|Q). (5.3)
k
When a labeled estimate is available, one can also specify the labeled likelihood:

I(xy; ) = Pr(zly = k; Q) = Pr(z]g,_ (6,)). (5.4)

5.4.2 Clustering and Posteriors

Since the joint defines a probability distribution over (x,y), it provides the knowledge
needed to cluster a dataset. In particular, for a given x, Bayes rule is applied to

produce posterior distribution vector:

¢:<¢1,...,¢k,...,%>7
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where:

Pr(z;y = k|Q)
The posterior is used to obtain cluster estimate y:
Y= Argmax1gkgK (l/Jk) (56)

Since y is an estimate, it does not necessarily correspond to the component that
actually generated x.

When, however, data is simulated, as will be the case when a particular learned
parameter’s quality is assessed (Section 5.7.5), both the data’s generative components
and the model’s parameters are known. To identify this situation, variables are un-
derlined (indicating that they are based upon the ground truth). Thus, with (z,y) it
is known that g,_ (6,) generated x. Similarly, {2 indicates that x was sampled from
G(Q).

When equation 5.6 is based on €2, it is an optimal Bayes classifier — the number of
misclassifications it makes will, on average, be minimal (DeGroot 1970). An optimal
classification is additionally identified by a hat, § (indicating that it is an estimate

based upon ground truth).

5.4.3 Learning a Mixture Model from Training Data
When learning a mixture model from training set X ", the following are hidden:

e clustering Y I7;
e parameters €);

e various structural assumptions, e.g., do all g, come from the same family, and if so,

from which family? what is K7 etc.

Roughly speaking, once some structural assumptions are settled upon, learning boils
down to estimating each 6, and m, using those data-points that are most likely to

have been generated by the same component, g,.

As a result, when the underlying components really are quite different from one
another, the data is easier to separate and the model should be easier to learn. Ul-
timately, learning will be cast as an optimization problem, adjusting (2 to make a
dataset likelihood function as large — as fit — as possible.
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It is assumed that all data-points are independently sampled from G(£2), so labeled

and unlabeled dataset likelihoods are multiplicative:

U(XI|Q) = Hu

(5.7)

L(X|Y;9Q) = Hl

By supporting an additional “fake” labeled dataset, (X, V)™, the learning algorithm
can automatically incorporate prior knowledge, which allows one to easily introduce

bias. In total, the fitness function to optimize is:
F(XT; XY PR Q) = UXTQ) - LX)V P Q).

These variable names were chosen to be easy to remember, i.e., Unlabeled and Labeled

likelihoods, and the training-plus-fake-dataset Fitness function.?

Learning €2 amounts to optimizing:
Argmax, (F(XW;XF’“|YF’“;Q)). (5.8)

This estimate is only guaranteed to locally approach optimal because, with unlabeled
likelihood, a closed-form optimal solution does not exist (the cause of difficulty is the
sum over k in equation 5.3). A randomized, Expectation-Minimization (EM) based
algorithm (Dempster, Laird, and Rubin 1977) will be developed to iteratively search

for local optima.

In general, equation 5.8 is only well defined when K is fixed. As such, BoB learns

its user-specific model in two stages:
e Learn Stage I: Solve for ) using a fixed K; repeat for each solution in Stage II.
e Learn Stage II: Pick the solution from set 7

T={K,,

- Q(K) - - .Kmm}
that looks “best” according to some other fitness measure.

Q(K) indicates that K is treated as a variable; alone, 2 implies that K is fixed.

2When reporting one of these quantities for an entire dataset, it is first normalized. Dependence

on the number of data-points is eliminated by taking the geometric mean.
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5.5 Conglomerative Clustering

Conglomerative learning is defined to be the independent modeling of PC, INT, and
DIR histograms. With methods vmnLearn and vmnClassify (defined in Sections 5.7.2

and 5.8), the user’s playing modes are learned and perceived as shown in Table 5.2.

learnCGL(X ) ‘ classifyCGL(z%, Q°) ‘
OF = learnVmn(XP) <mp,lp> = classifyVmn(z, QF)
Q' = learnVmn(X") (z',1") = classifyVmn(z', Q)
OP = learnVmn(X") (P,1P) = classifyVmn(z", QP)
return Q° 1€ —P.L.D
return <mc,lc>

Table 5.2: Conglomerative User-Specific Learning and Classification Algorithms

Independence assumes that:
Pr(z°) = Pr(z") - Pr(a!) - Pr(2P),

which is why musical surprise, namely labeled likelihood [“, is multiplicative. (The

impact of this independence assumption is discussed further in Section 8.5.1.)

5.6 Variable-Sized Histogram Clustering Example

In this section, a representative set of histograms is presented that make BoB’s clus-
tering task more concrete. This example demonstrates why clustering histograms
with relatively small sample sizes can be non-trivial and why it is beneficial to base

inference upon a well-understood probabilistic model.

Twenty-one histograms (M = 12 bins) are displayed in Figure 5.2.> Each his-
togram is a different data-point, generated by the same mixture. What varies between
histograms are: how many counts are present and which component in the mixture
generated the counts. Given this data, BoB’s task is: to determine which value of K to
use; and given K, to estimate the model’s parameters, €2, and data-points’ clustering,
Y.

The first thing to note is that each data-point’s sz is known (simply add up the to-

tal number of counts), so estimating a distribution for sample size is straight-forward.

3This data’s generation scheme is described in Section 5.9.1.
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Figure 5.2: A Mixture of Histograms Dataset

Guessing which component generated which histograms is much more difficult. For
example, consider trying to cluster this set into K = 7 distinct partitions. The dif-
ficulty of this task is exacerbated by the fact that none of the histograms look very
much alike, and there are two reasons for this. First, histograms are relatively sparse.

Second, the different components’ bins “interfere” with one another a “fair bit.”

The gray bars in the background identify which bins are most probable given
a histogram’s underlying component generator. (This knowledge is only available
because the data is simulated.) Gray-coincident bins are all equally probable, and
all others are equally improbable. Thus, a discerning viewer might notice that the
same component was used to generate each column of histograms, e.g., z__,, z,, and

z,, belong to some cluster y = 1; z,, x,, and z,, belong to some other cluster y = 2;
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etc. The gray bars demonstrate what is meant by a “fair bit of interference” among
bins. For example, with clusters y = 1 and 2, only the 2nd gray bar to the right of
the y-axis differs between components. Thus, counts, or a lack thereof, on any other
bins do not help discriminate between these two components. In other words, all the

other bins interfere with one another and are thus non-discriminatory.

Knowing what component each of these histograms belongs to allows several subtle

points to be made:

e Often, larger sample sizes contain more useful information. For example, consider

Z,5, where all the counts lie on most probable bins.

e Sometimes larger samples contain a fair bit of misleading information. Consider z,
which has the largest sample size (15 counts), yet % of the counts are distributed

among improbable bins.

e Smaller samples often contain less reliable information, e.g., considern € {2,3,5,6,9}.
Each of these data-points is marked with an ‘X’ because a Bayesian optimal classifier

would misclassify them.

e Sometimes smaller samples contain completely pertinent information, e.g., z,.

It is for reasons such as these that a rigorous probabilistic learning procedure is needed
— one that weighs larger sample sizes more heavily, especially when they collaborate

with other data-points’ features.

5.7 Variable-Sized Mixtures of Multinomials

A probabilistic model for clustering histograms that contain an arbitrary number
of counts — the wvariable-sized mizture of Multinomials (vMn) — is now derived.
Although this derivation was initially motivated by BoB’s application, it is completely
general and can be applied in any domain where streams of discrete events of arbitrary

length need to be structured.

The Multinomial distribution, its incorporation into the vMn model, and the rel-
evant probabilistic quantities are first described, resulting in a complete specification
of classifyVmn. Next, learnVmnQ, an EM-based learning algorithm for inferring 2

from histogram training set X is presented, resulting in a complete specification of
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learning Stage I. Numeric quantities for objectively evaluating the quality of learned
solution €2 are then derived and used by Stage II to determine how many components
to use. These stages will be combined together, producing the complete learning

algorithm, learnVmn, in Section 5.8.

5.7.1 The Multinomial Distribution

The Multinomial distribution:
Mnom(sz, )

extends the Binomial probability distribution to handle more than two discrete, nom-

inal outcomes. Sampling from this distribution is described in Appendix D.1.

The distribution’s parameters are interpreted as:

e @ is an M-dimensional probability vector that weights the sides of an M-sided die.

e sz is the fixed number of times that this die is tossed and its value is recorded.

Each of the die’s faces are explicitly modeled as independent of one another. Each
face is also explicitly treated as nominal — a priori, no two different outcomes are
treated as “closer” to one another than any of the other outcomes. For these reasons,
the Multinomial is the natural choice for representing a probability distribution over
an M-dimensional histogram. However, to handle histograms with a variable number

of counts, Mnom must be extended so that sz is a random variable.

With this model, the likelihood of seeing histogram z is simply:

M
1
Pr(z|sz,0) = sz! [ F(Hm)”"' (5.9)
m=1 m

The sufficient statistic is the mean:
E, [xm] =sz-0,,
and with this, variance/covariance are completely specified:
Ex[xm -xm] =sz-0_-(1—0);
E, [:rm -xm,] =sz-0,-0 .

For a discussion of why it is inappropriate to use these statistics to derive a Gaussian

approximation of the Multinomial, see Appendix D.2.
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5.7.2 The Variable-size Multinomial Mixture Distribution
The variable-sized Multinomial mixture model:
vMn(n, 7, 0,,--,0,,--,0,)

comprises K finite Multinomial components, each component using the same random
sz variable to control its sample size. From now on, () refers to the entire set of vMn

parameters.

There are two differences between this mixture model and the general one de-
scribed earlier:

1. In addition to sampling y (equation 5.1), sz is also sampled from:
sz ~ Mnom(1,7).

7 is a set of size weights operating over the integer range sz, . < sz < sz indexable

maz ?

via .}
2. Feature vector z (equation 5.2) is replaced with:

z ~ Mnom(sz,0,_, ).
Under this sampling scheme, the joint probability is:
Pr(z;y|Q) =n,. - m_, - Pr(z]sz,0,),
and the last term is defined by equation 5.9. Unlabeled and labeled likelihood become:

u(z|Q) = Znsz ST, Pr(x|sz,0,); (5.10)
k
These equations allow a data-point’s posteriors and its classifier (Table 5.3) to
be constructed. When classification is based on {2, classifyVmn is a Naive Bayes

optimal classifier (Mitchell 1997) with the Multinomial treating each feature in x
independently.
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‘ classifyVmn(z, ) ‘

Pr(z;y=k|Q
y= Argmaxgkgr((%)

= 1(z]y; )
return <y,l>

Table 5.3: The classifyVmn Algorithm

5.7.3 The Sample Size Affect

This section provides insight into how and why sample size influences clustering per-
formance. In Figure 5.3, twenty-five different Mnom distributions over a 2-dimensional
feature vector are shown. Each distribution is drawn as a different south-east facing
thin line. While each distribution uses the same probability vector, 8 = (0.75,0.25),
they each have a different sz, ranging from 1 (the line nearest to the origin) to 25 (the
line farthest away). The ‘o’ marks on each line define the input values covered by that
distribution. The intersection with the thick black line corresponds to a distribution’s

mear.

Three different gray regions are drawn on this graph, each enclosing those input
values which lie within the central 30%, 70%, and 90% probability mass. Per sample
size, the widths of these regions expand via (’)(\/§ ) At the same time, the total
number of possible inputs increases linearly. In other words, as sz increases, there is
more and more room for different Mnom components probable regions to not interfere

with another. On the other hand, as sz — 0, interference necessarily increases.

5.7.4 Learning a vMn Model from Data

This section considers how to optimize equation 5.8, assuming that a vMn(£2) model
was used to generate the data. Optimizing {2 requires iterative search, and finding a
“relatively global” optima requires random restarts. learnVmnQ (Table 5.4) handles
both of these issues, using an EM strategy to fit both the training and fake data to

an underlying vMn model.

The outer loop (starting at line 1) deals with jumping out of local optima by

* )

randomly restarting the search n__, times. Only that solution, €2 , with the lowest
unlabelled likelihood, f,, is returned. (This logic is handled by lines 0a and 8.) Ran-

dom starts are chosen from the parameter space and are generated by randomize. The
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Figure 5.3: Multinomial Dispersion versus Sample Size Example

inner loop (starting at line 2) performs EM, iteratively improving the model’s parame-
ter estimate at each time step, t. Each of EM’s improved solutions and corresponding
likelihood fitnesses are indexed via t. Variable ¥ holds the training set’s posterior
vectors, one for each datapoint. vMn specific EM logic is provided in vMn_E_Step and

vMn_M_Step. Finally, lines 6 and 7 introduce early termination conditions.

Randomization

Often, a preliminary clustering algorithm like k-means (Duda and Hart 1973) is used
to find a good starting point, or seed, in which to begin EM (McLachlan and Basford
1988; Smyth 1997). In preliminary tests, no strong correlation between a seed’s initial
fitness and its final optimized fitness was observed. For this reason, learnVmnQ does

not preprocess seeds.

95



‘ learnVmnQ(X T K) ‘

0: <X,Y>Fk = createPrior(K)

Oa: f, =—o0

1: forn=1n<n,_, ;n++

Q),_, = randomize(X T K)

2: fort=1;t<n,;t++
f=F(XT xXFkyFE. Q)

3: U = vMn E Step(X T, <X, Y>Fk, Q)
Q. = vMn M_Step(X T, <X, Y>Fk, v)
foor = F(XI’T-;XFk|YFk;Qt+1)

ot if £, ==f1,

break

6: elseif £, <1,

fo =1,
Q=9
break

7 elseif £, —f <f_ ¢

break
end
end

8  if f,, >f,
Q, =0,
fo=Fn

end
end
return <Q*,f*>

Table 5.4: The learnVmnQ Optimizing {2 Algorithm

randomize stochastically chooses seed §2,_, as follows:

t=1
1. Randomly select K unique datapoints from X 7.

2. Add a small Lagrangian prior to each of these datapoints, normalize them, and use

the results to obtain an initial estimate for the Multinomial component parameters.

3. To obtain an estimate for the initial mixture weights, calculate a weighted sum using
the distance between each datapoint and the initial component parameters. Distance

is Euclidean (datapoints are first normalized).
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Expectation

EM performs two analyses per iteration. The first step, vMn_E_Step (line 3), calculates

how expected the joint likelihood is at time t:
E[Pr(X™; 270 - Pr(x™; 2™ Q).

li"r,...,zni"r,...,z';—"">, are the only

The training dataset indicator vectors, ZT" = <z
random variables. This expectation amounts to simply calculating the posteriors for
XTr at time t:

E[zﬂ"] = d)nj,:t = Pr(y, = k|anr,Qt).

This entire solution is packaged in W,.

Maximization

The second step, vMn M Step (line 4), uses the training data posteriors at time t to

maximize the model’s parameter estimate at time t + 1:
Q,,, = Argnax, (Pr(X™; 9 7|Q) - Pr(X*[y™*; Q). (5.11)

Solving Equation 5.11 yields:

1
K + Zn d)n t
7rk,t+1 = « 1 _|_ N = ’ (512)

1 .pTr
o = WX T (5.13)
k,m,t+1 1+ Zn Zm wn’k,t . 33']1:

Interpreting Fake Data as Priors

Equations 5.12 and 5.13 are MAP-based estimates. Parameter estimation is optimal
and assumes a Laplacian prior on both 7 and 6 (Vapnick 1982). These priors can be in-
terpreted as introducing fake labeled data. For notational convenience, createPrior

(line 0) serves as a place holder for simulated fake data.

The prior on # produces the ﬁ term (Equation 5.13). Essentially, this prior assigns
one count to each component, distributing it evenly among all bins. In other words,
for each component, a fractional labeled data point is placed in (X, Y>Fk. Given

sample size sparsity, the § priors are especially important because they guarantee that
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no component’s bins ever have a zero probability of occurring. Although this prior
makes the learning problem more difficult because the absence of counts on specific
bins never completely rules out the probability of a component having generated data,
from an improvisational music standpoint, it makes a good deal of sense. Ultimately,
this prior guarantees that no specific playing mode is completely unexplorative —

unexpected pitch class, interval, and/or directional motion events may always occur.

The prior on 7 is what produces the % term in Equation 5.12, distributing one
extra count evenly among all K components. Once again, this can be interpreted in
terms of fractional labeled data, further contributing to (X, Y)Fk. Since the prior on
7 encodes the belief that there is always some probability that the user utilizes each
playing mode, its musical appropriateness assumes that the musician can generate
solos comprised of K different distinctions in real time. Given the small values of K

learned for Parker and Grappelli, this assumption is plausible.

Convergence and Termination Conditions

The proof that learnVmnQ converges relies on the fact that the inner iterative loop
(line 2) implements EM for vMn(£2). With each subsequent iteration at time t, EM
guarantees that:

FXT XTIy PR Q) < F(X™ XY T 0

t+1)'

In theory, finding a local maximum is equivalent to finding a fixed-point, so that:

F(XT XPF Y PR Q) = F(XT; XY™ 0

t+1)'

This ideal fixed point termination condition (line 5) is usually not reached because,

in practice, other termination methods are required.

At some point, convergence guarantees are no longer feasible because the computer
does not have an unlimited amount of precision (line 6 handles this). Another problem
is that EM can take a long time to converge, and how close the current estimate, €2,,
is to a local maxima can not be predicted in advance.* learnVmnQ limits search time

explicitly, terminating whenever:

4John Lafferty, personal communication, May 2001.
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e n . search steps have occurred.

EM

e Per-step improvement has significantly decreased so that the additional change in

likelihood has dropped below a small fraction (e, line 7) of the dataset’s initial value.

In my experiments, n,,, was usually the limiting factor.” Since n,,,, €, and n__, directly

EM? e

affect how much time is spent searching for a solution, there is a subtle trade-off be-
tween how many times to restart, how long to optimize along a particular path, and
how good a solution’s fitness is. For this reason, learning results are intimately tied

to the learning setup, i.e., the specific n,,,, €, and n__, values, that is used.

EM>

5.7.5 Assessing A Solution’s Quality
When clustering takes place with

. no prior information regarding the underlying group structure, or at least
where there is no available data from each of the groups if their existence is
known... (McLachlan and Basford 1988)

then mechanisms which attempt to understand and quantify a solution’s structure
and performance become especially useful. Since vMn is model based, one way to
quantify €2’s performance is through simulation. Another approach involves repeated
re-learning to quantify aspects of the underlying optimization space. The quantifica-
tion measures presented here are not intended to replace the qualitative analysis of a

solution’s quality from within the context of its domain (Chapter7).

The measures summarized in Table 5.5 quantify (2 using simulation techniques.
Each row outlines a different way of summarizing the quality of 2. For detailed
pseudo-code, see Appendix D.3. Simulation-based procedures rely on the random
variable:

(X,Y) "% vMn(Q).

When reporting a simulation-based quantity, the average value obtained over n_,,
independent runs is reported. Thus, all of these measures are affected by the values
of n, andn_, that are used. In all but the hardness case, simulated data is input

to learnVmnQ, so learning setup is also a factor.

5This will depend on what value of € was used.
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Variable ‘ Quantity Procedure

hardness estimates the fraction of inputs that an optimal naive | estHardness

Bayes classifier would misclassify

cost estimates the additional fraction of inputs misclassified us- | estCost
ing a learned (versus optimal) Bayes classifier

overLearn estimates the amount which learning over-fits the training
set’s likelihood
underGeneralize | estimates the amount which learning under-fits the test
set’s likelihood

estLearn

Table 5.5: Simulation Quality Estimates

In a similar fashion, Table 5.6 quantifies €2 by repeating a learning experiment
multiple times. Because these procedures do not rely on simulation (instead they
use the original training set over and over), their measurements do not rely on n_ .
However, because these procedures are stochastic insofar as learning is stochastic,
their values are still reported by observing their behavior over n_, , independent runs.
These distributional results are displayed graphically, either using a histogram or an
x-y plot (where averages are connected by a line, and error bars indicate minimum
and maximum values). Again, these measures are affected by the value of n,_, and

expt

the learning setup.

‘ Variable ‘Quantity ‘Procedure ‘

instabilities | observes fractions of inputs whose partitions vary between | obsInstabilities

learnVmnQ runs

fits observes fitness likelihoods over multiple 1earnVmnQ runs

fitDiffs observes differences between fitness likelihoods that vary | obsFitnesses

between learnVmnQ runs

Table 5.6: Repeated Learning Quality Estimates

Consistency Relabeling

Since cost and instabilities compare different inferred clusterings, there is no guaran-
tee that their labelings are consistent, i.e., that their labels rely on the same indexing
scheme. This problem arises because, numerically, all possible orderings of K com-
ponents are identical distributions. By transforming two labelings into a Maximal
Bipartite Matching problem (Kozen 1991), Linear Programming techniques (Chvatal

1983) can be used to reorder one cluster’s labels so that they map a maximal amount
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of the training set into the partitions used by another clustering. This remapping is

only performed when one or both clusterings are learned.

Hardness

hardness estimates what fraction of the input space is inherently misclassified as
a result of vMn’s component overlap. In particular, each estHardness execution
provides an estimate of how many times the optimal Bayesian classifier is expected

to be incorrect:
hardness ~ E, [g #* g]

This value is approximate because the behavior over the entire input space is approx-
imated by the behavior of n_  data-points.

Learning Cost

cost estimates the additional fraction of inputs that are expected to be incorrect
when clustering is inferred using a learned (versus known) set of vMn parameters.
The model’s inherent hardness is subtracted off from the error rate that results when

learnVmnQ provides the clustering:

cost%EX[g%y] _EI{Q%Q}

This measure is unbiased. € is infered from a training set and learning cost is mea-
sured using an independent test set. This value is approximate because it is based
on n, data-points. The domain of the first expectation, i.e., X, indicates that this

cost is also measured with respect to a specific training set size.

Quantifying Over-Fitting

Simulation can also be used to measure how well — and over-well — Equation 5.8
is optimized during learning. Comparing the training set’s true likelihood with its
estimated likelihood (overLearn) provides a measure of how effective the search for
an optimal solution was. At the same time, comparing an independent test set’s
true likelihood to its estimated value using the learned model (underGeneralize) pro-
vides a measure of how over-effective the search was. estLearn subtracts off the

learned estimate from the true likelihood, so the more negative (positive) the overFit
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(underGeneralize) value is, the more learning over-fit (under-fit) the training (test)
data.

Instability

instabilities records the fractions of inputs that do not map into the same dataset

partitions when these partitions are re-learned n__, times. In particular, each pair of

expt
solutions® is compared to determine how different their partitions are. These values
imply a distribution over how repeatable a particular learning task is likely to be,
providing some assurance that a specific inferred model is grounded more on actual

training set structure than on happenstance.

Observing Likelihood Fitness Variations

fits observes the fitness value obtained each time the training set is re-learned, shed-
ding light on how variable the optimization space’s local optima are for a given learn-
ing task and setup. fitDiffs further analyzes this data, comparing the difference in

fitness observed between all pairs of solutions.

5.7.6 Choosing the Number of Components

To fully specify learnVmn, an algorithm for Learn Stage II is needed. Recall (Sec-
tion 5.4.3) that learnVmnQ is repeatedly used to find a set of solutions:

T ={K,. QK -K,.}

and that Stage II must pick a “best” solution from this set. In the machine learning
and statistics literature, this task is typically referred to as model selection. This
section first discusses some general issues related to model selection, and then the

specific approach that BoB will use is described.

Model Selection and Complexity

For vMn(Q(K)), there are O(K - M) free parameters to estimate. A particular so-

lution also has !K equivalent ways of being expressed (simply permute the original

bi.e. n,, , choose-two pairs in total.

apt
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components’ ordering). These observations motivate why solution vMn(2(K)) has

complexity K.

When a vMn model does not have Lagrangian priors, it can be shown to be
part of a general class of learning problems in which the goodness-of-fit function
— for the prior-less model, U(X™"|Q2) — is convex within first-order as a function
of model complexity (Cadez and Smyth 2001). This result justifies why a well-posed
optimization, i.e., one that contains a bounded maximum, necessitates fixing K before
() is fit to the training set.

Usually, the curves obtained for a Lagrangian prior-based model coincide with
this result. Figure 5.4 (left) is typical. In this figure, goodness-of-fit values — for the
prior-based model, F(XTr; X Fk|y Tk, QFF) — are displayed for K ranging from 1 to
10.” Occasionally, however, BoB would produce a non-concave curve, e.g., Figure 5.4
(right), because this prior-based model does not fulfill all of the conditions used in the
Cadez and Smyth (2001) proof. Additional experimentation seems to indicate that

concavity violations become more pronounced when the distribution over sz becomes

smaller.
training: XP.P: setup: n gy =60, =0, n_ , =10, n ., =5 training: X1 setup: Ny =100, =0, n__ , =20, n ., =10
x10° x 107
241
1.8
221
1.6
2L
= 1.4
1.8}
2
E 16t 1.2¢
1.4r 1t
-2 0 2 4 6 8 10 12 o 5 10 15
K

Figure 5.4: Complexity Versus fits Examples

Typically, however, fitness tends to increase monotonically. Thus, the shape of
BoB’s goodness-of-fit function is considered irrelevant when picking K. Rather, an

independent heuristic for selecting a “best” solution from set 7 is used.

"For those values of K in which an error bar is not visible, fitness differed very little between

multiple runs.

103



Complexity and Computation Time

A solution’s quality is not only affected by the learning setup, but also by a model’s
complexity. A more complex model can often achieve a better fitness, but this is

usually accompanied by a more variable optimization surface.

One example of this phenomena is presented in Figure 5.5. Each of the nine plots
displayed there corresponds to a different complexity, ranging from K=2 (upper left)
to K=10 (lower right). Each plot presents a histogram of the fitDiffs ddistribution
that was observed when learning that particular model (the x-axis scale is 107°%). As
complexity increases, the range in variability becomes wider and flatter. What this
observation implies is that for a more complex model, one should expect more seeds

will be necessary to “adequately” search for a solution.

training: XP’P; setup: n g, =500, e=0, n__, =1, ncwt:50
k:2 k:3 k:4
20 - 20 - 20
15 15 15
10 10 10
5 5 5 N ’V
ol o I o Al
(o] 1 2 (o] 1 2 (0] 1 2
k:5 k:6 k:7
20 ~ 8 n 8
15 6 M 6
10 4 4
5 Jﬂ ( 2 H( 2 (
O 1 i
(o} 1 2 (o] 1 2 (o] 1 2
k:8 k:9 k:10
10 6 nn 10
8 5 8
a4
6 6
3
4 4
2
(o] H 0 (]
(o} 1 2 (o] 1 2 (o] 1 2

Figure 5.5: Variability in Local Optima Versus Complexity Example
BoB must learn Q(K) in a reasonable, fixed period of time. For simplicity, each
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Q(K) search receives the same learning setup. In other words, regardless of complexity,

the same amount of time is allocated for estimating each solution .*

Search time can seriously impact learning. For example, the sole cause of the
differences between the two fits and instabilities curves presented in Figure 5.6 is the

learning setup (n,,, = 60 versus 100, n__, = 20 versus 10, and n__,= 10 versus 5).

seeds expt

training: XG‘I; setup: n g, =60, ¢=0, nq’ﬂh:10, ™t =5 training: XG‘I; setup: n 10

gy =100, €=0,n =20, n =

Complexity versus fits

x 107" x 107"
1.8 1.8
1.6 1.6
= 1.4 = 1.4
1.2 1.2
1 1
o 5 10 15 o 5 10 15
K K

Complexity versus instabilities

o.al o.al
0.35} : : : 0.35}
0.3} : : : 0.3}
. 025" 0.25}
0.2} L o2t
" o.asf | o0.as|
oaf : : : oaf
0.05 : : : 0.05
o o
—0.05} —0.05}
o 5 10 15 o 5 10 15
K K

Figure 5.6: Learning Setup and its Affect on Solution Quality Example

A Heuristic For Picking K

One standard technique used in model selection is to add an additional constraint to
the goodness-of-fit function, usually incorporating some form of Bayesian or minimum
description length penalty term (Mitchell 1997). These penalties are usually on the

order of O(!K). Another common technique employs cross validation, where picking

8This statement glosses over that the running time for each iteration of EM is linear with respect
to K.
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the best component is decoupled from learning €). In this case, the goodness-of-fit is
based upon an independent test set. Model selection is a very active research area.
Rather than concentrating on this very difficult problem, BoB uses a heuristic that

is motivated by what is practical for an IMC.

In BoB, three factors contribute to the selection of a “best” Q(K):

1. The user’s playing modes need to be “real,” and realness depends upon how many
clusters a particular sparse dataset can support, and how many clusters a particular

learning setup can support.

2. Model components should not overlap “too much.” From an interactive, adaptive,
improvisational point of view, this requirement makes sense — first worry about

recognizing and responding to the most prominent shifts in the user’s local behavior.

3. It is assumed that, because data is extremely limited, it is better to rely on simulation

than cross validation.

These issues are addressed in the following model selection heuristic. Pick the largest
K for which:

e Model Selection Condition I: Instability is no more than 10%;

e Model Selection Condition II: Hardness is, on average, no more than 25%.

The first condition deals with “realness,” its value inherently linked to the amount
of time that was spent learning and the degree to which the training data lends
itself to a specific K-partition. This condition is especially conservative, bounding
the maximum difference that may be witnessed among any pair of learned partitions,
e.g., min(instabilities) < 10%. While the 25% rate in Condition II may seem high,
BoB is less concerned with guessing every cluster correctly than it is with being
able to recognize when a musician switches from one really distinct playing mode to
another. In this sense, hardness is overly pessimistic, treating all misclassifications
as equally bad even though most of these “errors” will have been claimed by very

nearby competing partitions.
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5.8 The Complete vMn Learning Algorithm

BoB’s learnVmn is defined in Table 5.7. Ideally, the heuristic just described provides
what is needed to specify what pickBest does.

learnVmn(X)
fork =K . ;k <K

(k)= learnVmnQ(X, k)
instabilities, = obsInstabilities(Q(k), X)
hardness, = estHarndess(€(k))
end
Q(K,) = pickBest(hardness, instabilities)
return Q(K*)

K+ +

maz)

Table 5.7: The Complete learnVmn Learning Algorithm

5.8.1 The Number of Components For Parker and Grappelli

The number of components that were learned for Parker and Grappelli are summa-
rized in Table 5.8. Since learning is conglomerative, each model was learned sepa-
rately. The values observed for each condition are also reported for these solutions.
By themselves, these condition values do not indicate why a particular number of
components was chosen; one really needs to look at the corresponding hardness and
stability curves (Appendix D.4.1 and D.4.2). Parker’s PC curves are also shown in

Table 5.8 because they are exemplar, a clear “best” model being K¥ = 5.

Parker’s PC curves were the first that I carefully studied, and their content primed
my thinking about what an automated procedure for selecting K should look like. The
shape of the instabilities curve justifies why learnVmn needs to search over a range
of Kas opposed to adding one component each time and stopping at the first model
for which the conditions fail. In addition, roughly speaking, the hardness curve tends

to increase as K increases.” In light of this tendency, the wording of the heuristic —

T witnessed this trend in all of my vMn modeling experiments. Given the (Cadez and Smyth
2001) proof, which justifies why, for many models, more components provide a better fit to the
training data, this trend might seem counter-intuitive. However, when classifying individual data-
points, component overlap can only decrease as K increases provided the component’s variance can
become sufficiently small. The vMn mixture model is constrained by the Lagrangian priors, so their

individual component variances will never equal zero. In addition, unlike the Gaussian distribution,
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setup: nEM:60, e=0, nR&EdSZIO, nEthZS

Dataset | Number of Components | Condition IT | Condition I

Xe.r 5 0.21 0.01
XPlI 4 0.18 0.00
XxXrPDb 3 0.06 0.00
X6.FP 4 0.14 0.01
XGI 5 0.15 0.00
XGDb 4 0.05 0.09
Parker’s PC hardness curve Parker’s PC instabilities curve
0.2-8: - 0.5
0.26 0.4
0.24 8
g 0.22 % 0.3
§ oazf g2 o2
0.18
o.16L 0.1
o.14t ol
0.12+
o 5 . 10 15 o o 5 . 10 15

Table 5.8: Parker and Grappelli Number of Components Results

‘pick the largest K’ — can be interpreted with respect to picking the largest number

of clusters for which the clustering is still “distinct enough” to be useful.

For all the models that were chosen, only a relatively small number of components
were stable enough to pass Condition I, and in all cases, this was the limiting factor.
Intuitively, it makes sense that a musician would only employ a small number of modes
when spontaneously generating melodic material. Excluding X %P, these models are
also extremely stable, almost all pairs of solutions identically partitioning the training
set.

5.8.2 Caveats

Unfortunately, the learnvMn algorithm is not the end of the clustering story. Ques-

tions remain:

the Multinomial’s variance is completely specified by its mean, 8, and its sample size, sz. It is with
respect to labeled likelihood that fitness improves with increased K, because more components allow
data-points to lie closer to their estimated means. The relationship between component overlap, sz,
K, and training set size warrants further study.
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e What values, K, and K

n mazx?

should be used to bound the search?

e Should the search only increment k by one each time (rather than performing, for

example, some form of binary search)?

e What learning setup and n values should be used to produce “good enough”

expt
hardness and instabilities measures?

About one year ago, after performing numerous simulations, relearning parameters
several times, and investigating their quality from a musical standpoint, I settled
upon the number of components reported in Table 5.8. It was not until recently, after
rescrutinizing the curves presented in Appendix D, that I realized that this model
selection heuristic would have chosen different solutions for the Grappelli PC and
INT models, (choosing K&F = 10 versus 4, and K& = 7 versus 5).

At this point, I decided to relearn the Grappelli INT model again, to see if, with
a more exhaustive search regime, the curves that result would eliminate this discrep-
ancy. During this investigation I became intimately familiar with the dependence
of a solution’s quality assessment on computation time (this investigation led to the
curves in Figure 5.6). Although with Condition I, the more exhaustive search would
still have chosen K= 7 (Figure 5.6, right), it is easy to see why the jaggedness in the

original curve (left) distracted me from selecting the “best” heuristic solution.

With Grappelli’s PC model, it seems unlikely that Grappelli, a much less chro-
matic player than Parker, would use twice as many PC modes to drive his improvi-
sations than Parker did. The shape of his PC instabilities curve also supports the
notion that the K= 10 model is suspect. In particular, this curve seems to imply that
at some point K becomes “large enough” for the partitioning to again become reliably
reproducible.!® This leads me to wonder what other results might change had I, for

example, used K, = 20 versus 10 in my experiments.

The main point I have learned from this experience is that it is unreasonable to
assume that a hard and fast model-selection heuristic will always provide an uncon-
tested “best” result, and there is no reason to believe that several different models
may not be equally acceptable. In addition, while model selection is an important
issue, computationally, it is expensive to investigate. This is especially the case with

Conditions I and II, which require that n_, , different learning experiments be run for

10The relationship between instability, sz, K, and training set size also warrants further study.
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all values of K. In a commercially viable system, additional heuristics must be used

to reduce this search space.

As the models in Table 5.8 became the basis for BoB’s stable implementation, the

results reported in the rest of this thesis use these models.

5.9 Performance

The performance of the vMn is empirically validated in two ways. First, how well
learnVmnQ handles sparsity is investigated. This investigation uses a higher-level
model from which specific vMn parameterizations are obtained. Next, to assess these
solutions’ quality, simulations using the parameterizations learned for Parker and

Grappelli are conducted.

5.9.1 With Respect Sparsity

Three different representative sparse datasets were generated to investigate how the
performance of learnvMn is affected by sparsity. Because these datasets are simu-
lated, their underlying structure is known, which makes it easy to assess how well

learnvMn can learn them.

As presented in Table 5.9 (lefthand columns), each dataset is controlled by two
high-level meta-parameters, o and «' (defined shortly). Each dataset is referred to
by its scenario index, e.g., X, is the simulated dataset generated using o' = 0.248

and a = .001. Various learning assessments are recorded in the middle and far right

columns.
‘ setup: LY =500, e=10" 8, nR&EdSZIO, i =175, nﬁwt:25 ‘
Simulation Misclassifications Fitness
Scenario ‘ o ‘ o hardness ‘ cost ‘ total error rate || overLearn | underGeneralize
I 0.248 | .001 0.11 0.00 0.11 -0.21 0.18
II 0.21 | .020 0.22 0.07 0.29 -0.30 0.38
III 0.188 | .031 0.31 0.16 0.47 -0.34 0.40

Table 5.9: Simulated Dataset Performance

For a given scenario, data is sampled from vMn as follows:
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1. Use seven equally likely components.
2. Create N = 175 data-points (this produces, on average, 25 histograms per cluster).
3. Sample sz from a uniform distribution that spans 3 to 15 counts.

4. The Mnom components are defined using meta-parameters o and o':

01 = (O[, a,q,q,,q,q, aaalaalaalval>
02 = (Oé,,Oé, a,q,q,q, q, Q, aaalaalval>
03 = (Oé,,Oé,,Oé, a,q,q,q,q, Q, aaalval>
04 = (Ol,,O/,O/,O[, a,q,q,qq,q, O/>
05 = (Ol,,O[,,O[,,O/,O[, a,q,q,,q,q, Oé)
06 = (Oé, Oé,,Oél,Oél,Oél,Oé,Oé,Oé,Oé,Oé,Oé,Oé>

_ !/ !/ !/ !/
07 = (a,a, ol oy, a0, ).

Each component strongly prefers four bins with probability o/. The rest are fairly
improbable, occurring with probability «. The location of each component’s « and
o/ bins where chosen to provide as much intra-component interference as possible, so

that combinations of features are often required to discriminate between components.

Data generation for scenario II was presented in Figure 5.2.

The only difference between these datasets is what values of o and o' are used.
These values control how much individual component probability distributions overlap
with one another. As a result, in Table 5.9, the hardness estimate increases as o/
decreases. In other words, by increasing o/, individual components become more and

more alike, so particular features become less and less useful for discrimination.

The cost column supports the hypothesis that, as inherent hardness increases, so
does the penalty associated with having to learn 2. The relation between hardness
and cost is explained in part by the corresponding trends in fitness. As hardness in-
creases, overlap in the training set components provides more chance for over-fitting
(overFit decreases). This over-fitting makes an independent test set look overly un-

likely (underFit increases).

The total error rate expected for a particular learned classifier is the sum of cost
and hardness. While these rates may look high, keep in mind that a random classifier
will, on average, misclassify 86%, so learning definitely produces useful feedback about
the model’s underlying structure. This error rate is also bounded from below in terms

of hardness — no algorithm will, on average, misclassify less than this amount.
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It is reassuring to see that, with an 11%-hard training set, learning accrued no
additional cost. Similarly, the 22%-hard dataset accrued only 12 additional mis-
matches (7%), for a grand total of 29% incorrect mappings. In part, model selection

Condition IT was chosen because learning begins degrading at this hardness value.

These results are based on simulated data that is as sparse as a representative
PC dataset. Thus, it is reasonable to expect similar results when learning from a
musician’s PC or INT data. This claim is somewhat optimistic because, in these
simulations, the number of components is known in advance and a vMn mixture
model generated the data. On the other hand, with real musician data, one might
expect a less contrived mixture (in these simulations, components were chosen to

interfere as much as possible).

5.9.2 With Respect To Parker And Grappelli

To further assess quality of the Parker and Grappelli learned models presented in

Section 5.8.1, these parameters were use to generate new simulated datasets.

As presented in Table 5.10 (lefthand columns), each simulation is identified by its
specific scenario index, e.g., X, is the dataset obtained by independently sampling
119 data-points from vMn (QP’P(5)). Various learning assessments are recorded in

the middle and far right columns.

‘ setup: n

g =60, e=1,-1078, n__ =10, Tt =25
Simulation Mismatches Over-fitting
Scenario ‘ Parameter ‘ n,, | hardness ‘ cost ‘ total error rate || overLearn | underGeneralize
I QPP (5) 0.21 0.11 0.32 -0.31 0.30
II OFl(4) 119 0.18 0.13 0.31 -0.28 0.19
III OFD(3) 0.06 0.03 0.09 -0.32 0.25
v QGF(4) 0.13 0.05 0.18 -0.20 0.17
\Y% Q%L(5) | 126 0.15 0.08 0.23 -0.22 0.20
VI Q%P (4) 0.04 0.03 0.07 -0.35 0.40

Table 5.10: Musician Clustering Performance

In all cases, cost contributes less to total error than hardness does. Cost is most
damaging when learning Parker’s INT model, and least damaging with the DIR mod-

els. The main reason why DIR models suffer little is because there is so little overlap

112



among their various components. When compared with a random classifier, the use-
fulness of learning models for Parker and Grappelli are apparent. For example, while
the Parker PC model can be expected to misclassify 32% of its data, this is signifi-
cantly better than misclassifying 80%.

5.10 Discussion

5.10.1 Probabilistic Models

The probabilistic vMn scheme is model-based, which means that, with a learned

model, one can:

1. map new data-points into their most likely underlying generators;
2. estimate likelihoods;

3. generate new data.

The mathematical, probabilistic underpinnings of this model also mean that its as-
sumptions and underlying basis are completely specified. With this specification, an
immediate wealth of techniques — e.g., EM and its guarantee of convergence, proba-
bilistic reasoning, Bayesian online updating, etc. — are immediately available for the
borrowing. While others in the computer music community have applied more ad-hoc
techniques for music clustering with some success (Rolland and Ganascia 1996; Pen-
nycook and Stammen 1993), others have recently been calling attention to the benefits
of using more formal, probabilistic methods in music domains (Raphael 2001; Cemgil
and Kappen 2001a).

My appreciation of this formality was a long time in coming, and as a result
I can attest to to how much easier my current, EM-based approach was to imple-
ment than my previous, less principled approach was. Originally, I tried to use a
k-medians clustering algorithm (Kaufman and Rousseeuw 1990), with a x? measure
(Press, Teukolsky, Vetterling, and Flannery 1992) as the pairwise similarity between
histograms. This measure was especially attractive because it is probabilistically de-
fined to, in the limit, measure how likely it is that two histograms come from the same
underlying distribution. One of the problems with this measure, however, is that it is

not a distance metric (i.e., it does not necessarily satisfy the triangle inequality). This
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is part of why it was unclear what update mechanism should be used to ensure that,
per-iteration, a cluster’s means would always improve the clustering result. After
several months, I got a x? median-based algorithm working, but when I ran it on real
music data, [ ran into an additional problem: difficult-to-reason about infinite loops.
In contrast, an EM-based solution is guaranteed to converge (Dempster, Laird, and
Rubin 1977) and minimize the Kullback Leibler distance between the model and the
underlying distribution that generated the data (Kearns, Mansour, and Ng 1997).

In addition, although the x? measure does have a probabilistic interpretation, it
was not directly obtained from a generative model, which makes it less useful to an
IMC. More generally, in artistic domains, where objectivity is so difficult to measure,
a formal probabilistic model provides an additional foundation on which to investigate
performance. In the case of Bob, this is done from both from a machine learning point

of view (Section 5.9) and from a musical one (Chapter 7).

5.10.2 Markov Chain Clustering

Multinomial clustering and its application to the inference of Markov chains provides
a powerful mechanism for inferring structure in sequences, and has received some
recent attention in the AT community (Thom 2000b; Ramoni, Sebastiani, and Cohen
2000b; Ramoni, Sebastiani, and Cohen 2000a; Sebastiani, Ramoni, and Cohen 2000;
Smyth 1999; Cadez, Gaffney, and Smyth 2000).

From a machine learning point of view, the most exciting aspect of the vMn model
is that, in addition to clustering variable-length data sequences, empirically, it has
produced reasonable results when data is “relatively sparse.” The key insight is that
a histogram’s generative component can define a Markov chain (as was done with QP
and Figure 4.5). vMn not only clusters sequences, but also infers their underlying

transition matrixes, by which new, similarly distributed sequences can be sampled.

5.10.3 Sparsity

Sample size sparsity and its relation to histogram dimensionality is hard to quantify.
Higher histogram dimensions mean that more probable bins may exist, which provides
more opportunities for bin interference. On the other hand, larger dimensions provide

more possibilities for different components’ probable bins to not interfere with one
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another.

Consider the interplay between dimensionality and sparsity in Figure 5.7. Both the
histograms for the melodic segment shown in Figure 5.1 and the underlying component
parameters belonging to its estimated conglomerative class are displayed. P is the
most sparse, with 27-dimensions and only five counts. Roughly speaking, eight bins
in AP are non-negligible (marked by a ‘*’) so there are a fair number of possibilities
for which this generator could have placed these counts into the bins of #P. Similarly,
there are seven non-negligible bins in ' (marked by a ‘x’) and 6* (marked by a ‘o),
yet each of these histograms contains six counts. In considering this simple example,
one can imagine that the same component could generate a wide variety of different
looking histograms. It is for this reason that the generalization scheme provided by

vMn is so rich.

One way to view sparsity is as a mechanism through which particular histograms
only reveal partial information about which of their underlying generator’s features are
probable. In this light, one can consider using sparsity/partial information to facilitate
the simulation of creative participation in live musical exchanges. For example, one
way to interpret “creative” behavior is with respect to how much information about

a generator is revealed in a given context.

5.10.4 Generality

So far the focus of vMn has been on learning structure from relatively short and
sparse pitch-sequence segments. However, the vMn technique is a completely general
methodology for modeling structure in any sequence composed of nominal, discrete
symbols. Provided that an appropriate set of symbols is available in which to build
histogram feature vectors, this same algorithm could be used to find structure in other
musical sequences, e.g., thythms, chords, etc. More general applications also exist.
For example, one promising idea would be to use vMn to automatically analyze log

files on a computer, so that structure about various failure states might be learned.!!

1 This possibility was first suggested to me by Marko Grobelnik.
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5.10.5 Musical Surprise

One subtle but important domain-specific decision was made when building the
classifyVmn algorithm (Table 5.3). It might seem curious that this function re-
turns an estimate’s labeled likelihood versus its posterior, especially given that the
posterior quantifies how certain the algorithm is about its clustering estimate. I de-
cided on this approach because labeled likelihood only increases when a data-point
lies closer to its estimated component’s mean, whereas the posterior increases anytime

a feature vector moves away from its competing clusters’ decision boundaries.

I decided that it was more important for BoB to be able to understand when
the musician was realizing one of their playing modes in a very surprising manner
than it was to recognize when it was very certain that a particular playing mode
estimate was correct. In musical terms, I interpret the estimated labeled likelihood
as how surprising the music appears (the smaller the likelihood, the more surprising).
Notions of surprise or expectation has received a fair amount of attention in music

perception and analysis communities, e.g., (Bharucha 1994).

5.10.6 Musical Modeling Assumptions

It is worth considering the underlying assumptions that are made when a vMn model

is used to learn about a solo’s structure from its conglomerative feature vectors.

It is easy to interpret PC components as musical scales (e.g., Table 7.1), and from
this context, problematic assumptions become immediately apparent (similar issues
arise with the INT and DIR models). Assumptions that are made when clustering

PC histograms include:

Assumption: Violation/Feature? Cause:
Strong Violation: from a
Within a given bar, one The Multinomial
) scalar standpoint, pitches,
(1) pitch class does not affect assumes feature inde-
and their ordering in time,
or depend on any other. pendence.

do influence one another.
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(iii)

Per bar, the musi-
cian randomly flips a
weighted die to deter-
mine which scale they
will use.

Any form of relation-
ship or ordering between
pitch-class bins is explic-

itly not assumed.

Segments that contain
more leaves contain more
information about their

underlying scales.

Medium Violation: scales
in surrounding bars can set
a context that influences

this choice.

Feature: this scenario lets
the data itself determine
which pitch classes should
be viewed as more alike.

Feature: it is often eas-
ier to determine the tonal-
ity in a local segment of

melody when it contains a

fast run of notes.

A Multinomial is used
to sample the mixture

weights.

Multinomial components
are, by definition, nomi-

nal and discrete.

Histograms are not nor-
malized by their sample

size.

The remaining assumptions are discussed within the context of conglomerative

clustering:

(vii)

Assumption:

The number of leaves per
segment does not depend
upon playing mode.

The number of leaves in
different bars does not

affect or depend on one

another.

Pitch class, intervallic,
and directional events do
not influence each other

within a bar.

Violation/Feature?

If this assumption is vio-
lated, I expect its affect is
small.

Mild Violation: how many
notes are played in sur-
rounding bars could influ-

ence this choice.

Strong Violation: melodi-

cally, pitches, intervals,
and directions, and their
ordering in time, do influ-

ence one another.

Cause:
Sample size and mode
treated

are indepen-

dently.

The Multinomial is used
to sample 7.

First, the conglomer-
ative learning assump-

tion means that PC,

INT, and DIR mod-
els are treated indepen-
dently. Second, see
Cause (i).

The most egregious violations, (i), (ii), and (vii) are all due to unreasonable inde-
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pendence assumptions. However, these assumptions produce simpler models, which
are less susceptible to over-fitting. It has been recognized by other ML researchers
that Naive Bayes classifiers, which tend to focus on decision boundaries, are often
fairly robust to independence assumption violations (Nigam, McCallum, Thrun, and
Mitchell 1998). In BoB, my hope is that inference on a smaller, more relevant dataset

will compensate for the model’s simplifying assumptions.'?

The most egregious melodic violations are assumptions (i) and (vii). Melodies are
temporal phenomena, and what comes before affects what comes after. Fortunately,
the conglomerative view does capture a fair amount of temporal structure. One reason
that I am not too concerned about this issue is that the clusters learned for Parker
and Grappelli produce musically reasonable, musician-specific results (Chapter 7). In
addition, in the generative model, additional temporal constraints can be introduced

via clamping (Section 6.3.5).

Musically speaking, assumption (iii) is most interesting because it provides a mech-
anism for letting the melodies themselves determine which pitch class (interval or
direction) bins are closest to each other. In particular, within a given mode, those
bins that share identical probabilities are viewed as equivalent, and the closer that
two bins probabilities are, the more similarly their counts will be treated. Given the
higher-level structure of the mixture model, this becomes a very powerful musical

idea because it allows the data itself to drive similarity in a context-sensitive way.

12In this sense, these violations become features.
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Chapter 6

Generating Musician-Specific

Response

This chapter introduces two inter-related stochastic mechanisms: rhythmic transfor-
mation and goal-driven pitch sequence generation. Together, these mechanisms are
used by BoB to transform a call into a novel, user- and context-specific solo response

in real time.

Rhythmic transformation tweaks a call’s rhythm, recursively modifying its VLT
to produce a response’s rhythm. Since this approach operates upon a VLT’s hierar-
chy, it directly benefits from the VLI’s musically powerful rhythmic encoding. This
transformation is non-trivial because it must ensure that any tree it produces is also
a VLT.

The values of the pitched leaves in the response rhythm are generated using a
goal-driven pitch-sequence sampling scheme. In particular, a sequence that maps
into a particular goal — 1i.e., exhibits a specific user playing mode — is sought.
The difficulty in this task is efficiently integrating what was learned from the user-
model into a coherent sampling scheme. This task must also accommodate a fairly
general set of constraints, so that what is generated can seamlessly integrate into the
environment, with various kinds of domain knowledge and/or user preferences, etc.
This scheme’s performance is evaluated with respect to how “well” it simulates new

datasets for Parker and Grappelli.

121



6.1 Overview

As outlined in Figure 3.3, generation takes place in the context of call and response.
In particular, the call’s context in bar r is used to drive the generation of a novel,

user-specific response in bar r'.
Generation occurs in three stages:
1. Generate Stage I: Tweak the internal structure of call rhythm v,, producing re-
sponse rhythm, v,.

2. Generate Stage II: For the pitch-valued leaves in v, , generate a new pitch sequence,
(., that:

(a) incorporates the very most recent local context, mrp,

(b) mimics the call’s user-specific perception, y* and [©, mapping back into the same playing
mode with the a similar amount of musical surprise;

(c) can meet a fairly general set of optional constraints.

3. Generate Stage III: Assign sequence ¢, to the pitched leaves of v, and playback

the result.

With this method, a response is “similar” to its call in that the former’s rhythm
is a stochastic transformation of the latter. With respect to conglomerative trends,
similarity relies on the fact that both, at least in principle, are generated by the same

underlying playing mode distribution.

The primary focus in this chapter is Stage II, which, because of sample-size spar-

sity, can provide significant generalizations in the agent’s behavior.

6.2 Rhythmic Transformation

In this section, a stochastic algorithm that recursively tweaks a VLT’s internal struc-

ture is presented.

6.2.1 Node-Specific Data Types

To describe how a VLT is tweaked, some high-level implementation details are needed.

Since various VLT nodes contain different types of information, VLTs are implemented
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as non-homogeneous data structures. Polymorphic behavior is maintained (across

classes, methods behave in a class-specific manner). Three node classes are used:

e leaf class contains either a pitch or a rest value. Method isRest distinguishes
between these two. Only when this method returns true can fields pitch and

tie be queried.
e int2 class contains two child nodes, a left child, 1, and a right child, r.

e int3 class contains three child nodes, a left child, 1, a middle child, m, and a
right child, r.

Internal nodes are comprised of classes int2 and int3. When all of the children in
an internal node are leaf nodes, it is an internal terminal node. This condition is
identified by method isTerminal. The fringe of a VLT is defined to be all the tree’s

leaf and internal terminal nodes.

6.2.2 Rhythmic Embellishment and Simplification

Because of the VL'T’s hierarchical nature, techniques for embellishing and simplifying
rhythm are straightforward. Consider first embellishment, where a part of the VLT s
fringe is expanded (Figure 6.1, left). Simplification, on the other hand, involves
collapsing part of the VLT’s fringe (Figure 6.1 right).

Figure 6.1: Rhythmic Embellishment (left) and Simplification (right)

6.2.3 Maintaining the Properties of a VLT

The internal structure of a VLT was carefully restricted to accommodate only encod-
able rhythms. When tweaking a tree’s internal structure, care must be taken to ensure
that the result produced is also a VLT (i.e., the rhythmic restrictions in Chapter 4

must remain invariant). Restrictions I and II are easy to maintain: simply disallow
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subdivisions or mergers that produce a node (or nodes) whose duration(s) are not

valid.

A degenerate tree violates Restriction III, and therefore is not as small as possible.
Avoiding degeneracy is more difficult and accounts for most of the complexity asso-
ciating with transforming a rhythm. A degenerate tree branch and its unique VLT
equivalent are shown in Figure 6.2. The dashed line links back into an arbitrary, en-
tire tree, whereas the specific branch being discussed is drawn with solid black lines.
The dotted arc that connects the two notes (left) indicates that these leaves form
a compound duration (they would be tied during playback). As such, this branch
has an equivalent, smaller representation (right). The key observation to take away
from this example is that, provided Restriction III is maintained, an entire set of leaf
siblings will never contain identical values, for if they did, a simpler tree would have

been used to construct them.!

degenerate non-degenerate

Figure 6.2: A Degenerate Tree Branch and its Corresponding VLT

The pitch sequence generator in Stage II handles degeneracy by disallowing unison
intervals at key locations within the sequence. Degeneracy handling is simplified by

maintaining the the following invariants during rhythm tweaking:

e Tweak Invariant I: When all of a node’s siblings are leaf values, at least one

of them must not become a rest.

e Tweak Invariant II: Rests can only be modified in the rhythmic transforma-

tion stage.

Part of this degeneracy-handling strategy is outlined in Figure 6.3, where leaves
are drawn as triangles. The white triangle is a rest value, and the black and gray
triangles are arbitrary, non-identical pitch values. In v, pitched leaves are separated

by a rest, so degeneracy will never result, even if both have the same pitch value.

!This statement assumes that the leaves comprising composite durations are not considered
identical.
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Thus, the interval between these two pitches is irrelevant, i.e., the zig-zag line which
links them is marked with a ‘T’ (true). Locations where the unison interval must be

disallowed are marked with ‘F’ (false).

Now consider trees v and v”. Across sibling boundaries, identical pitches are never
degenerate, so unison intervals are allowed. With Invariants I and II, it is sufficient to
disallow intervals only in those internal terminal nodes whose children are all pitches.
It is for this reason that the ‘F’ is placed on the int3 node of v’ and the int2 node
of v". The only remaining possibility, which concerns Invariant I, is addressed in
Section 6.2.6.

! "

A% A% A%
N P N
/ N\ / . 7 \
P A A Aaa s 2L
unison interval OK? ."‘I"“ '.; 1:: '; -’f‘ ;

Figure 6.3: Avoiding Degeneracy: Constraining where Unison Intervals Occur

6.2.4 Node-Specific Tweak Methods

The recursiveTweak methods (Table 6.1) are used to transform a VLT, starting at
the root node and proceeding, in order, through its descendents. Only those nodes
in the fringe are possibly modified using the fringeTweak methods (Table 6.2). The
stochastic parameters that control fringe tweaking (the subscripted ‘a’ variables) are

presented in Section 6.2.5.

Internal fringe nodes are possibly modified by the calls in lines 1 through 4 of
recursiveTweak. If modification does occur, it takes place in lines 2 through 4 of
fringeTweak. Fringe nodes are tweaked by first sampling a random number gener-
ator (line 1) and then determining what change (if any) this sample corresponds to.
The isValid check (Section 4.3.1) ensures that rhythmic modifications produce valid
results. In each of these methods, the last outcome is ignored because it is a no-op

(no change is made). The nonRestChild logic is explained in Section 6.2.6.

For details concerning class-specific notation, see Appendix A. In addition, when
this is assigned, it is assumed that a node’s type can be changed within its modifying

method and that garbage collection automatically takes care of itself.
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‘leaf::recursiveTweakO‘

1: this.fringeTweak()

‘int2::recursiveTweakO‘

if this.isTerminal()

1: this.fringeTweak()

else
if this.l.isLeaf()
2: this.l.fringeTweak()
else

this.l.recursiveTweak()
end
if this.r.isLeaf()
3: this.r.fringeTweak()
else
this.r.recursiveTweak()
end

end

int2::recursiveTweakO‘

if this.isTerminal()

1:  this.fringeTweak()

else
if this.l.isLeaf()
2: this.l.fringeTweak()
else

this.l.recursiveTweak()
end
if this.m.isLeaf()
3: this.m.fringeTweak()
else
this.m.recursiveTweak()
end
if this.r.isLeaf()

4: this.r.fringeTweak()

else
this.r.recursiveTweak()
end

end

Table 6.1: recursiveTweak Methods




leaf :: fringeTweak() ‘
-1: if this.isRest()
return
0: end
p = this.pitch;{ = this.tie

d = this.duration
w={a,,,a,_,,a,)
1:  outcome = Mnom(1,w)
if outcome == 1 and isValid(l,2,d)
2: this = int2
(1eaf(p, %, t), leaf(p, %, t))
elseif outcome == 2 and isValid(l,3,d)
3: this = int3
(1eaf(p, %, t), leaf(p, %, t), leaf(p, %, t)

end

‘ int2 :: fringeTweak() ‘
child = this.nonRestChild()
p = child.pitch; t = child.tie
d = child.duration
w={ay,,,05 4,0, ,,0,)
1:  outcome = Mnom(1,w)
if outcome == 1 and isValid(2,1,d)

2: this = leaf(p,2-d,t)
elseif outcome == 2 and isValid(2,3,d)
3: this = int3 (leaf(p, 42 1),

d2
’ 73
leaf(this.r.pitch, £2 this.r .tie))

leaf(this.m.pitch this.m.tie),

elseif outcome ==

4: this = int2 (this.l.fringeTweak(),
this.r.fringeTweak())

end

‘ int3 :: fringeTweak() ‘

child = this.nonRestChild()
p = child.pitch; t = child.tie
d = child.duration
w= Ay, 0,y )
1:  outcome = Mnom(1,w)
if outcome == 1 and isValid(3,1,d)
2: this = leaf(p,d- 3,t)
elseif outcome == 2 and isValid(3,2,d)
3: this = int2 (1eaf(p, ?,t),
leaf(this.r.pitch,%,this.r.tie))
elseif outcome ==

this = int3 (this.l.fringeTweak(),

-

this.m.fringeTweak(),
this.r.fringeTweak())

end

int2 :: nonRestChild() ‘
if llthis.l.isRest()

return this.1

else
return this.r

end

‘ int3 :: nonRestChild() ‘
if llthis.l.isRest()

return this.l
elseif !llthis.m.isRest()

return this.m
else
return this.r

end

Table 6.2: fringeTweak Methods
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6.2.5 Stochastic Rhythm Parameters

Table 6.3 displays the parameters that control how likely various elaboration and
simplification tweaks are. The parameters in the upper part control leaf node trans-
formations; the middle and bottom parts affect int2 and int3 transformations re-

spectively.

The subscripts on the probabilities indicate what transformations these variables
control. The field to the left of the ‘=’ refers to the node class upon which the
transformation is performed (1, 2, and 3 corresponding to nodes leaf, int2, and
int3). The field to the right of the arrow refers to what class this node becomes
should the transformation take place. When this latter field is an ‘x’, the node’s
own type doesn’t change, but any or all of its children’s types may change. The last

subscript (no arrow) corresponds to the no-op.

‘ Effect ‘ Transform ‘ Probability ‘ Value ‘
growth leaf into 2 children a,_,, W
growth leaf into 3 children a,_, W

none no-op a, %
collapse 2 child leaves into parent leaf a,_,, w
growth 2 child leaves into 3 a,_, m
growth transform left and right child leaves a,_, m

none no-op a, W
collapse 3 child leaves into parent leaf a,_,, WM
collapse 3 child leaves into 2 a, . WM
growth | transform left, middle, and right child leaves a, ., W

none no-op a, W

Table 6.3: Fringe Modification Parameters

The stochastic modification scheme presented here is simple because no higher-
level reasoning determines how much growth, collapse, and stasis is desirable in a
given context. Rather, the following set of meta-parameters are set before on-line
interaction takes place, and these fully determine how likely various fringe tweaks
will be:

e embellishment factor, 7;

e simplification factor, +/;
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e no-op factor, 7";

6.2.6 An int3 Node Modification Example

Figure 6.4 illustrates all the possible decision points in int3 :: fringeTweak. The
top-most ‘e’ is the original int3 terminal node, upon which int3 :: fringeTweak is
called. Its left, middle, and right-most children are drawn in order underneath as the
black, white, and gray triangles (for the meaning of these triangles, see Section 6.2.3).
Inside int3 :: fringeTweak, one of four decisions will be made, depending upon the
sampled value, outcome. Each decision is drawn as a thick gray arrow, along with its

accompanying likelihood.
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Figure 6.4: int3 :: fringeTweak Decision Points

The first decision (leftmost gray arrow) considers collapsing int3 into a single
leaf. This action will only take place if: outcome a, , is selected, and it is valid to
triple the node’s duration. If this node is collapsed, the pitch of its left-most child

(as determined by nonRestChild) is used as a place holder for the new node.

As long as nonRestChild returns a non-rest child, which child it selects is unim-
portant. (This child’s content is merely a pitch-valued place-holder whose final value
is determined in Stage II.) Thus, the decision to have nonRestChild scan from left

to right, returning the first pitched child that is found (in this example, the black
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triangle) is arbitrary. This place-holder must not be a rest because, as justified in
Figure 6.5, if both int3 and its sibling were allowed to become rests, degeneracy
could result.

fringeTweak » degenerate |:> non-degenerate
A

A A
A A A A A

Figure 6.5: Rest Degeneracy Example

The second decision (gray arrow a,_,) considers collapsing the int3 terminal node
into an int2 terminal node. Again, only valid transformations are allowed and non-

degeneracy requires that at least one of the placeholder children is not a rest.

Rather than changing int3 directly, the third decision (gray arrow a,_, ) attempts
to transform each of its child leaves. The dotted lines emanating out from these
children indicate what decision points are possible when leaf :: fringeTweak is
called on them. Note that leaf tweaking can only embellish (grow) a rhythm. In-
variant II is the reason why the middle child (a rest) remains untouched (line -1 in

leaf :: fringeTweak). At first glance, it may appear that the a, _ transformation is

3—x

not really necessary — after all, int3 :: fringeTweak has already been called. How-
ever, if this decision point were removed, there would be no way for an int3 node
to grow. Furthermore, this mechanism allows complete VLT branches to become

unbalanced, and such trees can be rhythmically desirable.

The last decision (gray arrow a,), is a no-op.

6.3 Goal-Driven Pitch-Sequence Generation

In this section, an algorithm is developed for generating an arbitrary length pitch
sequence that simultaneously:
1. tends to exhibit a specific goal, i.e., user playing mode y*;

2. meets a fairly general set of optional constraints.

Goal-driven generation provides the crucial mechanism for closing the loop
between learning to perceive and being able to respond “in kind.” The
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constraints ensure that what is generated can seamlessly integrate into the

local environment, higher-level domain knowledge, user desires, etc.

A key technical issue is to merge the (perhaps conflicting) desires of the PC,
INT, and DIR trends implied by y© into a coherent pitch sequence sampling scheme.
This issue is first considered in terms of an ezact solution — one in which all three
goal trends are simultaneously guaranteed to asymptotically occur — because it sets
the stage for the more practical approach, generatePS, that BoB uses. The practical
approach is simpler than the exact solution because it assumes that PC, INT, and DIR
trends can be treated independently. However, the practical approach also considers

a more difficult task because it guarantees that certain external constraints are met.

The practical solution is appropriate for real time because its independence as-
sumption provides an efficient sampling scheme, e.g., computation time is polynomial
in terms of the number of inputs. While this assumption produces sequences that
tend to exhibit properties of the desired goal, ¥, sequences are not asymptotically
guaranteed to do so. The odds of generating a sequence that exhibits the desired
conglomeration of trends exponentially increases as the generatePS distribution is
randomly re-sampled. Function searchPS performs this higher-level search, first re-
sampling and then defining a fitness measure that specifies which item from a set of

sequences is “best.”

6.3.1 Conglomerative-Driven Generation

How does one develop a generative algorithm that combines the perhaps conflict-
ing trends required of different temporal views, y*, y' and y?, into a coherent pitch

sequence sampling scheme? This task is difficult because:

e PC trends entirely ignore pitch ordering.
e INT trends only care about adjacent pitch pairs.

e DIR trends care about varying-length subsequences.

At a high level, it is useful to think of generation in terms of reversing the arrows
in Figure 5.1. However if generation merely reversed the training set’s mapping, only
snippets that the musician has already played could be retrieved. What is really

needed is the ability to generalize — to be able to generate new solos that, when

131



perceived using classifyVmn, map back into the same playing mode. Conglomerative
generation is defined as this process of generating a new pitch sequence, (, of arbitrary
length T:

CZ(Cl)"': t7"'7CT>

that maps back into conglomerative goal, 3°.

Ideally, the knowledge contained in user-model vMn (QC) could be used to define

a randomized pitch-sequence sampling scheme. Towards this end, the shorthand:
0° = (607,0",0),

refers to the goal’s relevant components. 0% is the y*-th component of QF, 6! is the

y'-th component of Q!, and so on.

6.3.2 Why the Obvious Approach Does Not Work
It is reasonable to consider using §¢ directly to generate a new set of histograms:

2" ~ Mnom(T, 6")
2" ~ Mnom(T, 6"
2P ~ Mnom(T, §°)

This sampling scheme, however, is unhelpful because it does not explain how to
arrange some selection of pitches so that all of the sampled PC, INT, and DIR counts

are accounted for.

For example, consider the two histograms in Figure 6.6. There is no way to choose

and order two pitch values such that:

e one of them uses pitch class Db and the other Eb;

e the interval between them is either a tritone or a perfect 4th.?

While QF is useful for abstracting higher-level trends from a solo by ig-
noring various aspects of a pitch sequence’s temporal order, it is precisely
for this reason that the generative model does not necessarily produce a

viable solution when sampling from it.

2The left over interval would have to connect with the MRP in a previous segment.
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Figure 6.6: A Pair of Histograms That Do Not Produce a Pitch Sequence

6.3.3 Stochastic Processes

Randomness must be introduced to reverse the many-to-one mapping, ¢ — y©, that
conglomerative generative requires. A stochastic process that operates over pitch

values provides an ideal construct for reversing this mapping because of its explicit:

e randomness;
e handling of temporal order;

e mechanisms for affecting how likely various pitch sequences will be.

For more details about stochastic processes, see (Ross 1993). What follows is a brief

synopsis of that reference.

Consider stochastic process:

(o)

that runs for a finite period of time, T, and transitions between a finite set of states:
Vt, q € S ={1,2,---,s,---,S}.

Furthermore, suppose that whenever this process is in state ¢ = s there is a fixed
probability, A_, that it will next transition into state s’ in the next time step. In
particular:

;-

Vt, Pr(qm =slg =s)=A

This stochastic process is a Markov Chain because the probability of transitioning

from one state into another is only conditioned on the current state.

A Markov Chain’s state transition matriz, A, must adhere to the following con-

straints:

Vs,s', A, >0 (6.1)
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Ve, YA, =1 (6.2)

By assuming an ergodic, irreducible Markov Chain, additional equations that summa-
rize its long-term behavior are obtained. In particular, there exists a unique stationary
probability distribution, X\, defined over states so that:

#{1<t STT|qt ==s| Ty

or equivalently:
Vs, DA A=A (6.3)

Vs, A >0 (6.4)
S =1 (6.5)

Provided A is known, straightforward matrix algebra can be used to solve for .

6.3.4 An Exact Solution
An exact solution is obtained by deriving a Markov chain that:

e operates over a set of states comprised of pitch and relevant history pairs;

e provides the long-term behavior required of §°.

Provided that a long enough walk was sampled from this exact chain, the resulting
pitch sequence could be transformed into histogram, ¢, that, when normalized, would
converge to §¢. How long convergence would take depends upon the chain’s settling
time, which in turn depends upon how many times matrix A must be multiplied
with itself before it reaches a fixed point. How long a sampled sequence must be
before its histogram has enough counts to map into conglomerative goal y© is, while
related, a different question, whose answer depends to some extent upon how hard
the underlying mixture model is.® Certainly for BoB’s short segmentation windows,
long-term guarantees become less relevant. Nonetheless, the exact Markov Chain
is derived because it provides a good basis for understanding the conglomerative

generation problem.

3Recall that a clustering becomes less distinct as the number of counts decreases.
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Definition

An exact solution is parameterized by: €, p_ and p The latter two parameters

min ? maz *

specify a consecutive set of semi-tones:

P = {pmmapmm + 17”"pmw o l’p"“”}’

from which pitch sequence ¢ is sampled.* P contains n, = p + 1 elements.

mazx pmin

The set of relevant histories (Section 4.4.6) is:
H - {+7 ++7 ++ +7 0,00,000, —, ——, — — _}7

and so n, = 9. The exact Markov Chain operates over a tuple composed of both

sets:
S={{phlp € P; h € H}.

Notation s € S and s € S are used interchangeably to refer to tuples (p, h) and
(p', h') respectively. Thus, for example, wherever s’ appears, p' and h' are implied

(and vice versa).

An exact chain’s transition probabilities must satisfy equations 6.1 and 6.2. Fur-
thermore, its stationary distribution must exist, satisfying equations 6.3 through 6.5.

Asymptotic convergence to #° is assured with some additional equations:

1. PC constraints ensure that, with a long enough sequence, the distribution over

pitch classes converges to 6%:
> A= 08 (6.6)
p € {i € Plpc(i)==m} , h € H

pc was defined in Section 4.4.3.

2. INT constraints ensure that, with a long enough sequence, the distribution implied
by adjacent pitches’ absolute intervals converges to 6'. Specifically, when absolute
interval m is larger than the unison interval:

_ gl
Z >\5 ) As,s’:<p+m,hs(h,+)> + Z >\5 ) As,s’:<p7m,hs(h.,7)> - em' (67)
seS seS
When m is equal to the unison interval:
_ gl
Z >\5 ’ As,s’:<p,hs(h,o)> - em' (68)
ses

hs and sym were defined in Sections 4.4.5 and 4.4.6.

“In the context of pitch, ‘4’ and ‘—’ represent addition and subtraction by semi-tones.
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3. DIR constraints ensure that, with a long enough sequence, the transitions out of

relevant history states (Figure 4.5) converge to 6°:

_ b
Z >\5 ’ As,s’:<p’,hs(h,j)> - om:dInd(h,j)' (69)
se S, p € {z € 73|sym(p,i)::j}

dInd was defined in Section 4.4.6.

This exact solution extends the Markov Chain in Figure 4.5 so that, instead of
having states defined just over H, it now considers all possible pairs between P and H.
Whereas Figure 4.5 had nine states, this chain has ng = n,, - n,,. Similarly, instead of
three output transitions per state, there are now n,,, one for each possible next pitch
value. However, the underlying directional history updating structure is the same,
and reproducing structure in this way provides the same benefits (fewer parameters to
fit, a sparser transition matrix). The difference is that now, instead of each transition
corresponding only to a direction, it also corresponds to a specific pitch. With these
states, it is easy to produce random pitch sequences that asymptotically converge to
specific conglomerative trends. Simply take a random walk, strip away the history

part of the tuple, and report the sequence of pitches left over.

An Example

=C:4top,.. =E:4

max

A single step in a Markov Chain operating over the range p_.
is displayed in Figure 6.7 (octave values are not shown). This chain operates over
n, = 5 pitches. Its complete graph, ng, = 45, has five different pitches on which to
transition out of any given state. Even with this small n,, the entire graph for one step
is too big to display. Figure 6.7 only contains those states that are necessary for tran-
sitioning out of a state that is currently on pitch D:4,s € {S|p=D:4, h € H}.
Dotted arcs correspond to downwards motions, solid arcs to upwards motions, and

dot-dashed arcs to unison intervals.

Properties of an Exact Solution

An exact solution requires solving for both A and A, but pairs of these variables appear
as products in some of the equations. If either A or A\ were known, then solving for
the other would reduce to a set of linear equations with greater-than-zero constraints.

Linear Programming could be used to solve for the unknown variables. With pairwise

136



Figure 6.7: One Step in Part of an Exact Markov Chain

products, however, a general solution requires Quadratic Programming, an NP-hard
task.

To solve for A, n, —1 parameters per state must be estimated, resulting in a total
of ng - (n, — 1) free variables. A introduces an additional n, — 1 parameters, six of
which, because of implicit bounds implied by P, are zero. In total, an exact solution
requires 9 - ni — 7 free variables to be estimated. At the same time, Equation 6.3
introduces ng linear equalities and #¢ introduces another 52. When n, > 4, there

are more variables to estimate than there are constraints; a solution must exist. The

question that remains is for what values of 8¢, p

and p__ does a feasible solution
— i.e., one whose probabilities are all nonnegative — exist?

min ?

Similar Markov Chains have been considered in Steinsaltz and Wessel (in progress),
and their work inspired some of this derivation. Essentially, they considered distri-
butions over pitch and pair-of-interval tuples. The problem was then broken into
two Linear Programming problems, whereby A\ was first estimated by solving those
equations that were decoupled from A, and then its solution was used to solve for
A. While feasible solutions were obtained using this approach, no set of general
conditions under which a feasible solution is guaranteed has been derived.

To provide insight into why a particular set of parameters can produce a set of

equations for which no feasible solution exists, consider again Figure 6.7. With this
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graph’s states, there is no way to sample a pitch whose PC lies outside of the the
C to E range. Thus, an exact solution would need all of the non-obtainable PCs
in ¥ to have zero probability. Similarly, since P only spans intervals between the
unison and Major 3rd, larger intervals in #' would need zero probability. However,
BoB’s musically motivated learning priors (Section 5.7.4) ensure that no bins will
ever have zero probability, so an asymptotic solution for #¢ cannot exist. In BoB, the
issue of asymptotic convergence becomes less important because short sequences are

generated.

6.3.5 External Constraints

In the exact derivation, aside from p_. and p no external constraints were intro-

max )
duced. Nonetheless, such constraints are important because they ensure that what
BoB produces can seamlessly integrate into the local environment, higher-level do-

main knowledge, user desires, and so on.

Prior Context Constraints

When BoB generates a real-time solo a bar at a time, the next bar used in the
generation algorithm, r', must seamlessly integrate into what was most recently played

in bar r' — 1. This is accomplished by having the random walk in bar r’ start in state:

Qoo = (D = maD,, hy).

This assures that the first interval in the new walk is coupled to the MRP in the
previous bar. Since there is no reason to believe that bar r — 1 and r' are controlled
by the same DIR component, h, will not rely on the content in bar r' — 1. Instead,
this value will be initialized by drawing a sample from the stationary probability

distribution over H that is implied by the goal, #°, in bar r'.

Pitch Range Constraints

One reason to constrain the possible pitch values that may be used during generation
is physical — certain instruments are limited to playing in certain ranges. However,
another reason to formalize range constraints is to provide an additional hook into
local context, supporting, for example, the ability to let the range of activity found

in a call determine the legal range of activity that is possible in a response.
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Ultimately, limiting the range of possible pitches is accomplished viap_ and p

mazx *

How these values are set for each bar depends on:

e a set of absolute ranges, which specifies an instrument’s physical constraints;

e an incremental relative range, p which specifies how much to extend the range of

incr?

pitches found in a call when producing a respounse.

Absolute ranges are fixed up front, never change, and place a hard limit on the
maximum range of values ever allowed in P. Relative ranges, calculated per segment,

are derived for a given call.

Degeneracy Constraints

If, at a specific location within the pitch sequence, a unison interval were to occur,
then its application to the VLT would produce degeneracy. A constraint that sets the

smallest allowed interval, 7 to either a unison or a Minor 2nd handles this issue.

min ?

The VLT for whom these pitches are generated informs the algorithm what unison

intervals are acceptable (Section 6.2.3). These results are stored in unison vector u:

u = <U/17...7ut7...7uT>'
u, = true indicates that the interval between (,_, and ¢, may be a unison.

Although degeneracy could have been addressed in Generate Stage I11 by cleaning
up a degenerate tree after ( was applied to it, this approach would run the risk of

eliminating unison intervals that 6' encouraged.

Maximum Interval Constraint

The maximum interval that may occur in a response is tied to the call in much
the same way that maximum pitch range was. In particular, the maximum interval

allowed in a response, ¢ is determined by extending the maximum interval range

mazx )

found in the call by 7. semi-tones.

ncr

On- and Off-Beat Constraints

Some early Parker generation attempts left me with the feeling that if on-beat and

off-beat pitches were handled differently, the quality of the solos might significantly
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improve. However, since I had already been using a stable baseline of learning results
and did not want to change things mid-stream, [ investigated this issue using a rather
quick hack, wherein beats were identified and handled post learning. Although this
attempt did not produce noticeable improved or worsened behavior, there are com-
pelling musical reasons to provide a pitch sequence generator with explicit on- and
off-beat knowledge. This quick hack is derived because it introduces the notation
needed to handle beats. This derivation also demonstrates how easy it is to integrate

musical common-sense knowledge into the generation algorithm.

All leftmost interior fringe children are assumed to be on-the-beat so that the VLT

can calculate on-beat locations. These results are stored in on-beat vector b:

b:<b“...7bt,...7bT>_

b, = true indicates that (, is an on-beat. This beat labeling scheme is useful in
situations like v (Figure 6.8, left), which occur when Parker plays a “run of eighths,”
a context in which he definitely treats the first tone in each eighth note pair differently.
In contrast, v' (Figure 6.8, right) shows where this overly simple beat labeling rule
breaks down. In many contexts, musicians would identify the last half-note as on-

the-beat.

KR ELT:

on beat ? TFTFTFTF

Figure 6.8: On-Beat Examples

At the very least, beat handling requires having different PC parameters for on-

and off-beat events. I estimated these parameters as follows:

1. Map XF into Y using learned estimate QF.

2. For each partition of X, determine the frequency in which on- and off-beat pitch

classes occur.

3. Estimate a new on- and off-beat distribution for each partition using both these

frequencies and a Lagrangian prior.?

5Since all data is labeled, this solution has a closed-form.
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The biggest distinctions between on- and off-beat distributions occurred with Parker’s

data, which makes sense given his tendency to play more chromatically than Grappelli.

Clamping Constraints

Ideally, BoB would provide a general framework for specifying arbitrary aspects of
a solo’s content, allowing things like the environment, common-sense musical knowl-
edge, and specific desires that the user may wish to articulate in advance to be

accommodated.

For example, there are benefits to integrating harmonic knowledge into the system,
although, as I have already argued (Section 2.4.3), there are reasons why an IMC
should not need to rely on such knowledge. One way to include this knowledge
is through a constraint that requires every on-beat tone to be consonant with the
underlying harmony. As another example, rhythm and pitch could be coupled by
insisting that, whenever a triplet is played, the melody pivots around the middle

note, changing direction by a small pair of intervals.®

What is needed is a mechanism for specifying that only certain pitches, intervals,
and/or direction trends are allowed at given locations within a walk. In other words,
at certain points BoB should be able to clamp particular events to one of a specific
set, values. For simplicity, only pitch-class clamping will be notated and derived. In
particular, I will derive a method for generating a melody whose pitch at step t = ¢
is guaranteed to come from a particular clamping set, C, i.e., (_, € C. From this

derivation, more elaborate PC, INT, and DIR extensions are straightforward.

6.3.6 The Practical Solution

Rather than solving for asymptotic convergence, BoB assumes that the individual
components in ¢ = <9P, ', 9D> can be independently combined to produce a tran-
sition matrix that generates sequences that exhibit the desired conglomerative be-
havior. In total, four different transition matrices are constructed in order to handle
all possible degeneracy and on-beat combinations. Using these matrices, an efficient
forward-backward algorithm is derived for handling the more general clamped con-

straints.

60ne listener noted that this rhythmic device, commonly used by Parker, was missing in BoB’s

responses.
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Transition Matrices

The independence assumption allows transition matrices to be calculated in closed

form. In particular:

6" . - 6P
_ m=pc(p’) abs(p,p') dInd(h,syn(p,p’))
A = ) o x (6.10)
’ ZS’ES 0 : 9 : 9
pe(p’) abs (p,p') dInd(h,syn(p,p’))

is the probability of transforming from state s = (p, h) into s’ = (p/, h’). Because of
its implicit reliance on P, this equation ensures that the pitch range constraints are

met. The remaining constraints, however, still need to be provided for.

The numerator treats the probability of the next pitch as a sole function of:

e its pitch class, pc(p);
e the absolute interval between itself and the previous pitch, abs(p, p');

e the transition out of relevant directional history A via direction sym(p,p’).

The denominator is the normalizing constant. With a sparse matrix implementation,

A can be calculated in O(9 - n2) time.

While there is no reason to expect that the transition matrix defined by equa-
tion 6.10 will provide long-term convergence (equations 6.6-6.9), the independence
assumption will tend to produce sequences that, at least in the short term, map back
into the desired goal. When a transition’s conglomerative terms are, in isolation, quite
likely, its unnormalized value will attenuate less than a transition whose terms do not
cooperate. After normalization, those transitions that accommodate the largest con-
glomeration of trends will have the greatest chance of being selected. In this way,
0¥, 0', and 6P act as a sophisticated filter, magnifying those events that are most

collaborative and attenuating those that are not.

Intervallic Modification

For Equation 6.10 to be well-defined, the dimension of ' may need to be extended.
When the maximum interval that is accessed by the second term, abs(p,,.,p,..), is

greater than 13 (more than an octave), the dimension of §' must be increased.

When increasing ', all intervals beyond dimension 13 are weighted according to

the probability of their complement, where an interval’s complement is defined to be
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the interval modulo 12 (the interval with octaves subtracted off). Intervals larger
than a Major 7th are then normalized so that their total sum equals the probability

originally allocated to the larger-than-an-octave bin.

' is also modified so that the probability associated with any interval outside of

the range ¢ . and ¢___ is zero.

n mazx

Temporal Modification

At each step in a walk, degeneracy determines whether or not ¢ . is a unison or a
Minor 2nd interval. Similarly, a different PC parameterization is used for on- and
off-beats. Thus, four transition matrices are created in total, one for each possible

degeneracy and beat combination. This set of matrices:
L= <A(true,true), A(true,false), A(false, true), A(false, false)>,

is defined by the parameters: 6, p .~ p  and i, . When the first argument of

azx

A is true, it is calculated using the unison 7 , interval. Similarly, when the second

argument is true, it is calculated using the on-beat PC parameterization.

6.3.7 Forward-Backward Pitch Sequence Generation

generatePS (Table 6.4) takes a T step walk:

<:<<17"'7 ta"')CT>7

through the chain defined by £. Unison constraints, u, and on-beat constraints, b, are
handled on a step-by-step basis, determining at each step which matrix from £ is to be
used. Prior context, which determines the walk’s initial state, is handled via ° and
mrp. Clamping constraints, C and ¢, are propagated through the chain’s transition
matrices using a variant of the forward-backwards algorithm. With a sparse matrix
implementation, (3, the most expensive calculation, requires in O(9 - ni - ¢) floating

point operations.

The walk starts in the initial state, ¢,_, (line 4 and 5), as described in the ‘Prior
Constraints’ section. Each new state is sampled from the output transitions of the
current state using the appropriate beat and degeneracy configuration (lines 6a and

9). For each execution of the for loop (line 6), each new state becomes the previous
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generatePS(mrp, 0, L, u,b,c,C) ‘

determine the length of the walk, T, from u or b.
determine the number of states, ng, from a matrix in £
1:  make §_, a zero vector

forp € C,h € H

la: =1

/Bt:c,s:<p,h>
end
fort=c—1;t>1;t— —

A= 'C(ut+17bt+1)

2: B, = Z A Boy

s’ in S

3: end
4: sample h,_, from the stationary distribution implied by 6
9 G, = <mrp,h0>
6: fort=L;t<T;t++
6a: A= L(ut,bt)
ift<ec

fors’ € S
7 w, = As:qt_l.s' B

end

normalize w

else
8: set w to the row in A corresponding to state g,_,
end
9: q, = <pt,ht> ~ Mnom(1, w)
10: G =n
end

return(=<C1,"', t;"'aCT>

Table 6.4: The generatePS Pitch Sequence Generator
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state. This process continues until all T steps have been taken. From this walk,
the pitch sequence is obtained by stripping out the history part of each state tuple
(line 10).

Clamping constraints are handled by c different ng-dimensional 3 vectors. Beta
was chosen because of its use in the seminal Hidden Markov Model (HMM) paper
by Rabiner and Juang (1986). The difference between their 3 and the one used here
is that, in generatePS, state is not hidden. Rather than marginalizing over hidden
state, # marginalizes over all possible ways of getting to a future clamped state before

it is yet known how the walk will get there. The s-th element of 3, is defined to be:
B.,=Pr(qg,, € S, ¢,, € S,---,q_. € {p€C heH} ¢ € Slg=5).

The term of interest occurs at clamp point ¢,__. In this location, only states that

include a pitch from set C may occur.

0 values are setup in lines 1 through 3. At step t = ¢, [ is defined so that only
those states in the future that emanate out of a clamped node have a probability of
occurring (line 1a). Up to and including the c-th step of the walk, vector ; accounts
for the change in transition probabilities that results when only one of a restricted
subset of states may occur at step t = ¢ (line 2). While t < ¢, the probability of a
next state depends on [ and A (line 7). Once the walk has passed clamp ¢, there
is no subset over which to marginalize, and so [ is no longer used (line 8). It is
only because of the chain’s Markov assumption that the calculation of 3 is efficient,

requiring a look ahead of one step (line 2).

6.3.8 Searching for a Good Pitch Sequence

Although generatePS ensures that the desired constraints will be met, there is no
guarantee that a particular finite walk will map into the desired goal.” However,
because in real musical contexts about 50% of the walks achieve the desired conglom-
erative behavior (Section 6.5), the odds of generating a sequence that maps into the
goal significantly increases when the generatePS distribution is re-sampled several

times.

searchPS (Table 6.5) samples generatePS n__, times. The distribution being

alk
sampled is defined by the mrp, 67, L, u, b, ¢, and C arguments. searchPS also specifies

"For finite walks, this is also an issue with the exact solution.
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‘ searchPS(mrp,6°, L, u,b,c,C,y°,1¢ Q) ‘
= —1; diff = o0

success = false;n_, =0;n
gouls

yn+ +

walks )
Ctry = generatePS(mrp, 0D7 'Ca u, b7 c, C)
a¢ = featuresCGL(mrp,(,,)

(y© ,1° ) = classifyCGL(z“, Q%)

try? " try
if yc == yC

try

subgoals

forn=1n<n

success = true
N, ++

goals

if 1 1€ < diff

5: ¢ =, diff =[1°—1C]

try

end
elseif !success

7 matches = number of subgoals shared between y© and y©

try

if n < matches

subgoal
8: (¢, =t

end

oy Marbroas = matches
v eubgoa
end

end

"ol
n

rate =

walks

return <C* , SUCCess, mte>

Table 6.5: The searchPS Pitch Sequence Generator

how to determine which of these walks, (_, is “best” — a concept that is defined by
the y©, 1€, and Q° arguments. Two different user models are presented (once via £
and again via Q) so that different models can be used to drive generation and assess
fitness. The former model is called the generative model and the latter is called the

search control model.

When at least one walk maps into the desired goal, searchPS is considered suc-
cessful (the success value that is returned is set to true). Otherwise, searchPS is
considered a failure. When searchPS succeeds, how easy its generation task was is
quantified by rate, which records how many of the individual walks that were sampled

mapped into the desired goal.

Each execution of the outermost loop samples a new walk, ¢, (line 1). This walk
must be classified before its quality can be assessed (lines 2 and 3). When defining a

“best” walk, two special cases must be handed:

1. No walk may map into the goal, in which case the “next best thing” needs to be
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defined.

2. When more than one walk maps into the desired class, an additional distinction for

determining “best” is needed.

Initially, assessment is concerned with finding any walk that maps into goal y© (the
equality in line 4). Until a walk that maps into y© is found, the “next best thing”
is defined by how many of the underlying subgoals it achieves (lines 7 and 8). Each
individual component in y© is treated as a different subgoal, so when all three subgoals
match, the control loop at line 4 (rather than line 6) is executed. Once a goal sequence
has been found, only walks that achieve this goal with a more similar surprise (i.e.,
labeled likelihood, Section 5.10.5) are considered better (line 5).

6.4 Complete vMn-Based Generation Algorithm

Algorithm vMnGenerate (Table 6.6) details how Generate Stages I, II, and III are
combined into the complete algorithm. For convenience, generation is only passed the
bar numbers for call and response, r and r’, because these can be used to access those
variables that change per segment (i.e., lines 1, 5, 10, and 12). All other generation-
related parameters — rhythmic control (v, v/, "), absolute range constraints, relative
range constraints (p, %, ), the number of walks (n_, ), and the generative and
search control models — are obtained as part of a particular experiment’s generation
setup. After generating a response, vMnGenerate automatically incorporates its result

into the environment and the agent’s state using index r’ (line 12).

The values of a particular generation setup are fixed up-front, before online inter-
action begins. Absolute pitch range values are obtained by examining the training set
for its minimum and maximum pitches values. For Parker’s training set, the Eb : 3
to A : 5 range is obtained; for Grappelli, the range is G : 3 to A : 6.

Within vMnGenerate, when call and response variables must be distinguished,
primes are used. The call’s ranges are determined before its rhythm is tweaked (line 2).
These ranges, the absolute and relative pitch range constraints, and the maximum

interval range constraint, combine to specify what valuesof p_. ,p__ andi__ to use

mazx )

when calculating £. Next, rhythm tweaking transforms the call’s VLT (line 3), and

from this result, degeneracy constraints are determined (line 4).

Another generation setup parameter, last, indicates when last clamping is active
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vMnGenerate(r,r', }) ‘

1: retrieve v,y®, and [ for call bar r

2:  determine p_, ,p and ¢ using both the ranges found in v

maz ) mazx

and the range constraint constants

3: v =w.recursiveTweak()
4: calculate v and b for v’
5: retrieve mrp’ for response bar r’
6: calculate £ using y°, p,. ,p,.., i, , and the generative user model
retrieve the search control model, Qiamh
8: if last
determine length of the walk, 7", from u or b
9: c=T'
10: C= {mrer}
end
11: <C, success, mte> = searchPS(mrp’,GD,E,u,b,c,C,yC,lC,inch)

11a: assign (¢ to non-rest leaves of v’

12: update the environment concerning v’ and mrp ot

Table 6.6: The Complete vMnGenerate Generation Algorithm

(line 8). Last clamping forces the last pitch in the response (line 9) to be identical to
the last pitch in the musican’s call (line 10). In this situation, goal-driven generation
is essentially being asked to “fill in the blanks” between two pitches using a specific
conglomerative trend. The pitches to assign to v’ are then sampled and assigned to v’
(lines 11 and 11a) The final task is informing the environment about the new response
(line 12). This task includes scheduling v' into a real-time buffer for playback in bar
r' and, given this playback, updating the MRP.

vMnGenerate only tweaks rhythm once (line 3), but samples n__, different pitch

sequences (line 11). This decision was made because v affects u, b, and ¢, which di-

alk

rectly impact the most expensive calculation, 4. While [ is expensive, its amortization

over n_ . makes it real-time feasible. For example, in the current implementation,

alks
approximately 2.5 seconds are needed to calculate § and £, with which a walk takes
about 1 [ms] to sample. For live performance, an execution time on the order of 1.5
seconds per segment is needed. Fortunately, it should be easy to reduce the cost of (8

because no optimizations (sparse matrix calculations, etc.) have yet been tried.
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6.4.1 Simulated Music Datasets
A simulated dataset for a musician’s training data is created with the following steps:

1. Retrieve the entire set of musician’s improvisation segments (including the pickup
bar).

2. Strip out any segments that contain only rests (no pitches will be generated for these

data-points; they are uninteresting).

3. Generate one long response for the call that is comprised of what is left in this sequence

of segments.

4. Use this response improvisation to construct a new conglomerative histogram dataset.

Because this procedure generates very long solos, wandering becomes a significant
issue. Wandering occurs because, over the long term, the previous MRP controls
where in P the next segment is likely to go. As generation progresses from segment to
segment, there is more and more opportunity for the solo’s pitch content to gravitate
towards either end of P’s range. Last clamping is very effective in this circumstance
because it forces the simulated solo response to have the same MRPs that were found
in the musician’s warmup data. Thus, data simulated with last clamping is more
tightly coupled to the training data. When clamping is inactive, only the relative
range constraints restrict wandering (by modifying the range of P on a per-segment
basis). Typically, without last clamping, incremental ranges must be significantly

smaller (e.g., Table 6.7) before results of similar musical quality are produced.

6.4.2 Solo Trading

When trading solos, the cut-and-paste scenario (Section 3.3.3) is used, so the call’s
tonal abstractions may not be compatible with the underlying harmony that accom-
panies the response. Hence, cut-and-paste is modified as follows. Given that: 1) bar

r is to be generated, 2) the underlying harmony contains n bars per chorus, and

harm

3) the training set’s first chorus bar is number n the PC goal is copied from one

of fset?

of the training bars in column:

mOd(r - noffset’ nharm)'

For example, the columns in Figure 3.1 correspond ton,, =12 andn ., = 2.
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Cut and paste for the INT and DIR goals proceeds without modification:

T (6.11)

yr yrflength ’
D_ D
Y

r r—length .

length was defined on page 62.

6.4.3 Other Interaction Scenarios

Only the simple abstract cut-and-paste interaction has currently been considered, but
there is nothing inherent in vMnGenerate’s strategy that keeps it from handling richer

interaction scenarios.

One intriguing and powerful possibility that others have also argued for involves
hierarchical, multi-resolution control of musical sequences (Mozer 1994; Héthker 1999;
Hornel 1998). For example, imagine having BoB use a call’s entire abstract sequence
to predict (rather than copy) what goal sequence is used to control response. All that
would be needed to support this richer scheme is a higher-level sequence predictor.
Similar prediction techniques could also be applied to vary aspects of generation that
are currently treated as constants. For example, how much rhythm is embellished or

simplified from bar to bar could be estimated on a per-segment basis.

More general interaction scenarios are also possible. Clamping provides a plethora
of opportunities, allowing the user to customize their own environment, introduce
domain knowledge, etc. For example, the lead-sheet abstraction could be extended to
allow specific events (harmonies, scale preferences, contours, rhythmic transformation
properties) to be “snapped in” at specific time points. The importance of this type
of user control has been demonstrated elsewhere (Abrams, Oppenheim, Pazel, and
Wright 1999), and its integration into BoB’s generation algorithm would be relatively

straightforward.

6.5 Performance

The practical conglomerative-driven generation approach is empirically validated in
two ways. Both evaluations use simulated music data, so performance is measured in

real music contexts. First, how much better the practical generation scheme is than
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random guessing is investigated. Next, the degree to which this generation scheme

reproduces the underlying user model’s structure is evaluated.

6.5.1 Compared to Random Guessing

One way to evaluate how well the practical independence assumption works is to
estimate how much it outperforms a method that knows nothing about the learned
user model. This latter method is implemented as a completely non-informative vMn

model, where all component values are identical and uniformly distributed.

This comparison is measured by simulating two different datasets and contrast-
ing the performance of their searchPS algorithms. In both simulations, the search
control model that defines performance is one of the learned user models described
in Table 5.8. In one dataset, the generative model is non-informative; in the other
dataset, generation is based on the learned model. In total, eight datasets (Table 6.7)
were simulated. Each dataset is referred to by a scenario index, which identifies its

generation setup.

This set of experiments focuses on measuring how well conglomerative goals are
achieved. (In order to control the experiments as much as possible, rhythms were
not modified.) Although it has been my experience that goals are usually met with a

smaller search (e.g., n = 25), the value of 150 was used to provide more accurate

walks

rate estimates.

‘ setup: v = 'y’ =0, 'y” =1, N alhs = 150 ‘

Simulated Music Datasets Generative Setup
Number || Generative Last
Scenario Musician of Bars Model Clamping | p,... | ¢
I uniform . .
I Jearned inactive 3 3
111 Parker 120 uniform .
v learned active 12 12
A% uniform . .
VI Grappell 120 Jearned inactive 3 3
VII uniform )
VIII learned active 2 12

Table 6.7: Simulated Music Data
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The performance of searchPS scenario is summarized in Table 6.8. The Success
Rate statistics that are reported were only compiled for those bars that were success-
fully generated. These rates reflect how easy it was to simulate the successful data’s
bars. This quantification is important because it impacts how large n__,, must be to

succeed most of the time. The histograms in Figure 6.9 provide more detail about

the success rate distribution for scenarios I and II.

Performance Results
Number of Number of Success Rate

Scenario | Success Bars | Failure Bars Ave ‘ Std ‘ Min ‘ Max
I 92 28 0.037 | 0.045 | 0.0067 | 0.33
II 120 0 0.4 0.19 | 0.033 | 0.81
111 98 22 0.043 | 0.1 | 0.0067 | 1.0
v 120 0 0.47 | 0.21 | 0.033 1.0
\Y% 66 63 0.052 | 0.089 | 0.0067 | 0.51
VI 122 7 0.45 | 0.24 | 0.0067 | 0.94
VII 59 70 0.075 | 0.19 | 0.0067 | 1.0
VIII 125 4 0.56 | 0.24 | 0.0067 | 1.0

Table 6.8: SearchPS Performance
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Figure 6.9: Ease in Generation for Scenario I (left) and II (right)

Clearly, the non-informed generator accomplishes many fewer goals than the corre-
sponding learned generator. In the worst case (VII), 70 out of 129 goals fail. In other
words, 70 of the simulated bars did not exhibit the playing modes that were assigned
to the original Grappelli data. Learning, on the other hand, is quite successful. All
of the simulated Parker bars succeed, and only a few of the Grappelli bars fail.® Not

8For those learn-based bars that did fail, only two of them did so because a sequence with the

correct PC class was never found. In all other cases, the DIR mapping failed.
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only is the learned generator more successful, its success rates are much larger, which
means that more of the algorithm’s time can be spent fine-tuning a bar’s surprise (as

opposed to searching for a sequence that maps into the right playing mode).

In all but the non-informed Grappelli case, clamping improves performance. The
most likely explanation is that, as a side-effect of more tightly coupling the simula-
tion task to the original dataset, the space of possible searches becomes more highly
focused in a useful way. For example, in the most extreme case (2 of Grappelli’s bars,
and one of Parker’s) clamping assured success because it fixed the bar’s only pitch

value (hence the 1.0 Max Success Rates).

6.5.2 Compared to the Original Training Data

Another useful indicator of how well the practical independence assumption works is
obtained by comparing the trends found in the original dataset to the trends exhib-
ited in the simulated data. In Figure 6.10, comparisons between the distribution of
Parker’s original and simulated PC, INT, and DIR counts are presented. The dotted
bars reflect the distributions found in Parker’s training data; the solid bars correspond
to a simulated dataset’s distribution. For simulation scenarios, I and IV, refer to
Table 6.7. Histogram bin labels were described in Sections 4.4.3, 4.4.4, and 4.4.6.

The important point in each of these figures is that a distribution corresponds
to a dataset’s overall trend. For example, the solid bars in plot (a) show how all
the counts in Parker’s PC training data are distributed when all the bars are viewed
together. Similarly, the dotted bars in plot (a) display how the counts produced by
simulation scenario II are distributed. Although there is not a big difference between
the clamped and un-clamped figures, the difference between the original and simulated
distributions is somewhat larger in the un-clamped scenario, especially with the PC

distribution.

6.5.3 With Respect to the Underlying Model’s Structure

While it is encouraging that conglomerative generation successfully responds to all
(most) of Parker’s (Grappelli’s) calls, an even stronger indication of how well the
practical approach works can be obtained by running further learning experiments on

these simulated datasets. In the experiments presented here, how well the practical
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(a) Scenario II, PC Data (b) Scenario IV, PC Data
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Figure 6.10: Distribution of Counts in Parker’s Training and Simulated Data
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generation scheme closes the loop — integrating learned knowledge into the generation
process — is measured by comparing how similar a model learned for the simulated

data is to the original learned model.

This evaluation involves the following steps:

1. Learn Q¢ and YT"C from XT"C (the learned models reported in Table 5.8 are
used).

2. Generate simulated dataset X © using QT for both the search control and generation

models (simulations from Table 6.7 are used).
3. Learn Q¢ and Y from X©.

4. Obtain an additional partition for each dataset using the other dataset’s classifier:
y' e = classifyVmn(X T¢ Q°);

Y'Y = classifyVmn(XC, QT"C).

5. Estimate the disagreement between the learned models by determining the average

difference between their partitions:

p diff(VIOP v/ TP true) + diff(YD, V', true)

dis 5 ,
Jis! diff (Y Il y' T true) + dif£(YL, Y7, true)
s =
2 ?
. Tr,D . D
disD — diff(YIrP y'™"" true) + diff (Y, Y’ ,true)‘
2

diff is defined in Appendix D.

The larger these disagreements are, the less compatible the two learned model’s under-
lying structures are likely to be. While some of this disagreement can be explained in

’

terms of “learning noise,” i.e., the original model’s expected total error rate (hardness
plus cost), some of it can also be attributed to generation not exactly replicating the

vMn model’s structure.

PC, INT, and DIR model discrepancies were estimated for simulation scenarios
IT, IV, VI, and VIII. The results are presented in Table 6.9. For comparison, the
corresponding expected total error rate (Column ‘Tot’) is displayed (this rate comes
from Table 5.10). To get a feel for what these numbers mean, consider the worst-case

possibility: random guessing (Column ‘Rand’).
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Datasets PC Model INT Model DIR Model
Musician Simulation || dis® ‘ Tot ‘ Rand dis' ‘ Tot ‘ Rand || disP ‘ Tot ‘ Rand

11 0.45 0.25 0.05

Parker v 0.16 .32 .80 035 31 75 011 .09 .66

Grappelli Vi 0.09 .18 75 0.09 .23 .80 0.12 07 75
VIII 0.08 0.13 0.29

Table 6.9: Relearn Generation Experiments

When compared to random performance, there is no denying that generation can
reproduce a fair amount of the learned vMn model’s structure. Overall, the lowest
discrepancies were obtained with Grappelli’s un-clamped simulation (scenario IV). In
this case, PC and INT discrepancies are half of what can be explained by “learning
noise” alone. The DIR discrepancy, on the other hand, is twice as large as its “learning
noise.” Nonetheless, these numbers indicate that most of the underlying structure
that was learned to explain Grappelli’s training data is in fact reproduced by the
generation algorithm. For the clamped Grappelli case, PC discrepancy decreases ever
so slightly (as it should given the additional coupling it provides) at the expense of
INT and DIR performance. With Parker, clamping greatly improves PC’s discrepancy
(reducing it from 45 to 16%), but once again this comes at the expense of INT and
DIR structural loss. That clamping influences Parker’s PC discrepancy so much is

likely due him playing more chromatically than Grappelli.

6.6 Discussion

6.6.1 Rhythm and Pitch

In the music perception community, there is open debate concerning whether or not
the treatment of rhythm and pitch should be unified or whether they can be treated as
independent dimensions (Boltz 1999). In BoB, the coupling between rhythm and pitch
content is relatively weak — the number of leaves and the presence of syncopation
being the only direct links. Fortunately, stronger ties with rhythm can be supported

with clamping constraints.

Handling other important aspects of rhythm will require extending the CGL fea-
ture space. For example, rests are currently ignored, even though these are per-

ceptually important (serving to mark various parts of a motive or phrase, etc). In
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addition, no distinction is made between compound and composite durations. Rather,
both durations produce additional PC counts, and both produce unison interval and
zero-motion related counts even though musically, these correspond to different phe-

nomena (syncopation and note repetition respectively).

When I was first creating the system and analyzed Parker’s data, this distinction
seemed unimportant (only 1.6% of his 870 PC counts were attributed to note repe-
tition, as were 13% of his 102 unison interval counts). Later on, when I looked at
Grappelli’s data, repetition played a more serious role (causing 4.2% of his 867 PC
counts and 24% of his 149 unison intervals). In hindsight, it is easy to see that this

issue deserves more explicit consideration and should be dealt with in future work.

6.6.2 Coupling Learning and Generation

For goals to be achieved in real-time, a pitch-sequence sampling procedure that tightly
couples with Q° is needed. While many music generation schemes, e.g., BoB, EMI
(Cope 1992), CHIME (Franklin 2001), GenJam (Biles 1994), are cast in a generate-
and-test framework, the explicit and principled coupling between generatePS and
9¢ distinguishes this algorithm from other approaches. In particular, with an exact
solution, multiple samples would only be needed because a given sample might fall into
a competing component’s decision boundary. Although with the practical approach
no such guarantee exists, in real musical contexts, a single goal-based generation
attempt can be expected to succeed on the order of 50% of the time.” In other words,
after a reasonably small number of searchPS trials, failure becomes unlikely. For

example, with n =10, on average, about 0.1% can be expected to fail.

walks

6.6.3 Conglomerative Goals and Constraints

The practical sampling scheme provides principled methods for incorporating con-
straints directly into a playing mode driven Markov chain. These constraints are
serviced in two ways. First, multiple transition matrices are provided, which allows
various range, degeneracy and beat-related constraints to be realized. Second, a
forward-backwards propagation algorithm is provided, which allows a fairly general

set, of clamping constraints to be met.

9This estimate is based on the average rate values obtained for the learned generative models in
Table 6.8.
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I cannot over-emphasize the computational power that this goal-driven, constraint-
ensuring combination provides. For example, early in my research, I built a proba-
bilistic solo-modifying algorithm that tweaked both pitch and rhythm simultaneously.
Due to the hierarchical nature of the rhythmic encoding (VLTS were used), the result-
ing rhythms were usually acceptable. The pitches that were assigned to these rhythms,
however, often strongly violated one’s musical common sense. I had originally been
motivated by the idea of “tweaking a particular branch in a VLT, while ensuring that
it realized a particular playing mode”, but I lacked a method for generating a pitch
sequence that, on the one hand, realized this mode, and on the other hand, started
and ended on predefined pitches. What I really wanted was an algorithm that could

10

perform both melody completion™ and run in real time. vMnGenerate fulfills this

need.

While there are ample occasions where the solos BoB generates using vMnGenerate
violate one’s musical common sense, the clamping constraints provide a mechanism
for eliminating some of this egregious behavior. For example, one listener noted that,
in particular solos, a scale’s Minor 3rd tone should not have been played because, in its
evolving context, its Major 3rd had just been played. Violations of this sort could be
handled by a particular choice of interval clamping constraints (and such reasoning is
only possible because the model explicitly encodes intervals into its representation).
That such violations occur merely indicate the obvious: although CGL
features capture important aspects of a melody’s temporal content, they
do not capture all salient aspects. In this light, constraints can be viewed
as providing a “back-door” mechanism for manually imposing additional

temporal structure onto a particular mode’s generator.

This observation naturally leads one to consider the possibility of learning these
additional constraints directly from music data. Whether or not such a concept can
be learned is an open research question, but I am optimistic. Recall that sample size
sparsity is a mechanism by which specific histograms can reveal partial information
about their underlying component generators (Section 5.10.3). Provided the vMn
model captures real playing mode distinctions, it is reasonable to consider inferring

which parts of these components are revealed in certain contexts.

While constraints are valuable, they can also decrease the strength of coupling

between 6 and the generatePS pitch sequence distribution. For example, this is

0 A5 was done in the work of Bellgard (1993)
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exactly the affect that the § vectors have. It is also easy to dream up situations in
which realistic constraints would make goal-based generation difficult. For example,
suppose BoB was generating a pitch sequence of length four, and this was to be
assigned to the leaves of a VLT that contained four quarter-notes. Should 6% expect
unison intervals 90% of the time, degeneracy would allow at most 50% of the tree’s
intervals to be unisons. Clamping the last note in a sequence presents a similar
conflict when the MRP is significantly lower (or higher) than the clamp’s pitch and

6P strongly prefers downwards (or upwards) motions.

Fortunately, preliminary simulations seem to indicate that constraints and goals
can be successfully realized in real musical situations (Section 6.5). However, further
research needs to be done. For instance, it is worth pursuing a generation method
that relies on a parameterization that has been conditioned so as to optimize goal y©

for a particular set of constraints.

6.6.4 Convergence and Sparsity

Given how sample size impacts classifyVmn’s discrimination power, one might think
that walks that are shorter would be more difficult to successfully generate. On the
other hand, since the conglomerative goal and additional constraints together impose
a set of temporal constraints, one might expect short walks to be easier to generate

because their search spaces are smaller.

One reason this generation scheme works in practice is because of how sparse per-
bar histograms are. This sparsity can be thought of in terms of providing enough
“noise” to allow the sampling algorithm to “adequately” explore its solo space.'! In
particular, with fewer counts, there are more opportunities for a given sample’s basic

histogram shape to vary.

That walks are short also hides that the sampling scheme is inexact and more
counts will only clarify any divergence that may exist between the generatePS dis-
tribution and €. Divergence alone, however, does not determine a sampling scheme’s
success rate. Rather, success depends upon how much a given component’s generatePS
distribution falls within the corresponding goal’s decision boundary. Typically, it is

easier to learn boundaries than it is to learn entire distributions, so measuring per-

Gince this exploration heavily prefers collaborative PC, INT, and DIR combinations, this “noise”

is hardly random.
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formance in terms of these boundaries also contributes to the generation algorithm’s

success.
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Chapter 7

Musical Evaluation

In this chapter, the performance of BoB’s user-specific perception and generation
components are assessed from a musical point of view. The former is assessed from a
qualitative, musical basis, and the latter is assessed in terms of empirical human lis-
tening experiments. Parametric details concerning the learned Parker and Grappelli
models, the musical appropriateness embedded within these details, and the musi-
cally reasonable ways in which these details operate upon the training data are first
presented. Given BoB’s unsupervised learning paradigm, this validation is especially
important because it provides an assurance that, although various vMn modeling
assumptions are violated when a musician generates their solos, in practice, useful
and salient musical structure is learned. Next, the degree to which these two learned
models and their corresponding components produce behaviors that are noticeable
to human listeners is discussed. This chapter is primarily written for a musically fa-
miliar audience; a basic understanding of harmonies, scales, and other basic musical

concepts is assumed.

7.1 Overview

With respect to user-specific perception, Parker’s learned PC model is the focus of
attention because, through this analysis, the basic methodology for reasoning about
the other models follows. In addition, this analysis powerfully demonstrates two
key benefits of applying a vMn model to short melodic segments. These benefits

arise because the components themselves, as well as their use in perceiving a specific,
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temporally ordered training set, provide a very flexible and distributed representation

that, musically speaking, happens to capture sensible, musician-specific information.

The analysis of Parker’s INT and DIR models are geared towards shedding light
on the musical meaning that these models’ various feature combinations capture.
With the additional data provided in Appendix E, readers can perform more detailed
analyses for these models if desired. The same thing is true of Grappelli’s model,
which is detailed in Appendix F. To conclude the musical analysis of user-specific
perception, several sets of examples from Parker’s and Grappelli’s training data, each
set mapping into a different CGL playing mode, are presented, contrasted, and com-
pared to provide a more concrete idea of how the vMn perception mechanism works

when perceiving short melodic segments.

With respect to generation, two different types of listening experiments will be
outlined, each exploring a specific question. In the playing mode variation experi-
ments, subjects were asked to listen to pairs of segments and assess whether or not
they thought the two were generated by the same or different playing modes. The
hypothesis in this experiment was that listeners would be able to tell the difference,
and, to the extent that they could, this would justify the need for using a mixture
model that can provide multiple components. In the learn model variation experi-
ments, subjects were asked to first listen to a call from a particular musician’s training
set, then listen to a pair of responses to this call, and assess whether or not each of
these responses was generated using the same or different learned models. Once again,
the hypothesis in this experiment was that listeners would be able to tell the differ-
ence, and, to the extent that they could, this would justify the need for user-specific

learning.

7.2 Customized Perception: Charlie Parker

In this section, the user model learned for Charlie Parker’s training data, X%, is
described. The score used to construct this training set is in Appendix E.1. This
model is the same one that was first presented from a machine learning point of view
in Tables 5.8 and 5.10.
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7.2.1 Learned Tonality

The five pitch-class components that were learned for Parker, i.e., 6F°F PP ... PP

are shown in the first five rows of Table 7.1. Both a symbol and a number (far left
columns) refer to the same component, e.g., * B’ and ‘1’ both refer to the component
in row one. The former symbol is used in figures, e.g., Figure 7.1, and the latter is

used in scores, e.g., Table 7.4.

Since each PC component identifies a preference for certain pitch classes, it makes
sense to consider how these components lend themselves to musical scale-based in-
terpretations. For each component, strong correlations between their more probable
bins and a particular scale’s pitch-class set can be found. This correspondence led me
to interpret each as identified in the far right column (the background gray columns
identify this scale’s pitch-class set). With components W B  and = |
these interpretations are immediately obvious: a one-to-one correspondence between
a scale’s pitch-class set and a component’s more probable bins exists. Regardless
of scalar interpretation, however, all that BoB knows is that each component has a

certain mixture weight and pitch-class distribution.

The ‘Size’ column contains two equivalent numbers, how many bars in X ¥ were
assigned to a component, and what percentage of the training set (N = 119) this
number corresponds to. A component’s size is related to its mixture weight, 7, since
this value is the posterior-weighted sum of the training data (Equation 5.12). How
this model partitioned each of Parker’s Mohawk bars is presented in Appendix E.2.1
through E.2.5.

The pitch-class distribution in the bottom row, the single mixture, presents how
BoB would have modeled Parker had it been forced to fit a single Multinomial com-
ponent to his entire dataset. This model reflects the distribution of pitch classes
per improvisation, while the k = 5 model demonstrates how the tonality in differ-
ent bars can be partitioned into distinct regions. That multiple component models
estimate specific pitch-class distributions using averages constructed primarily from
“like-minded” histograms is crucial — only the most mundane musician would play
a solo whose pitch-class distribution was constant throughout. Similarly, there is no
reason to expect that a single tonal distribution would adequately describe a musi-

cian’s behavior in a fixed harmonic region.! It is useful to compare these models by

'Which was what was assumed in the Dannenberg and Mont-Reynaud (1987) model. In partic-

ular, a single component for each eighth-note in a blues progression was used, which amounts to
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‘ Symbol ‘

Pitch-Class Probabilities Size T Associated Scale
m | w_‘—’_m_ﬂ 34 | 28.6% | 0.309 Bb Major Bebop scale
8 |2 gL mj 41 | 34.5% | 310 E» Bebop-7 scal
. . p-7 scale
O |3 m B 10 | 8.4% | .079 Eb Min+7 scale
0.27
B |4 % H aliinl 23 | 19.3% | .186 E» Major scale
Bb Major scale
O 5| o 11 9.2% | .115 . .
m—m—m_l—!—m_\ (with chromaticism)
ﬂ_ﬂ—l_l_l_‘—’_'_l_L a single mixture (for comparison)

Table 7.1: Parker’s Learned PC Components
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considering which parts of the single mixture’s probabilities split into which parts
of the vMn’s five components; this comparison highlights exactly how the mixture
model enlarges BoB’s perception of Parker’s tonal usage. Inventive musicians will
use different scales (or at least different realizations of the same scale) in different

choruses.

The first two components, which account for a substantial part of the training set
(63%), have straightforward Bebop scalar interpretations. These interpretations
lend impressive credibility to the algorithm’s ability to learn musician-
specific results because the Bebop scales were defined in part so as to
explain the improvisational style that Parker had a hand in inventing (Os-
transky 1977; Baker 1983). The harmonic context of Mohawk lends further credibility
to the musical appropriateness of what was learned. For a Bb blues progression, it

makes perfect sense to base one’s improvisations on By and Ep scales.

A closer look at Table 7.1 sheds light on what I mean when I say that this model
is a distributed representation.? For example, consider the B component. Rather
than viewing this component as an abstract, symbolic B> Major Bebop scale, BoB
sees it as something that prefers pitch class Bb about twice as much as its other prob-
able pitches (C,D, Eb, F, Gb, G and Ab). However, when perceiving a histogram that
contains twice as many Bb counts as it does C counts, both components E and M

will appear to be likely generators. In this case, an absence of Db counts becomes
a crucial indicator, as does the presence of A counts. In the vMn model, I use the
term ‘distributedness’ to refer to the fact that various component’s features collabo-
rate and/or inhibit one another during perception — the overall result is somewhat
emergent. In the context of generation, this distributed representation is all the more
useful than a symbolic, scalar view because it provides information about how the

user realizes particular pitch sequences.

Spontaneously creating melody, an act as simple as improvised humming, is as
much about one’s ingenious use of exceptions as it is about one’s adhering to certain
rules (Loy 1991; Papadopoulos and Wiggins 1999; Johnson-Laird 1991). Since the
dataset determines how probable a component’s pitch classes are, BoB is free to
construct a palette that accommodates both an artist’s choice of scales and their

subsequent, personalized modification. For example, a reasonable interpretation of

breaking Figure 3.1 into 96 columns and fitting a single PC probability distribution to each column.
2While mixture models can be implemented in terms of neural networks, my use of the term

‘distributed’ is higher-level than what is typically referred to when discussing neural nets.
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the © component is the following synthesis of musical ideas:

Improvise on the B Major scale, but prefer the tritone (E) over the scale’s 4th
(Eb), and add blues chromatic tones (the Minor 2nd, 3rd, and 7th) to the mix.

While such concepts are roughly described in jazz texts, e.g., (Baker 1983;
Russell 1959; Coker 1970; Ostransky 1977; Aebersold 1992), the idea of
using a symbolic, musical scale based framework to integrate such a wide
variety of possibilities into a coherent model that automatically and inti-
mately adapts to a particular user seems a daunting exercise at best, and
at worst, a scenario whose very premise hinders the simulation of truly

creative behavior.

Another excellent way to assess the musical quality of what the PC model learned
is to consider the degree to which its perception of the training set makes sense given
the underlying harmonic structure over which the improvisations were played (and
of which the learning algorithm had no explicit knowledge). In Figure 7.1, Parker’s
training data is presented in terms of its PC component mapping versus location in
the 12-bar blues chorus. Each symbol corresponds to one of the bars in Figure 3.1
and identifies which component in Table 7.1 that BoB deemed most likely to have

generated the bar’s tonal content.?

N WL | [mEe
: e s OENCREER
stel]eJ00e m e o=
s DOROONON= = BN |
ssHenu e ool
Sefll e DEE DE= =
[N [y | B
sdde cd0Molo =
c =00 = = HENEC
ofle  IOON-INEN
123456 7 8 9 101112

Figure 7.1: Parker’s PC Modes and the 12-bar Blues

At first glance Figure 7.1 may not look very structured, but there are distinctions

3Two aspects of Figure 7.1 follow directly from how Parker’s dataset was constructed. First, the
PC sequences in chorus 1 and 6 are identical because Parker’s two heads were identically transcribed
(differing only by an octave). Second, the symbol for bar 8 of chorus 5 is omitted because that bar,

which contained no counts, was not included in the training set.
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in BoB’s perception that correlate with the underlying harmonic changes that take

place in the blues (Columns 1, 5, 7, 9 and 11; Section 3.2.3). For example:

e In Column 1, Parker predominantly uses the Eb Bebop 7 scale ( B occurs 70% of
the time).

e Columns 5 and 6 are almost universally assigned to the Bebop scales ( M and =

account for 19 out of 20 classifications).

e Only in Columns 7, 9 and 10 is the B> Major Bebop scale ( B ) used 50% or more

of the time.

e The assignments in Column 12 appropriately handle turn-backs and endings. In this
key, an Eb scale (choruses 1, 3-4, and 6-9) is a reasonable turn-back choice (Giomi
and Ligabue 1988). As is typical musical practice, when Parker finishes his solos

(choruses 5 and 10) he chooses a scale that returns to the tonic (Bb).

The learning priors (Section 5.7.4) ensure that any classification has the potential
to be incorrect, and a solution’s hardness quantifies how much error to expect (around
20% for QPP Table 5.8). In other words, structure is not more blatant in this figure
partly because 20% of the classifications are probably incorrect. Fortunately, since
vMn models classification error probabilistically, it also provides estimates concerning
which assignments are most likely to be correct (via the posterior, ); this provides a
new avenue through which structure can emerge. For example, the bars in Columns 6
and 11 were much more confidently assigned to their components than were the bars

in any other columns.

Section 6.4.3 presented some compelling reasons for learning the structure of more
abstract musical sequences. Figure 7.1 provides a concrete example of where the
training data for such a learning experiment might come from. Although preliminary
experiments indicate that, at least with this level of noise, more bars of data are needed
for learning to be productive, this figure motivates the types of things one might want
BoB to be able to learn. Learning this temporal structure will be pursued in future

work.

7.2.2 Learned Melodic Continuity and Contour

The four melodic continuity and three melodic contour components that were learned
for Parker are presented in Tables 7.2 and 7.3. It is useful to consider INT and DIR
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behaviors together because they are linked: that unison intervals correspond to zero
motions and vice versa (Section 4.3.4). Except for the fact that the bin labels for INT
and DIR are different, the layout of these tables is analogous to that of Table 7.1.
In particular, aside from knowing a component’s mixture weight and intervallic (or
directional) distribution, BoB is unaware of the ‘Meaning’ assigned to a component

— I provided these interpretations.

Each INT component label abbreviates an interval’s full name as defined in Sec-
tion 4.4.4. (Both references will be used interchangeably.) Instead of showing a DIR,
component’s twenty-seven transition probabilities, Table 7.3 presents its correspond-
ing stationary distribution. The stationary distribution summarizes a component’s
asymptotic behavior (Section 6.3.3), so each bin reflects how often a particular di-
rectional history state (Figure 4.5) is likely to be occupied when parsing an infinitely
long direction sequence generated by that component. For example, DIR bin label

‘++’ indicates how likely two isolated, adjacent upwards motions are.

With respect to the meanings assigned to the intervallic components, my interpre-
tations are motivated in part by the Implication-Realization Model hypothesized by
Narmour (1990). Roughly speaking, Narmour hypothesizes that, at a Gestalt-based
level, listening to an interval that is smaller than or equal to a Major 3rd sets up the
implication that the melody will ‘similarly continue,’ i.e., proceed in the same melodic
direction using a ‘similar sized’ interval.* He also hypothesizes that listening to an
interval that is larger than or equal to a Minor-6th sets up the implication that the
melody is undergoing a “reversal,” i.e., pivoting around the most recent note, pro-
ceeding in the opposite direction via a ‘relatively smaller’ next interval. Concerning
intervals within the Minor 3rd and Minor 6th range, he postulates that these “thresh-
old intervals” are more ambiguous, having the “potential to imply either continuation

or reversal, though not in equal proportion.”

With respect to repeated tones (which produce unison counts), Narmour’s “du-
plicative structure” and BoB’s INT/DIR coupling are synonymous — both corre-
spond to observing “lateral registral direction” (zero motion) and unison intervallic
difference. Unfortunately, BoB’s CGL representation does not currently distinguish
between syncopated rhythms and repeated tones, so when ascribing meaning to this

interval, I do so after having referred to its usage in specific training data parti-

“In this section, single quotes refer to my own choice of words; double quoted text was taken
directly from (Narmour 1990).
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‘ Symbol ‘ Intervallic Probabilities

Meaning

0.25
| |

o1

42.9%

411

relatively continuous and
syncopated melodies,

occassionally irregular

25

21%

229

mostly continuous,
occasionally jagged,
irregular, or syncopated
melodies

7.6%

.089

mostly irregular and jagged
melodies, syncopation and

repeated tones

34

28.6%

271

mostly continuous,
occasionally jagged or
irregular melodies.

a single mixture (for comparison)

Table 7.2: Parker’s Learned INT Components

tions (Appendices E.2.6 through E.2.9). With these coarse distinctions, meanings are

assigned to intervals as follows:

e Syncopated and repeated refer to specific unison interval usages.

Major 3rd.

Irregular refers to intervals in the “threshold” range.

Continuous refers to intervals greater than the unison and less than or equal to a

Jagged refers to intervals greater than or equal to a Minor 6th.

With respect to melodic contour, trends in the training data partitions (Appen-
dices E.2.10 through E.2.12) reveal, at a high-level, three types of behavior:

1. An upwards string refers to a run of ascending motion.
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‘ Symbol ‘ Directional Probabilities H Size ‘ 0 H Meaning

mostly syncopated/repeated

0.28 tone melodies, rarely an
W | ﬂ M 45 | 37.8% | 373 || obvious direction trend, but

for an occassional downards

string

e mostly longer downwards
B |2 33 | 27.7% | .270 || strings separated by shorter

upwards strings

mostly longer upwards

LI |3 W—‘_m 41 | 34.5% | .356 || strings separated by shorter

downwards strings

0.22
Mﬂj—» a single mixture (for comparison)

Table 7.3: Parker’s Learned DIR Components

2. A downwards string refers to a run of descending motion.

3. No obuious trend refers to a lack of presence of either of the above trends.

In the single mixture (Table 7.3), the largest proportion of probability mass lies on

states that record downwards motion (‘—’, ‘——’, ‘——="), which makes sense given
that:

“anyone interested in melodic analysis notices right away the phenomenon of

ascending leaps followed by descending linear patterns.” (page 220)

With respect to Parker, this trend has also been commented on in Hornel, Langnickel,
Sandberger, and Sieling (1999). Roughly speaking, in the learned k = 3 model, BoB
will assign bars that exhibit this behavior to the E component. Although overall,
when contrasting the different components relative preference for ascending versus
descending trends, it is clear that downwards motion is still most prevalent, the [

component accounts for the smallest portion of the training data.

Instead, the most popular component, B | corresponds to melodies that display

no obvious directional trend. This lack of trend is largely due to the bars in this
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partition containing more rests and larger intervals than are found in the other two
partitions. As a result, the segments in B tend to be more jumpy and/or contain
melodic lines that divide into more than one phrase. It is quite possible that, with
a better segmentation scheme, a larger portion of the training data would then be
explained by a downward string-based component(s). Regardless, it is not the case
that what is globally the most prevalent in a training set should necessarily produce
the most heavily weighted component. While this may seem counter-intuitive, it is
entirely appropriate for a melodic model. For example, only such a model could
handle the case where overall more motion is downwards, but the motion occurs in a

highly concentrated, small number of segments.

Where Narmour (1990) applies his theories to specific melodies, probabilistic vMn
components must be interpreted in likelihood-based terms — in terms of what behav-
ior is most and/or least expected. Roughly, I quantify this notion with the following
adjectives, listed in order from most to least likely: mostly, relatively, somewhat, oc-
castonally, and rarely. In general, such quantifications need to be considered as a
matter of degree, i.e., in relative as opposed to absolute terms. For example, reasons
such as voice-leading mean that melodic intervals will tend to be relatively small in
the first place, which is why, in the single INT mixture (Table 7.2), a majority of the
density lies between the unison and the Perfect 4th. As such, when I say that the
INT [ component is ‘mostly irregular and jagged,” this ‘mostly’ is a matter of

degree.

Finally, let me clarify why Narmour’s model received so much attention in this
section. BoB’s primary purpose is not to encode Narmour’s ideas, although I do be-
lieve that many of them could be used to improve BoB’s melodic feature space. To
seriously implement his ideas, BoB’s representation would need be to be extended
so as to: consider rests; treat the octave interval separately from larger-than-octave
intervals; consider differences between pairs of intervals; etc. In addition, while Nar-
mour distinctly separates intervallic and directional trends, his theory does consider
various combinations of these behaviors, and so some form of additional coupling
between intervals and melodic direction would be needed. Interestingly, the represen-
tation presented by Steinsaltz and Wessel (in progress) explicitly handles two of these
issues (pairs of intervals and their melodic directions). In concentrating on those as-
pects, however, their model, which lacks the ability to observe any trend longer than

a pair of intervals, does not provide as rich a view of melodic contour as does BoB.
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7.2.3 Conglomerative Perception Examples

In this section, several sets of examples from Parker’s training data, each set mapping
into a different playing mode, are presented, contrasted, and compared to provide a
more concrete idea of how the vMn perception mechanism works when perceiving

short segments of melody.

These examples are listed in Table 7.4, each row presenting a different playing
mode, as indicated by the bars’ conglomerative class tags.® For example, the playing
mode associated with the bottom row is y© = (1,4,3), and this playing mode’s
components can be interpreted using Tables 7.1 through 7.3 (e.g., the first row in
Table 7.1 is the PC mode’s generator, the fourth row in Table 7.2 is the INT mode’s
generator, and so on). Below each example, its bar location within the training set
(Appendix E.1) is given. The reason that a pickup note into each bar is displayed
is because the INT and DIR histograms rely on this information (via MRP). When

classifying an example’s PC histogram, pickup notes are ignored.

Example 1 Example 2 Example 3

2,2,2 =3

T vy
?

bar 102

o 4,1,1 n 4,1,1
T =
bar 28 bar 36
0 1,4,3 9 |1’4’3 |
S e R
bar 48 bar 94

Table 7.4: Parker Conglomerative Class Examples

When people hear these examples in demos, they tend to appreciate

5This tag is comprised of the three bold-face, comma-separated numbers printed above and to
the left of each bar. From left to right, the numbers in this tag indicate which PC, INT, and DIR
components BoB deemed most likely to have generated the example.
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the fact that, within rows, the examples sound more similar than they
do between rows. This observation makes sense given that listeners can perceive
various aspects of a melody’s tonal, intervallic, and contour properties (Deutsch 1999;
Krumhansl 1990; Bartlett 1993). However, when listening to these segments, it is dif-
ficult to pinpoint exactly why these distinctions are perceived. It is rather a transient,
vague impression. Because the vMn model is a precise specification, its underlying
mechanisms can be used to help shed light on these distinctions. To really appreciate
these examples, on must listen to them. Even though on the surface — for example,
with respect to an edit-based similarity view — all of the segments look quite different
from one another, some of them just “fit together” more with one another than with

others.

7.2.4 Quantifying Per Row Trends

Per-row, examples can be compared in terms of how many features are shared or
absent, i.e., which features across examples contain or do not contain counts? Sim-
ilarly, partially shared features are those whose counts are obtained from two of the
three examples. Per-row, features can also be compared in terms of their frequency
of occurrence (FoO), a term that is best defined by way of an example. Consider row
two, which has a total of nineteen PC counts. If one were to ask how many of these
examples’ counts lie on bins C and E», the FoO would be 2:1:16 because there are two
counts on bin C (bar 28 and bar 36) and one count on bin Eb (bar 65); the sixteen

remaining counts are unclaimed.

These metrics can be used to loosely quantify the commonalities between exam-
ples,® from which a reader can proceed to reason about the most notable differences
between rows. Since the components in Tables 7.1 through 7.3 were used to partition
these examples in the first place, it is no surprise’ that the commonalities found are

consistent with the results reported in these tables.

7.2.5 Parker CGL Examples: y° = (2,2,2)

In the examples in row one, except for the A in bar 91, pitches coincide with the
E» Bebop-7 scale. Pitch classes C, F, G, Ab, and Bb are shared, while E, G», and B

6Bold type is used to highlight the coarsest of similarities.
"Rather, this had better be the case!
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are absent. Melodies are also essentially continuous, with shared intervals m2
and M2, and partially shared intervals m3 and M3 (the only other present intervals
are a single P4 in bar 31, a M7 in bar 91, and a m6 in bar 102). Furthermore,
melodies are mostly descending runs. More specifically, these examples produce

the following direction sequences (equation 4.1):

dn:31 = <_7+7_7_7_7_7+7+7_;_>; (71)
d91 = <+7+7_7 BERE) _7+7+7+7_7 R _>’
dloz = <+7_7_7_7_7_7_>

As a result of how these sequences are parsed (Figure 4.5), the following transitions
are shared:

e e
Present transitions, which delineate the other melodic motions used to connect these

descending runs together, are:
B A i e N A L T A A o) R S A o

The other remaining 16 transitions are absent.

7.2.6 Parker CGL Examples: y° = (4,1,1)

For the examples in row two, pitches coincide with the E» Major scale. Al-
though only pitch-class F in this scale is shared (D is noticeably absent in bar 65), all
but the reasonably probable Bb pitch class are present. Almost all of the intervals
are continuous or syncopated: the FoO for syncopated, continuous, and irregular
intervals is 5:11:3. Although u is the only shared interval, M2 through M3 are par-
tially shared. These segments also do not display an obvious trend in melodic
direction. Aside from the short descending runs in bar 28 and bar 36, only single
steps in particular directions occur. The only shared transition among these three is
+/-.

7.2.7 Parker CGL Examples: y° = (1,4, 3)

For the examples in row three, pitches coincide with the B> Major Bebop scale.
All of the tones in this scale are shared except for pitch-class F and A. The Gb tone
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— which is what distinguishes this scale from the more traditional Bb Major scale —
is noticeably present.® While melodies are generally continuous, occasionally
a jagged interval appears. Shared intervals include m2, m3, and M3. Viewed
as one higher-level meta-feature, the m6/M6 combination is also a shared feature.
This combination of intervals is an important part of these examples’ character, and
also one reason why each maps into component four (as opposed to component two).
Except for bar 94, these melodies contain more ascending than descending

rumns.

7.2.8 Example Bar 65 Revisited

It is revealing to take a closer look at how the INT histogram for bar 65 is classified
because, in this example, the mixture model’s weights play an important part in its
classification. This example is further detailed in in Table 7.5. The bar’s intervallic
feature vector (z!) is displayed, as is its assigned class (the winning component) and
that component that was the next most-likely generator (the runner up). These

components’ posteriors (¢') and surprises (labeled likelihood ') are also shown.

With respect to the posterior, component one is the clear winner (0.63 versus
0.37). However, if one were to only look at the histogram’s surprise under both mod-
els, component two “better explains” the histogram’s counts (0.0017 versus 0.0016).
This example is a good one to look at in terms of understanding the vMn model’s
classification scheme because, although the u and M3 terms on component one are
larger, these each only account for a single count in z'. Component two’s M2 inter-
val, on the other hand, is slightly more probable than component one’s, but this bin
explains four counts. What the surprise values indicate is that if one were to only
look at the probability of the Multinomial, then component two’s average is closer to
2! than is component one’s. Because component two is approximately half as likely

as component one (7 = 0.23 versus 0.41), bar 65 is otherwise assigned.

7.3 Customized Perception: Stephane Grappelli

In this section, the appendix that details the user model learned for Stephane Grap-

pelli’s training data, X%, is described. Some conglomerative examples are also

8G» is also noticeably absent in row one.
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bar 65

INT histogram

Q?I

]
[T
i

u m2 M2 m3 M3 P4 1t P5 m6 M6 m7 M7 o

winning component ' =0.63 1'=0.0016
y =1
= 0.41

0.25

0.00

u M2 M2 M3 M3 P4 tt P5 m6 M6 m7 M7 o

runner up
wI =0.37 '=0.0017
component

y =2

m=0.23 ©-28

0.00

u M2 M2 M3 M3 P4 tt P5 m6 M6 m7 M7 o

Table 7.5: Parker INT Classification Example

presented. For the score used to construct this training set, see Appendix F.1. This

model is the same one that was first presented from a machine learning point of view
in Tables 5.8 and 5.10.

Analogous to what was just presented for Parker, Appendix F presents information
concerning Grappelli’s learned components and their perception of his training data.
For a high-level summary concerning what musical information Grappelli’s PC, INT,
and DIR components encode, consult Tables F.1 through F.3. This appendix also
lists how Grappelli’s model segregates his improvisations and displays graphs that
demonstrate how these models perceive playing mode as a function of underlying

harmonic context.

Several sets of examples from Grappelli’s training data, each set mapping into

a different playing mode, are demonstrated (Table 7.6) to provide some concrete
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examples of how his modes differ. This table’s setup is analogous to the one presented
for Parker (Table 7.4). The only difference is that conglomerative class components
are defined in Tables F.1 through F.3 and bar location is with respect to the training
set defined in Appendix F.1.

‘ Example 1 Example 2 Example 3 ‘
3,1,4 0 3’1’4.'\. r'] '] 3,1,4 1~ —~—,
bar 3 bar 88 bar 117

bar 54 bar 92 bar 120

Table 7.6: Grappelli Conglomerative Class Examples

7.4 Grappelli CGL Examples: y© = (3,1,4)

In the first row, tones correspond to a fragment of pitch-classes in the F
Major scale, ranging from the leading tone (E) up through the scale’s 3rd degree
(A). All of these pitch classes are shared but the A in bar 3. These melodies are
continuous and heavily syncopated, shared intervals include: u, m2, and M2. m3
and M3, also continuous intervals, are present, as is the fairly surprising two-octave
leap (bar 88). When syncopation is not controlling melodic contour, descending
runs are the main directional trend.
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7.5 Grappelli CGL Examples: y© = (1,1,2)

In the second row, with the exception of the B, all shared and present pitches
coincide with the F Major scale. [t is interesting that B is shared because it is also
the scale’s tritone, an especially important tone in jazz. Absent tones include Db, Eb,
Gb, and Ap. These melodies are primarily continuous, although not syncopated.
The only large interval is the single M7 leap in bar 28. The only syncopated interval
is in bar 119. Given that the FoO for unison, m2/M2, and all other intervals is 1:21:1,
it may seem surprising at first glance that INT component one was chosen, for it
also has a reasonable sized unison probability. It is these examples’ heavy use of the
m2/M2 intervals that attracted them to this component. More generally, component
one’s large m2/M2 probabilities — very common melodic intervals — are a primary
reason why its mixture weight is so large. In terms of direction, descending runs

are overwhelmingly present.

7.6 Grappelli CGL Examples: y© = (3,1,1)

The mode of the third row’s examples was chosen to demonstrate how different seg-
ments can look when just one of a CGL’s subgoals is changed. In particular, with
respect to PC and INT, these examples are almost identical in nature to row one.
The only difference is that row three’s examples display no obvious upwards or down-
wards trends. Instead, directional content is a mix of syncopation, up/down steps,

and short ascending or descending runs.

7.7 Listening Experiments

Two different types of listening experiments were conducted, each designed to answer
a specific question. In the playing mode variation experiments (PMV), human sub-
jects were asked to listen to pairs of segments and assess whether or not they thought
the two were generated by the same or different playing modes. The hypothesis in this
experiment was that listeners would be able to tell the difference between same and
different playing modes, thus justifying the need for a mixture model that can provide
multiple (versus a single) components. In the learning model variation experiments

(LMV), subjects were asked to first listen to: i) a call from a particular musician’s
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training set, and ii) a pair of responses to this call. Listeners were then asked to
assess whether or not each of these responses was generated using the same or differ-
ent learned models. Once again, the hypothesis in this experiment was that listeners

would be able to tell the difference, justifying the need for user-specific learning.

7.7.1 Generating Pairs of Solos

Individual pairs of generated responses (solo ome, s, and solo two, s,) were ob-
tained using a generate function very similar to vMnGenerate (Table 6.6). Whereas
vMnGenerate performs solos in real-time, the generator used in these experiments
calculated solo pairs (s, and s,) in advance using a particular pair of call contexts (r
and r'respectively). A single listening trial is made up of one pair of solos. A trial
was played back to the user through a simple keyboard-driven menu, allowing listen-
ers to repeat the playback of each solo pair, querying them to make an assessment

concerning the pair’s sameness or difference, and logging their assessment.

7.7.2 Experimental Setup

One-on-one, I would introduced a listener to BoB, after which they would first perform
a PMV experiment and then perform one (or two) LMV experiments (depending
upon how tired they were after the first LMV experiment). Eleven adults listened,
most of whom were affiliated with the Computer Science Department at Carnegie
Mellon University. About three-quarters of the listeners were proficient improvisors.
It usually took a listener about an hour to finish the experiments.

Playing Mode Variation Specifics

With PMV| Parker’s learned model and training data were used to construct listening
pairs. Each solo occupied one bar, containing on average about 9 unique pitches.
Solos were played back at a tempo of 150 beats-per-minute, requiring about 1.5 [sec]
of time per solo. Since each pair was played back with a short pause separating each
solo, about 3.5 [sec| in total was required to listen to a complete trial. Twenty-five
pairs were generated, thirteen sharing the same mode and twelve having different
modes. The random-seed chosen by the first listening subject was used to initialize

the generator for all subsequent listeners, i.e., all listeners heard the same response
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pairs. For a transcription of BoB’s responses, and more detail concerning generation,

see Appendix G.1. Eleven different listeners completed this experiment.

Learn Mode Variation Specifics

LMV experiments were either Grappelli-based (or Parker-based), depending upon
which musician’s training data was used to simulate the call contexts. Once a par-
ticular musician was chosen to be the basis, the first response was always generated
using the learned model for that musician, e.g., generation was driven by the Grap-
pelli (Parker) model. What varied between trials was whether or not the same (versus
the other) learning model was used to generate the second response. While the call
impacts a response in that it is mapped into an abstract goal (mode and surprise),
the learned model’s impact on a response is twofold (it defines this abstract mapping

and provides the component parameters used to drive generation).

Call contexts were between three and four bars long, each response containing on
average about 22 unique pitches. A tempo of 175 (150) beats-per-minute for Grappelli
(Parker) was used for playback. Listening to a Grappelli (Parker) response took on
average about 5 (6) [sec]. Each call/response pair was separated by a short pause.
In total about 22 to 26 [sec] of listening per trial was required. Fifteen pairs were
generated, eight sharing the same model and seven using different models. Once
again, all listeners heard the same pairs. For a transcription of BoB’s responses, and

more detail concerning generation, see Appendices G.2.2 and G.2.1.

Some listeners were too tired to do two LMV experiments. In these cases only the
Grappelli based experiment was run. Ten (seven) listeners completed the Grappelli

(Parker) based experiment.

In the LMV experiments, the listener’s goal is subtly different than it is in PMV.
Essentially, the listener is being asked to distinguish between whether or not the
same call is passed through a same or different “generative filter,” where the filter’s
operation is influenced by two somewhat different operations. When two different
models are used to generate responses to the same call, one might naively expect
the differences between these models to blatantly emerge in the resulting responses.
However, realize that because the same call is input to both generators, each will map
this into that goal mode that most closely encodes its pitch-sequence behavior given
that that model. To some extent, this mapping attenuates some of the differences

that actually exist between the models.
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Introducing Listeners to the System

Listeners conducted the experiments themselves, listening to audio generated by a
PC? in my graduate student office, entering their answers and progressing to the next
trial via a keyboard-driven menu. To order to avoid influencing the listener’s decisions
in other ways, solos were played back mechanically using a simple MIDI synthesizer
patch.t?

Before listening began, I would briefly summarize the purpose of the experiment:
to distinguish between “sameness” and “differentness.” [ would also describe at a
high-level how BoB operated and how a typical improvisor would likely interact with
the complete system. Since the goal of these experiments was to assess BoB’s handling
of pitch-sequence content, listeners were informed to “try and ignore rhythm as much
as possible,” rather focusing on the solo’s pitch-based content (tonality, general shape,
etc.). Several participants told me that the most helpful piece of information they

received during this introduction was to keep in mind the following question:

If you were interacting with BoB and it had just played solo s, instead of solo

s, would this have had a “similar” impact on your improvisational experience?

Before a set of listening trials began, the user was given a couple of demonstration
rounds, so that they could practice listening to response pairs, drawing conclusions
about them, and entering their assessment into the computer. During this demo,
listeners did not know whether a pair was different or not in advance, but after
entering their assessment BoB would tell them what the answer was. The point of
this exchange was to allow the users to gain some practice paying as much attention
to pitch-based content as possible, providing some concrete interaction to help them
acquire a notion of what was being asked of them. While this procedure ran the
risk of biasing a listener (in the worst case, “teaching them” to distinguish between
various components in the mixture model), no listener felt compelled to run more than
one or two of these demonstration pairs. Given that a listener’s success rate usually
improved as the trials progressed (because, in an unsupervised fashion, they were
able to develop a better idea of what it meant to distinguish between two concepts),

I believe the biasing impact of the initial demo trail was slight.

9Audio was produced using a SoundBlaster sound card.
100ne disadvantage of this playback was that the music had a primitive “Donkey Kong” sounding

video-game quality.
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7.7.3 On the Subject of Listening to Music

I cannot emphasize how difficult the task I was asking listeners to perform is, and to
all who gave their time, I am grateful. Ideally, a listener’s assessment should be based
upon their instantaneous, gut response to a pair of solos. However, asking someone
to assess sameness or difference makes it more difficult to obtain an instantaneous
reaction. Rather, aware that they are being asked to perform a specific task, listeners
will invariably attempt to organize what they hear as the experiment progresses in

order to make the task as easy as possible.

Another issue concerning data collection via music listening arises in virtually all
music-cognition experiments. Often, studies are run with listeners hearing a very
short series of tones that occupy a much smaller time span than was used in each
LMYV trial. While very short listening segments are useful because they allow one or
two variables to be carefully controlled and critically listened to, the problem is that
these conditions do not reflect the richness of what goes on when people listen to an
entire musical experience in real-time. Unfortunately, music listening is difficult to
control and monitor in more complex settings because melody is so heavily influenced
by context. Another problem with melodic listening is that one or two “bad notes”
can stick out more than the other twenty-one or so good ones. Music listening is
a temporal phenomenon — unlike a painting, its content can not be perceived all
at once. Without being able to instantaneously appreciate the whole experience,
it becomes questionable to what extent, and under what conditions, listeners are

assessing what one really wants to measure.

Suffice it to say that music listening tests are difficult to conduct and interpret.
This fact is especially true in IMC domains, where the goal is not so much to assess
how people listen to music as to assess to what degree the system enhances their

improvisational experience.

7.7.4 Experimental Results

The results for the Parker PMV test and for the Grappelli- and Parker-based LMV
tests are summarized in Table 7.7. Results are segregated according to the listener’s
ability to identify same and different pairs. Histograms for each experiment and
segregation provide a more detailed look at the data that was collected (Table 7.8).

Each histogram count corresponds to a listener’s average performance, i.e., his
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Experiment Same Correct Different Correct
n.. || Ave 95% CI | m,... | P-Val || Ave 95% CI | n | P-Val

trials

PMV Parker 11 0.69 | 0.61 | 0.78 13 0.001 || 0.64 | 0.57 | 0.71 12 0.003

LMV | Grappelli 10 0.61 | 0.50 | 0.72 8 0.055 || 0.91 | 0.84 | 0.98 7 0.000

LMV Parker 15 0.51 | 0.28 | 0.74 8 0.47 0.44 | 0.23 | 0.64 7 0.72

Table 7.7: Listener Results

or her ability to correctly assess n, ., of sameness (or difference) pairs. The results

als
in Table 7.7 quantify expected listener performance. Our concern is to determine
whether or not listeners can distinguish between same or different pairs with better
than random-guessing performance. In this table, performance is normalized over the
. The Student’s ¢ test is used to calculate P-Values

with respect to the following research hypothesis (Casella and Berger 1990):

total number of subjects (n,,, )

Listeners can identify sameness (or difference) between pairs with better than

50% accuracy.

Those experiments in which this distinction is at least 0.05 significant are highlighted
in bold type. The ‘CI’ field refers to the 95% confidence interval of the estimated

listener performance rate.

Especially for the LMV tests, it would have been better to increase the value
of n, ., in order to ensure that the underlying distribution of the observed listener
11

averages is approximately Gaussian.”~ However, due to the time required to take
the tests, collecting more data would have been impractical. Nonetheless, there
is little doubt that in the LMV Grappelli-based setting, listeners can tell
when the Parker model is being used instead of the Grappelli model. In
this case, the 95% confidence interval for how well users can distinguish between
different models is exceptionally high ([0.84,0.98]). When Parker’s solo calls were
being responded to with Grappelli’s model, distinctions between models were less
obvious. This is a result of the fact that although Parker’s playing preferences (and
learned model) are more “far out,”'? when such playing is mapped onto Grappelli’s
model, the call’s “wildness” is somewhat attenuated. In general, listeners seemed to

have more trouble identifying similar LMV trials than they did identifying dissimilar

1The Student’s ¢ test, which is based on exact sampling theory (Spiegel 1994), alleviates a similar

concern about the size of n_,, ..
12For example, realizing more dissonances and syncopation.
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Same Assessment

Different Assessment

PMV Experiment; Parker Based

average correct

Table 7.8: Listening
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ones. Within a given model “similarity” is still coarsely defined (in part because
of sample size sparsity), which offers one explanation for why dissimilarity is more
easily distinguished in general. For an IMC, this coarseness is beneficial, providing

rich generalizations in situations where the computer must at least appear creative.

Listeners were also able to significantly distinguish between same and different
Parker playing modes, sameness being slightly easier to identify than difference, e.g.,

69% of same (versus 64% of different) correctly identified on average.

With the PMV pair solos shown in (Appendix G.1, the interested reader can
further investigate how generation works. For example, it is instructive to compare
the bars generated between two different and same pairs, constructing histograms for
their CGL features and comparing the shapes of these histograms to the shapes of
their underlying generative component parameters. Through such an analysis, the
richness of the vMn generalization mechanism and its inherent reliance upon sample

size sparsity is further demonstrated.

Some listeners observed that most of their decisions were influenced by intervallic
and directional trends. In particular, rhythmic syncopation and very jagged melodies
were often noted as decisive factors. Some listeners complained that there was no
harmonic background provided for these listening experiments, hypothesizing that
had harmonic knowledge been provided, distinctions between different tonal modes
would have been easier to make. In general, each subjects’ running commentary
during their listening trials was informative (I have recorded these comments in a
log book). While these logs reaffirm my suspicion that such vague listening tests
are difficult to administer and interpret, they also suggest mechanisms for future
improvement. For example, about half the listeners noted LMV pairs were simpler to
assess than PMV pairs. This observation makes sense given that relative distinctions
(e.g., compare two responses to a particular call) are typically easier to make than
absolute distinctions (e.g., determine if two modes are identical or different). However,
because of the length of an LMV trial, only one or two listeners were able to carefully
remember and recall what they had heard within it. As a result, other listeners found

the PMYV trials easier to assess.

Unfortunately, there is likely no procedure that will please all listeners. For exam-
ple, while some complained that last note clamping made assessment difficult because
it diminished the difference between two solos in their minds, others complained that

in one pair the last note “did not fit as well,” making assessment easier. While some
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people were extremely frustrated by the lack of harmonic background, other peo-
ple seemed to enjoy listening to melodies in this less constrained context. What
was most encouraging about these experiments were that in all but two
cases, musicians found the system’s interactive behavior both interesting
and rich, regardless of the bad note or two it would often play. To summa-
rize the general impression musically proficient listeners seemed to have about BoB’s

performance:

Wow....it seems like the system is really trying to respond and interact with the

call. Its definitely a far cry from random behavior...

7.7.5 With Respect to Solo Trading

I will close this chapter by calling attention to the solo trading scores in Appendix H.
These scores outline the live demos that I typically play when giving talks (MIDI files
of these scores will be available on my web page, http://www.cs.cmu.edu/ "bthom,

shortly). Four different solo-trading scenarios are presented:

1. Parker trading solos with BoB trained on Parker;
2. Parker trading solos with BoB trained on Grappelli;
3. Grappelli trading solos with BoB trained on Grappelli;

4. Grappelli trading solos with BoB trained on Parker.

In these scenarios, BoB and the musician trade fours. Four bar calls were taken from
contiguous segments of the musician’s training data (every last bar was replaced by a
rest so that there was a short pause between each call and response). To generate a re-
sponse, BoB would transform this call context as described in Section 6.4.2, producing

three bars of response (and a rest bar) for the next four bars of accompaniment.

Because these demos generate more bars than an LMV trial, audiences typically
have an easier time appreciating the distinction between these different scenarios than
they do distinguishing between pairs in a particular LMV trial. What is interesting
about this observation is that short-term, gut reactions become less important when
listeners collect more data, forming longer-term opinions about what the agent is

doing. In other words, in longer-term interactive contexts, the importance of an

186



agent’s ability to customize itself to a user and respond to various playing modes may
be even more important than the types of listening experiments conducted above
indicate.
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Chapter 8

Related & Future Work /

Limitations

The IMC domain is interdisciplinary and draws on techniques from a wide variety of
fields: real-time systems, artificial intelligence, human-computer-interaction, statis-
tics, music analysis, psychology and cognition, etc. In this chapter, a few related
research projects in interactive computer music systems, melodic representation, and
machine learning are presented. Since related research naturally sets the stage for
considering limitations of this thesis’ approach and motivates directions for future

research, these topics are also presented.

8.1 Real-time Interaction

As a necessary precursor to live interaction, BoB needs rhythmic quantization (RQ).
The whole point is to have musicians play with BoB. This issue is the most
pressing future research item. The difficulties associated with RQ were presented
in Sections 3.1.2 and 3.1.3.

Given its strong probabilistic basis, the RQ technique proposed by Cemgil, Desain,
and Kappen (2000) is a natural choice for integration with BoB. Their approach
is Bayesian, combining a probabilistic code-book that models the likelihood that
particular codes (scores) “explain” a performed onset sequence with a prior that
penalizes “complex” codes more heavily than “simple” ones. This penalty makes the

classification task well-defined because it ensures that more complex scores will not
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necessarily better explain performances. BoB’s requirement for encodable rhythms

can be handled by restricting the contents of the codebook.

An attractive aspect of their model is that its explicit mathematical formula-
tion made it straightforward to tune parameters using perceptual data. (This data
measured musicians transcribing and perform various rhythm scores (Desain, Aarts,
Cemgil, Kappen, and van Thienen 1999).) An open question is how well their model
will work in live improvisations, where higher-level musical context may have a large
impact on a musician’s expressivity. Since BoB can adapt itself to whatever input it

receives, in practice this issue may be irrelevant.

8.2 Musical Expression

An obvious limitation is BoB’s mechanical, unexpressive playback. In addition to
significantly bolstering a system’s believability, expression plays an important part
in communicating higher-level intent (for example, emotional meaning (Bresin and
Friberg 2000)). With the recent strides that have been made in automating musical

expression, integrating BoB with one of these technologies is worth considering.

In Dannenberg and Derenyi (1998), synthesis and low-level performance mod-
els were integrated. Their research focused on standard trumpet-based performance
practices and required less symbolic knowledge than other methods. While integrat-
ing this model into BoB would require some modification (their performance model
was tuned for classical music, required phrasing information, etc.) the endeavor looks

promising.

Another possibility is the Sazexr model (Arcos, de Mantaras, and Serra 1998),
which uses case-based reasoning techniques to find synthesis parameters that are
“appropriate” for expressing a score. Integration with BoB is straightforward in that
Sarer operates upon note sequences in specific harmonic contexts. More difficult
issues remain. For example, Sazer does not run in real-time and the current system
operates upon “expressivizing” an audio signal (versus MIDI). Fortunately, providing
an interface that would allow the system to operate directly with MIDI data is part
of Arcos, de Mantaras, and Serra (1998)’s research agenda. Given that Sazer was
crafted to operated on jazz ballads, the interesting research question is how well their

approach will perform in more general improvised settings.
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8.3 Melodic Representation

There are obvious limitations to BoB’s melodic representation. For example, no effort
has been made to explicitly craft what notes within a segment are most salient. This
task, however, boils down to developing “a really good” melodic representation. As
with any complex human domain, this development requires one to essentially fulfill
the “Al dream.” Nevertheless, the search for better melodic representations lies at

the core of computer music research for:

How do we make sense of what we hear as music? One of the most evident

features of [a] piece is that it has a melody — in some respects it is a melody.
(Cross 1999)

In terms of computational modeling, two often cited sources of inspiration are Nar-
mour (1990) and Lerdahl and Jackendoff (1983), which provide details about how one
might model the effects of rhythm, meter, pitch, melodic contour, etc. As insightful as
these theories are, they are only partially useful for creating a computational melody
model. Ultimately, there are just too many different factors that influence melodic un-
derstanding. For example, with respect to the ““brute’ mechanistic system” proposed

in Narmour (1990), the author cautions:

Let me, however, emphasize as strongly as possible that ... one cannot mech-
anistically apply [...it...] in the explanation and interpretation of melody. For
idiostructural context or style itself always impinges upon [...it]. That is why I

say that [...it...] constitutes a hypothesis: one must not invoke it simplistically.

With these difficulties in mind, extensions which address some of BoB’s representa-

tional shortcomings are proposed.

It is worth investigating how much a “more musical” segmentation scheme would
improve performance. The work of Lerdahl and Jackendoff (1983) introduced a foun-
dation upon which many real-time segmentation algorithms have been constructed
(Rowe 1993; Stammen and Pennycook 1994). Recently, Cambouropoulos (2001) pro-
posed LBDM, a computational model for segmenting melody that is simpler and more
general than other models based on a limited set of rules, e.g., (Lerdahl and Jack-
endoff 1983). A crucial aspect of LBDM is that it can be applied to non-quantized
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performance data.! Since BoB handles the number of events per segment as variable,
its integration with LBDM is straightforward. LBDM'’s functionality would allow
interesting quantitative (e.g., are clusters better separated?) and qualitative (e.g.,

musically, do the clustering partitions make more sense?) questions to be explored.

I also expect that a solo’s quality may dramatically improve if knowledge concern-
ing key notes (like the target notes considered in Toiviainen (1995)) is incorporated
into the generation scheme. Another possibility is to investigate reducing the number
of “really bad notes” that are generated by experimenting with various harmonic and
metrical constraints. When live interaction is in place, a fruitful way to begin im-
proving the system’s melodic representation will be to have as many musicians play
with the system as possible. By carefully analyzing the corpus of interactions that
result, a comprehensive list of “serious errors” can be compiled. This list can then be
used to incrementally address BoB’s melodic shortcomings by: adding new features or
modifying existing features, adding new constraints, either manually or with the help
of additional ML algorithms, etc. Such incremental improvements will also shed light
on other important issues. For example, as constraints are added, more information

about how these constraints impact searchPS’s performance will be obtained.

8.4 Interactive Computer Music Systems

Rowe (1993) observes that “interactive music systems change their behavior in re-
sponse to musical input” — providing a level of companionship to the musician by
definition. Prior work tends to fall into one of two camps (Walker 1997). The first
camp embraces the author-the-aesthetics paradigm, where the composer is the author
of the program, and it is assumed that he or she will set it up to respond “appropri-
ately.” In the second camp, the attempt is to build an aesthetically neutral system
that can be tailored by an end-user. (The Maxz program is a good example of this
approach (Puckette and Zicarelli 1991; Winkler 1998).) With the advent of machine
learning, interactive systems have also begun to employ learning techniques for oper-

ationalizing more autonomous musical aesthetics.

!Even when a system ultimately operates on a transcription, it is reasonable to expect that

segmenting must operate on raw data.
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8.4.1 Roger Dannenberg

Dannenberg’s artistic goal is to have the computer be an extension of his compositions.
Many of his interactive implementations fall into the author-the-aesthetics camp.
Typically, his compositions make real-time performance decisions that adapt to the
nuances of a human performer. Music recognition is either hand-coded and/or trained
using human-supervised learning data. Music generation is generally designed to carry

out the composer’s (rather than the performer’s) goals.

Perhaps BoB’s PC modeling scheme and the scoreless accompanist developed by
Dannenberg and Mont-Reynaud (1987) are most related. The purpose of this system
was to accompany a soloist while they freely improvised over a 12-bar blues (tempo
was not restricted). Before live interaction began, MIDI training data was collected
while the improvisor soloed over a computer-provided blues progression. This data
was used to build a real-time model that could predict at what location in the blues
progression the musician was likely to be soloing over. A highly local view of the
blues was constructed — a different pitch class distribution built for each eighth-note
— and for each eighth-note, a single Multinomial distribution was estimated. It was
noted that a less disperse likelihood function would probably improve performance

and the vMn model provides one mechanism for addressing this issue.

Another motivating piece of work was the improvisational style recognizer devel-
oped by Dannenberg, Thom, and Watson (1997). In this research, improvisations
were broken up into segments and converted into histogram-based features. Improvi-
sations were collected in a supervised fashion: the computer told the musician what
type of improvisation to play next (e.g., bluesy, frantic, etc.) and the musician, mo-
tivated by this suggestion, improvised freely. This data was used to build a classifier
that could distinguish between different improvisational intentions. Since classifica-
tion performance was impressive, the natural next step was to consider using this
technology in a more directed fashion, e.g., to have the computer respond in kind.
This consideration poignantly demonstrated the difficulty in closing such an abstract

learning loop and motivates my interest in melodic generation.

8.4.2 Robert Rowe

Like Dannenberg, Rowe has extensively experimented with creating and performing

with interactive computer music systems. His Cypher system was developed on top of
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a strong musical foundation, providing a variety of meaningful (hand-tuned) feature
detectors that provide classifications about: loud versus soft, high versus low tones,
phrase detection, chord identification, etc. Cypher can operate in both scored and
improvisational settings. The underlying architecture was based on Minsky’s society
of mind ideas (Minsky 1986; Minsky 1981) — individual tasks were handled by rather
simple agents that worked in isolation. In terms of using Cypher, the paradigm is
author-based:

The user’s task is to configure the way in which the player will respond ... ac-

cording to connections made by the user between features and transformations.

Rowe’s sensibilities fit naturally into the IMC domain. A large part of my vision was
spelled out in Rowe (1993):

In developing my own computer musician, I attempt to make human partici-
pation a vital and natural element of the performance situation...[to]...develop
computer musicians that do not just play back music for people, but become
increasingly adept at making new and engaging music with people, at all levels

of technical proficiency.

Implicit in his approach is the pragmatic observation that the audience is be willing
to suspend their disbelief (page 43). In particular, although Rowe finds the task of
building an interactive computer music system daunting because the content of the
representations and the goals are roughly equivalent to human musicianship, this does

not deter him from arguing that:

even a little bit of musicianship can make computer programs engaging partners
for a variety of applications and compelling members of performing and impro-
vising ensembles. In other words, not all musicianship has to be encoded to
make these systems useful, and many incremental improvements are available
to take them beyond the level they have already reached. (Rowe 2000)

8.4.3 David Wessel

Open-ended improvisational experiences are actively sought in Wessel’s computer-
assisted performance settings, which, at their core, embrace an author-the-aesthetics

paradigm, albeit in a more spontaneous fashion. For example, the emphasis in Wessel,
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Wright, and Kahn (1998) was to create technologies for organizing and controlling
the access to rhythmic and timbral material so that human computer musicians could
author meaningful musical experiences to accompany the performance of a classical
Khyal singer on-the-fly. Typically, Wessel’s interaction with live improvisers involves
performing alongside them in a meta fashion, directing their live acoustic or MIDI
data into internal software modules that have been constructed with the explicit
purpose of providing him with a set of controls for modifying the input in some way

so as to create new audio that blends in and enhances the live improvisation.

The most relevant aspect of Wessel’s research is his modeling of music as a stochas-
tic process, using these models for novel generation and/or subsequent modifica-
tion. Statistical constructs have been often used to operationalize his tools. The
Markov chain melodic generational process being developed by Steinsaltz and Wessel

(in progress) is a recent example.

8.4.4 George Lewis

Somewhere in between the two different authoring purposes of Dannenberg and Wessel
sits the research of George Lewis. Lewis’s computer performers are designed to play in
the context of improvised music, the point to infuse a separate, recognizable personality
into its behavior which can participate in musical discourse on an equal footing with
humans. While the composer is responsible for some aspects of his systems’ behaviors
(i.e., setting certain probabilities) other aspects are owned entirely by the systems
themselves (i.e., harmonic and rhythmic input does not react to what the musician
plays) (Rowe 1993).

Lewis describes his Voyager system as quite open-ended, pointing out that the
emergent properties that arise “when playing with the thing” are of primary interest
to him (Casserly 1997; Roads 1985). In this sense, his motivation and purpose in
systems building leans more towards Wessel’s (and my) views than Dannenberg’s.
At the same time, Dannenberg and Lewis, both practicing improvisers, have spent
years hand-crafting their interactive software environments and in this sense, Lewis’s
impact on Al and music is akin to the impact that Harold Cohen has had on AI and

drawing.?

2Cohen created the Aaron drawing program (McCorduck 1991), which can generate astonishingly
humanlike sketches using algorithms that, in their essence, are a life-long attempt to mechanize
Cohen’s artistic notions.
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8.4.5 Other Related Interactive Systems

Improvisation Builder

Walker (1997) proposed Improvisation Builder (IB) in order to break out of the au-
thoring camp. A primary distinction of IB is that it can play jazz with a musician
without relying on any sort of lead sheet. Rather, conversation analysis techniques
were used to infer what IB should do at a given time (to solo or to accompany). As
more sophisticated interaction scenarios are developed, it will make sense to consider

integrating these techniques with BoB.

The Reactive Accompanist

The goal of the reactive accompanist was to provide real-time chordal accompaniment
to a folk melodist playing without a score (Bryson 1992). This research embraced the
subsumption architecture (Brooks 1990), in stark contrast to a symbolic, knowledge-
based approach. Thus it was natural for the system to operate on live acoustic input.
In particular, a neural network was trained on a set of accompaniment examples,
learning to predict what chord should be played given a recent window of acoustic
input. One aspect of this system that, in lieu of its subsumption basis is surprising,
is that it did not handle other important lower-level issues, like what note sequences
should realize specific chord sequences. Although BoB does not operate directly on
live audio, its most basic representation (the VLT) tackles the other analogous low-

level issue, i.e., what notes to play for a specific melodic mode.

GenJam

GenJam is a genetic algorithm-based model of a jazz musician learning to improvise
(Biles 1994). The most relevant aspect of this work is that human listeners’ aesthetic
preferences are used to drive the generation of the next set of improvisations, i.e.,
this system is a concrete example of how one might automatically convert a listener’s
musical sensibility into operational procedures. One reason why I did not try a similar
approach was that it seemed unreasonable to expect IMC users to listen to and rate
many examples. In addition, this data collection procedure necessarily removes the
musician from improvisation’s most fundamental aspect: its physical and spontaneous

creation of melody. While the original system was not interactive, later work GenJam
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was enhanced so that a live musician could, for example, trade fours with it (Biles
1998). Attempts to address the system’s “fitness bottleneck” were also explored (Biles
1995; Biles 1996; Biles 1998).

CHIME

Recently, Franklin (2001) developed CHIME, an agent that learns to trade solos with
a jazz musician in two different phases. CHIME represents melody as a sequence
of pitches and rests with sixteenth-note durations (slurs were used to create longer
notes). In phase one, a recurrent neural network learns how to reproduce three jazz
melodies (taken from saxophonist Sonny Rollins’ transcriptions). In phase two, a
real-valued reinforcement learning algorithm was used in conjunction with a human
performer’s solos to refine the network’s behavior. The reward signal, which Franklin
(2001) constructed by hand, rated the agent’s solos in terms of simple jazz-based
harmonic criteria. This system’s relation to BoB was also described on pages 67, 78,
80, and 157.

8.5 Machine Learning

8.5.1 Clustering

Multinomial-based clustering has not received as much attention in machine learning
as Gaussian-based clustering has (McLachlan and Basford 1988). When algorithms
do cluster Multinomials, they often impose special restrictions on the number of
counts they may contain. For example, in Autoclass (Hanson, Stutz, and Cheeseman
1991), discrete variables are either present or not (i.e., no more than one count per
bin is allowed). In order to use Autoclass with variable-sized histograms, one needs
to break up the counts within a given histogram and model each independently.?
Another common approach is to insist that each bin contains at most one count
(Meila and Heckerman 1998; McLachlan and Basford 1988). During the initial stage
of my research, the clustering algorithms that I found in the literature imposed these
types of restrictions. As a result, I developing vMn. Later on, Multinomial clustering

received more attention (largely because the web made document clustering a hot

3J. Stutz, personal communication, December 1999.
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topic). For example, in Nigam, McCallum, Thrun, and Mitchell (1998), variable-size
labeled and unlabeled histograms were combined into a Multinomial mixture model
for classifying documents. In contrast to vMn, in their model, histogram counts were
explicitly normalized because they felt that longer documents should not be more
heavily considered. More recently, Multinomial clustering has received more attention
in its application to the inference of Markov chains (Thom 2000b; Ramoni, Sebastiani,
and Cohen 2000b; Ramoni, Sebastiani, and Cohen 2000a; Sebastiani, Ramoni, and
Cohen 2000; Smyth 1999; Cadez, Gaffney, and Smyth 2000).

A valuable aspect of using a probabilistic model is that it allows simulated exper-
imentation. In pure machine learning terms, vMn’s application to BoB motives two

directions for future research:

1. How much does the assumption that segments are independent impact learning per-
formance? This issue could be explored by simulating histogram datasets using a
higher-level sequence generator, which allows the correlation between segments to be

controlled and the impact on learning performance to be assessed.

2. What changes when CGL histograms are clustered as an entire unit rather than in
separate PC, INT and DIR models? This question makes sense when one considers
that various bins in PC, INT and DIR might be correlated with one another. While
in the Multinomial, bins are modeled as independent, in terms of classification, they

can still collaborate with one another towards improved discrimination.*

8.5.2 Sequence Learning

Both Feulner and Hornel (1994) and Mozer (1994) used neural networks to learn
melodic structure. Once trained on input melodies, these networks were able to
produce “similar” output melodies. One complaint with these schemes was that their
generated melodies lacked structural coherence (Hornel 1998). An interesting method
for dealing with this was proposed in Hornel (1998): construct networks that operate
over multiple time scales. The basic idea is that melodies are comprised of motives,
within which distinct note-by-note generation schemes will be operative. By breaking
the problem into two separate learning networks, one could expect better predictive

power (and hence better generative power) because the consideration of what happens

“The essential line of reasoning for why this is true is argued in a different context in Smyth
(1999).
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next (the next note, the next motive) is now explicitly organized around a hierarchical
scheme that is likely to be influencing the actual production of melody. Hornel (1998)
demonstrated impressive results for a system trained in this way on the melodies of
Pachelbel. BoB has an analogous set of clusters — preferences for certain tonalities,
intervals and contours. A compelling direction for future research is to perform higher-

level sequence learning on this kind of data (as was described in Section 7.2.1).

This investigation becomes more interesting when one considers that higher-level
sequence prediction is easier when the size of its alphabet (e.g., the number of mo-
tive classes) is small because there are less ways in which to guess the next motive
incorrectly. Similarly, the smaller the number of classes, the less distinction between
melodic segments within a class, which makes the prediction of the next note more
difficult. As demonstrated in (Hornel 1998), there is a complex interaction between
these two affects, and one would expect that at the “right” level of granularity an “op-
timal” model might be obtained. This raises the exciting possibility of unifying into
one algorithm both learning to predict higher-level sequences and learning to cluster
the lower-level sequences that are transformed into these higher-level classes. Such

an algorithm would be of great value in temporal, discrete, unsupervised domains.

In future work, I plan to use a universal compression algorithm (UCA) to learn dis-
crete sequences in BoB. Such an algorithm is ideal because it asymptotically achieves
the best possible compression rate for any source distribution (Lartillot, Dubnov,
Assayag, and Bejerano 2001). This performance is because the learner can build
variable-sized contexts into its prediction algorithm as needed. Clearly, this capabil-
ity is ideal in musical contexts. UCAs have already been used to produce impressive
results when modeling musical structure (Dubnov, Assayag, and El-Yaniv 1998; As-
sayag, Rueda, Laurson, Agon, and Delerue 1998; Lartillot, Dubnov, Assayag, and
Bejerano 2001).
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Chapter 9
Conclusion

In this chapter, the long-term vision that drives this research is recapped and the
scientific contributions made to the the fields of machine learning, intelligent agents,

and interactive music systems are summarized.

9.1 The Vision

In abstract terms, my vision is to develop technologies that allow the computer to
begin participating as a first-class citizen in creative, artistic, collaborative exchanges.
It is of enormous benefit that artistic goals are at least as valuable as purely technical
ones. I firmly believe that good art, when transformed into a computational setting,

will breed good science, but that the converse is not necessarily true.

In concrete terms, the vision of my research is to interactively improvise with the
computer, using it as a tool when practicing alone to capture and experiment with
my all-too-transient spontaneous musical ideas. The penultimate goal would be to

someday produce an artifact that could:

.. answer me halfway through my phrase, bringing me to the point where I can
actually sing what its going to play next, and then, instead of playing that, it’ll

play something against it which compliments what I’'m singing in my head.

This goal is an inherently interactive one. Although IMC technology might be

! The paraphrased musings of drummer Keith Copeland on improvising with jazz pianist Ahmad
Jamal (Berliner 1994).
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amenable to generating stand-alone melodies, this ”brain-in-a-vat” exchange merely
detracts from the main point: to interact with, enhance, and leverage off of the

spontaneous creativity of the musician.

9.2 Contributions

This thesis offers five contributions to the fields of machine learning, intelligent agents,

and interactive music systems.

9.2.1 The Improvisational Music Companion

Chapter 2 introduced and explored the concept of an agent as a spontaneous musical
companion. Of potentially great benefit to AI, this exploration forces one to tackle

the seemingly impossible task of “operationalizing nothing” because:

...mmusic is not about anything in particular...the challenge and potential rewards
for both AI and the broader domain of cognitive science lie in attempting to
reconcile [its] dual aspects: music is humanly universal yet at the same time

appears to be a strangely functionless activity. (Cross 1999)

In tackling this issue in BoB, a new agenda for machine learning and musical intel-
ligence emerged. To oversimplify, less effort was invested engineering specific music
details so that more time could be spent building a completely flexible, adaptive, and

intimate solo-trading model.

9.2.2 The Hierarchical Set of Melodic Views

Chapter 4 introduced a novel melody representation scheme in which solos were seg-
mented per-bar, providing a highly localized view of the melody. Segments were
further decomposed into a set of views that explicitly captured salient aspects of

their rhythm, tonality, and melodic continuity and contour

A major contribution is the representation’s hierarchical, musically meaningful,
multifaceted nature. VLTs are used to build PC, INT, and DIR histograms, which in
turn are used to build CGL feature vectors, which in turn are mapped into user-specific

playing modes, which in turn display certain degrees of musical surprise. While the
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more abstract views ensure that the agent can see “beyond the solo’s immediate
melodic surface,” the highly localized segments provide the flexibility needed to inti-
mately adapt and respond to the musician. Furthermore, this representation’s hierar-
chical and musically meaningful handling of rhythm, tonality, and melodic continuity
and contour is a big part of why, as demonstrated in Chapter 7, BoB’s solo-trading
model is easy to understand, interpret, and (when desired) infuse with higher-level

domain knowledge.

9.2.3 Learning a User’s Playing Modes

In Chapter 5, an EM-based variable-sized mixture of Multinomials was introduced
to cluster a set of histograms. In BoB, this technology is used to learn to perceive a

segment’s tonality and melodic continuity and contour trends in a user-specific way.

With respect to machine learning, the main contribution is this model’s ability
to learn structure when datasets are relatively sparse. Counts within the dataset
become more powerful indicators of model structure because the vMn model explicitly
treats each histograms’ counts as having been generated by a particular underlying
Multinomial component. The music contributions of this model were demonstrated in
Chapter 7. Within the learned components’ parameters and among their perception of
the training data, musically appropriate and powerful musician-specific abstractions
are embedded. For example, the two most probable PC components learned for
Parker’s model have natural Bebop scalar interpretations. This result is impressive
because the learner had no explicit tonal/harmonic knowledge and the training set
was very small.?2 To fully appreciate this result, one must realize that these scales
were defined by musicians after the fact to explain the improvisations that Parker

had a hand in inventing.

9.2.4 Transforming a Solo Call into an Appropriate Response

In itself, user-specific perception does not provide a means by which the computer
can respond to a musician. Another contribution of this thesis is an algorithm that
“closes the learning loop,” reversing the learned mapping from solos to user-specific

playing modes. In chapter 6, this algorithm, in conjunction with another that tweaks

2Containing only 119 histograms, with an average of 7.5 counts in total distributed among a

histogram’s 12 bins.
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a call’s thythmic structure, were introduced, providing the functionality needed to

generate novel user- and context-specific solo responses.

Reversing the user-specific model was accomplished by incorporating the desired
component’s learned parameters into a Markov chain that, when sampled, would
produce pitch sequences that tend to exhibit the desired conglomeration of trends.
Another important aspect of this algorithm is its ability to simultaneously ensure that
a fairly arbitrary set of constraints are maintained, providing a natural mechanism
for including rhythmic, contextual, and/or domain specific considerations later on.
Another crucial aspect concerns real-time efficiency, which was feasible only when
some independence assumptions were made about how to incorporate the learned

mode’s parameters into the generator.

The main contribution of the tree-tweaking algorithm is its hierarchical nature,
providing an ideal basis for reasoning about rhythmic modification. Similarly, the
main contribution of the pitch sequence generator is the ideal basis it provides for
reasoning about a melody’s pitch content. As a result, the algorithm is quite mu-
sically powerful. To cite one example, straight out-of-the-box, this algorithm could
be used to generate a pitch sequence that starts and ends on specific tones and “fills
in the blanks” in such a way that a particular conglomeration of trends emerges.
This approach was demonstrated to successfully reverse learned mappings and main-
tain constraints in a variety of realistic musical settings. The listening experiments
presented in Chapter 7 also indicate that controlling generation on a per-user and

per-mode basis has noticeable impact.

9.2.5 The BoB Solo-Trading Architecture

Chapter 3 introduced an overall architecture where this thesis’ representation, learn-
ing, perception, and generation components were combined to produce BoB, an
agent that trades user- and context-specific solos with a musician in real time (al-
beit presently via simulation). An important aspect of this architecture is that the
user-model is learned offline (automatically configuring itself to about 15 minutes of
warmup data). While real-time online modification of this model is a feasible possibil-
ity, it is unlikely to expect that offline learning can be eliminated altogether.> Online,

it is trivial to perceive user playing modes in real-time. With minimal effort (or a

3Depending on how careful one wants to be in learning the number of components in a user-model,

offline learning can take anywhere from a few minutes to a few days.
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slightly faster computer) the generation algorithm can execute in real-time (currently

about 3 seconds per bar are needed).

9.3 Closing Remarks

Before closing, a few remarks about the call-and-response metaphor that was used
to ground human-computer interaction are in order. It is easy to make an argument
that call-and-response is in essence a toy problem, and taken literally, I agree with
this statement. However, this task has only been used to situate BoB, and from
within this paradigm, much more cooperative modes of interaction can be imagined.
For example, scheduling issues aside, what the computer needs to be able to move
beyond call-and-response is the ability to predict what is coming next. This skill

requires a user-model that can:

e perceive strings-of-notes with some degree of abstraction;

e generate abstract intentions on a note-by-note basis.

Band-OUT-of-a-Box presents a working system that begins to tackle both of these
issues. With such a model in hand, meaningful and interesting applications can

follow.
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Appendix A

Interpreting Pseudo-code

All of the algorithms presented in this thesis are outlined in pseudo-code, presented
with the goal of supporting reimplementation. Pseudo-code is presented in tables
(e.g., Table 5.4), the main body enclosed in a large box, and the function’s name and
argument enclosed again in another. When individual lines need to be identified, they
begin with a number followed by a colon. This number serves as the line’s tag. For

readability, some algorithms are broken up into a set of functions.

The Terminal type font is used to identify functions as well as primitive program-
ming keywords (e.g., for, Argmax, abs, etc.). Functions are defined using pseudo-code

that loosely follows C'++-like conventions. For example:

e Operator ‘++’ increments a variable by one.
e Return values are passed using the return keyword.
e Multiple assignments per line are separated by a ‘;’.

e Function application takes place when the function is followed by an argument list,
(on0)

e When the reference operator, ‘&’, is used, it indicates that an argument is being

passed by reference.

In the main body of a function, mathematical variables follow the same conven-
tions that hold for formulas. As a result, in the following context, if a tuple is returned

by a particular line in function blah:

return(foo, bar),
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and it is assigned via
bash = blah(),

then bash, and foo and bar, might be used interchangeably (and vice versa).

For tree-based functions, an object oriented style of pseudo-code is used. Again,

syntax loosely follows C'++-like conventions. For example:

e class methods are declared with the ‘< class >::< method >’ identifier.

?

e class methods and fields are retrieved from objects using the ‘.’ operator, and when

inside a given method, these fields are accessed using keyword ‘this’.

e the name of a class’s constructor has the same name as its class.

A major simplification is that pseudo-code glosses over low-level memory related
issues and garbage collection is assumed to automatically take care of itself. As a
result, access to an object (or this) always uses the ‘.’ operator. Similarly, construc-
tors are executed as regular function calls (as opposed to using new). When these
constructors receive arguments, it will be clear from context what fields within the

object these are used to initialize.
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Appendix B

Interpreting Music Scores

Musical scores adhere to the following conventions:

1. Bar marker ‘|” identifies where one bar ends and the next begins.

2. Bars are numbered and displayed in the order in which they were played. A small
number at the upper left-hand column of a staff refers to the number of the bar that
begins that staff.

3. During interaction, two staves are used, one for the call’s bars and one for the re-

sponse’s.

4. When text to the left of a staff appears, it indicates who played that staff’s notes
(‘Parker’ or ‘P’ for Parker; ‘Grappelli’ or ‘G’ for Grappelli; ‘Bob’ or ‘B’ for BoB).

5. Harmonic accompaniment chords appear underneath the a stave. Standard chord

notation is used.
6. Section marker ‘|| serves to break up choruses and/or separate calls and responses.

7. When three comma-separated numbers are printed in bold type above and to the
left of a bar, it is the bar’s conglomerative class tag. A bar’s tag indicates to which
user-playing mode that a segment has been assigned. For example, if a bar was tagged
with 1,3,2, then a model’s first PC component, third INT component, and second

DIR component are most likely to have generated it.

The Lilypond program was used to produce BoB’s musical scores (Nienhuys,
Nieuwenhuizen, and Mariano 1999). When BoB converts its tree-based melodic rep-

resentation (Section 4.3) into a Lilypond score, no effort is made to transform it into
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a more succinct Lilypond input. This decision impacts the scores produced in several

ways:

1. Since syncopated rhythms are represented via compound durations, rhythms
are not always printed in their “simplest” form (e.g., bars 50, 109, and 110 in

Parker’s training data).

2. Since leaves do not contain articulation information, slurs are only drawn when

rhythms are syncopated.

3. Pitches are notated without reference to a musical key. Chromatic tones are
notated using »-based notation rather than a #-based equivalent, even when,

diatonically speaking, it is less appropriate to do so.

Although not standard in music notation practice, when Lilypond displays a bar
whose first note is slurred with a previous bar’s identical, but chromatically altered
tone, it assumes that this alteration holds during the entire bar. Thus, for example,
in bar 110 of Parker’s training data (page 223), all of the first sixth eight notes are
Bb.
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Appendix C

VLT Construction

This pseudo-code accompanies Section 4.3. For details concerning pseudo-code nota-

tion, see Appendix A.

The makeVLT function (Table C.1) parses a list of notes, s, attempting to convert
its corresponding list of transcribed durations into a sequence of valid durations. If a
sequence of valid durations exists, then the VLT is completely specified, the function
returns a status of true, and the corresponding VLT is stored in v. Equivalently,
this algorithm returns false, failing to build v, when the transcription specified by
note list s is not encodable. Note object curr is the current event in the transcription
that is attempting to be converted into a valid duration (or set of valid durations).
The valid duration, d, that is currently being considered, is sought for by recursively
calling makeVLT on smaller valid durations until one that can encode at least part of

curr is found.

This code relies on the leaf, int2, and int3 classes (Section 6.2.1). A note class
is also assumed, which stores duration, pitch, and tie information. In addition, it
is assumed that mathematical operations on fractional durations are handled with

perfect precision and that a 4/4 meter and per-bar segmentation scheme is used.

makeVLT is a recursive search algorithm, parsing s from left to right, each call
attempting to use part or all of curr’s duration to construct the next node in wv.
What this algorithm recurses over is the duration of the current internal VLT node,

d, being considered (each recursion follows one of links shown in Figure 4.2).

When doSomething returns true, it means that another node in v was constructed

by either:
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‘ makeVLT(&curr, &s, &v, d) ‘

1:  if isDone(s, curr)

return false

elseif ldoSomething(s, curr,d,v)

3: nawe — Sy CUTT e = CUTTS Upireren = Vnawerigne — ML empty tree
4: ok,,,. = isValid(1,2,d) and makeVLT(curr, .., ,...» Viueres %) and
makeVLT(currhulua7 s]mluc’ vlmlucRiyhf.’ g)
d: Sihira — S5 CUTT oy = CUTTS Vyoirery = Vinivartia = Ysnivamigne — ML empty tree
6: ok,,, = isValid(1,3,d) and makeVLT(curr,, , S, Vyyuress 3) and
makeVLT(currihird7 sihirtl’ vthirrlMitl’ %) and makeVLT(currihirtl7 sthirrl’ Uihirtl]?ighi’ %)
if ok,,, and ok, ,6 and
7 total number of nodes in v, .. and v, ... <
total number of nodes in v, ,;..» Vyiisne A0d U, n0
ok, , = false
end
if Oklmluc
8: 8 = Sy CUTT = CUTT, ;3 U = int2(vlmluchﬁ.7 UImlucRiyht)
return true
elseif ok, ,
9: 8 = Sy CUTT = CUTT ;5 U = int‘?’(vﬂmuuﬁ.v Uoirartia» UthirdRiyht)
return true
else
return false
end
else
10: return true
end
‘ isDone(s, curr) ‘
return s is empty and curr.dur ==
‘ doSomething(&s, & curr, &v, d) ‘
if curr.dur ==
11: v = leaf(curr); curr = pop off first element in s
return true
elseif curr.dur > d
12: v = leaf(curr.pitch,d, curr.tie); curr = note(curr.pitch, curr.dur — d, true)

return true
else
return false

end

Table C.1: The makeVLT Encoable Sequence to VLT Converter
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1. using up all of curr’s duration, in which case the next element of the list is retrieved
(line 11);

2. using up part of curr’s duration, in which case the amount that remains to be placed

in v is reduced (line 12).!

In either case, work has been done and makeVLT exits its current recursion with a

successful status (line 10).

When work is not immediately possible (the block beginning at line 2), the search
for a shorter valid note duration begins, recursively attempting to subdivide by both
two (line 4) and three (line 6). Both splits must be attempted in order to ensure
that Restriction III can be enforced via the size check at line 7. Note that either of
these splits (or their subsequent makeVLT calls) could fail, in which case the search

backtracks to the next viable possibility.

If line 1 is ever called, it means that all of s has been placed in v but more children

are required, hence an unsuccessful status is returned.

The reason that makeVLT only terminates with a false status when s is not encod-
able is because, in the worst-case, it tries every possible combination of subdivisions
before giving up. Backtracking, which undoes the unfruitful recursions that do not
pan out (lines 3, 5, 8, and 9), is the main reason why makeVLT is complex. When

makeVLT returns with a true status, v is guaranteed to be a VLT because:

1. All subdivisions have been recursively tried.
2. isValid ensures that Restrictions I and II are maintained.

3. The size check ensures that Restriction III is maintained.?

Tt is this line of code that ultimately produces compound durations (Section 4.3.4). The key
point is that the last field of the note object, which contains the value of its tie, remains true until

the compound duration is completely inserted into v.
2This statement assumes that a local size check can produce the globally smallest tree.
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Appendix D

Learning Appendix

This appendix accompanies Chapter 5.

D.1 Multinomial Sampling

This pseudo-code accompanies Section 5.7.1.

MnomSample(sz, ) ‘
form=1;m<M;m++

if m==

z, ~ Binom(sz,6 )
elseif m < M
( m—1 0
z, ~ Binom| sz — Z x M7m>
m’'=1 Zm’:m em/

else

M—1
r =8z — E x
m m
m’'=1
end

end

return x

D.2 Multinomial Versus Gaussian Components

A Mnom’s mean, variance, and covariance (Section 5.7.1) can be used to define a

Gaussian distribution. When sz is large enough, this definition provides a good
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approximation to the Mnom distribution. The reason I originally considered such an
approximation scheme for clustering histograms is because Gaussian mixture model
implementations are so common. However, I abandoned this idea for two reasons.
First, the Gaussian approximation becomes less appropriate as sz decreases. Second,

the histogram clustering model should explicitly consider the number of counts.

D.2.1 The Guassian Multinomial Approximation

In Figure D.1, different 2-dimensional Mnom distributions are displayed in order to
provide an indication of how seriously sz affects the quality of the Gaussian approxi-

mation when counts are as sparse as they are in BoB’s representative datasets.

Each plot is a different distribution. The distributions are arranged as follows:

1. each row of distributions uses the same sz value, ranging from one count (top row)

to thirty (bottom row).

2. each column of distributions uses the same probability vector, the left uniformly
distributed, = (0.5,0.5), and the right uneven, 6 = (0.75,0.25).

The Multinomial probability distribution is drawn as a solid line, and the Gaus-
sian approximation is dashed. A single bin is sufficient for displaying 2-dimensional
distributions because, since sz is known, the other bin is completely specified. An
important subtlety is that Mnom is only defined on integer values (marked by aster-
icks). The error between an Mnom and its Gaussian approximation is worse when 6

is less uniform.

D.2.2 Considering Counts

The Gaussian approximation to the Mnom assumes that sz is fixed. One way to
accomodate this assumption would be to normalize the histograms.! Clustering could
then be performed on the probability vectors that result. In BoB, however, it makes
sense to consider those histograms with more counts more heavily. Typically, when a
musician plays a very fast passage of notes, it is easier to identify an underlying scale

because there is more information available upon which to base ones assessment.

'Histogram normalization is often done in text learning, e.g., (Nigam, McCallum, Thrun, and
Mitchell 1998).
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Figure D.1: The Multinomial and Its Gaussian Approximation
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D.3 Quality Assessment

This pseudo-code accompanies Section 5.7.5.

D.3.1 Comparing Solution Partitions

diff compares two specific dataset partitions. Only when one or both of these clus-
terings is based on learning does consistancy relabeling enter into the comparison.
This logic is handled by the doMap variable.

‘ dif£(Y,Y’, doMap) ‘
if doMap
remap Y so that its labels are as consistent with Y as possible

end
numDiff =0
forn=1;n<N;n++

ify, #y,

numDiff + +

end
end
fracDiff = %
return fracDiff

D.3.2 estHardness

‘ estHardness((2) ‘
(X,Y) "% yMn(Q)

Y = classifyVmn(X, ()
hardness = diff(Y,Y,false)

return <hardness, X, Z>
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D.3.3

D.3.4

D.3.5

estCost

estCost ()

n._.
sim

XTr "2 yMn(Q)

QT = learnVmnQ(X T K)

(hardness, XT¢,Y ") = estHardness(1)
YT = classifyVmn(X T, Q")

cost = hardness — diff(Y T,V T true)

return cost

estLearn

estLearn(Q)

(XT y Ty " yMn(Q)

QT = learnVmnQ(X T K)

overFit = U(XT'|Q) - U(XTr|QT)

(X Te Yy Te) "2 yMn(Q)

underGeneralize = U(X T¢|Q) - U(X Te|QTr)

return ( overFit, underG’enemlize>

obsInstabilities

‘ obsInstabilities(X, K) ‘

forn=I;n<n_,;n++
) = learnVmnQ(X, K)
Y = classifyVmn(X, )
end
n=1
forn' =1;n" <n_ ;0" ++
forn” =n"+1;n" <n_ ;0" ++
instabilities, = diff(Y,,Y ,, true)
n+ +
end
end

return instabilities

219




D.3.6

obsFitnesses

‘ obsFitnesses(X, K) ‘

forn=L;n<n_;n++
<ﬁtsn,Q> = learnVmnQ(X, K)
end
n=1
forn' =1l;n" <n_;n ++
forn” =n'"+ 1;n" <n_ ;0" ++
fitDiffs = fits , — fits ,
n+ -+
end
end

translate fitDiffs vector so that its minimum value is 0
return <ﬁt5,ﬁtDi[fs>
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D.4 Musician-Specific Hardness And Instabilities

Curves

These figures accompany Section 5.8.1. For each learning task, the chosen “best”

number of components (Table 5.8) is enclosed in a small circle.
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D.4.2

Stephan Grappelli
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Appendix E

The Charlie Parker Model

This appendix, which accompanies the customized perception of Charlie Parker (Sec-
tion 7.2), lists the improvisations used to train Parker’s model, shows how the model
that was learned segregates these improvisations, and displays graphs that demon-
strate how these models perceive playing modes as a function of underlying harmonic

context.

E.1 Training Data

Training dataset X¥ was created using the music score presented below. This score
was obtained as described in Section 3.2.2. Section markers divide the transcription
into ten 12-bar choruses. All segments except the pickup (bar 1) and the segment
containing no notes (bar 57) were used to construct X%, producing N¥ = 119 data-

points in total.

Each bar’s conglomerative class tag is defined according to the learned models in
Tables 7.1 through 7.3. These tags were assigned after learning took place and were
assigned to all the bars in the score, regardless of whether or not they were included
in X¥. As a result, because bar 57’s histogram contains no counts, its assignment is

based solely on the components’ mixture weights.
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E.2 Segregated Views

In the following subsections, three segregated views of Parker’s training data are
presented. All the bars assigned to PC component one (as defined in Table 7.1) are
presented first, followed by components two through five, followed by the INT and DIR
component models. In other words, the score from Appendix E.1 is rearranged and
presented in three different ways, according to the learned tonal, melodic continuity,
and melodic contour based partitions. Because INT and DIR assignment relies on a

bar’s MRP, in these partitions, each bar’s pickup note is also included.

Per subsection, components are further ordered (from left to right, top to bot-
tom) according to their CGL mapping. For example, in Section E.2.1, the two bars
assigned to conglomerative class y© = (1,1, 1) (i.e., conglomerative class tag ‘1,1,1’)
are listed first, followed by the four bars assigned to y“ = (1,1, 3), and so on. That,
for example, y© = (1,4, 1) appears in the list in isolation indicates that it was the
only bar in Parker’s transcription that was assigned to that conglomerative class.
While some CGL classes account for only a single training bar (and other classes,
like y¥¢ = (1,2, 1), are not shown at all because they do not account for any bars),
separately, each PC, INT, and DIR component accounts for all the bars in a given

section.
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E.2.8 INT Component 3
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E.2.10 DIR Component 1
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E.3 Melodic Continuity in Time

Figure E.1 presents an analogous view for INT component usage that Figure 7.1 did
for PC. Each symbol corresponds to one of the bars in Figure 3.1 and identifies which
component in Table 7.2 that BoB deemed most likely to have generated that bar’s

intervallic content.
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Figure E.1: Parker’s INT Modes and the 12-bar Blues

E.4 Melodic Contour and Harmony

Figure E.2 presents an analogous view for DIR component usage that Figure 7.1 did
for PC. Each symbol corresponds to one of the bars in Figure 3.1 and identifies which
component in Table 7.3 that BoB deemed most likely to have generated that bar’s

directional content.
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Appendix F

Learned Grappelli Model

This appendix, which accompanies the customized perception of Stephan Grappelli
(Section 7.3), lists the improvisations used to train Grappelli’s model, outlines the
parameters that the model learned, shows how the model segregates the training im-
provisations, and displays graphs that demonstrate how these models perceive playing

modes as a function of underlying harmonic context.

F.1 Training Data

Training dataset X ¢ was created using the music score presented below. This score
was obtained as described in Section 3.2.2. Section markers divide the transcription
into four 32-bar choruses. All segments except the pickup (bar 1) and the segments
containing single notes (bars 40 and 74) were used to construct X ¢, producing N¢ =

126 data-points in total.

Each bar’s conglomerative class tag is defined with respect to the learned models
in Tables F.1 through F.3. These tags were assigned after learning took place and
were assigned to all the bars in the score, regardless of whether or not they were
included in X ¢. As a result, because the DIR histograms in bars 40 and 74 contain
no counts, their DIR assignments were based solely on that component whose mixture

weight was largest.

237



I’'ve Found a New Baby I

Grappelli:

238



4,5,2

4,4,1

e £ PE.L.,

4,1,4

4,1,2

) 4’4£??§ H: -
e

2

be 341

)

c7

e, Wighete 2be

et

- 2452 -

e

.p zmibere .

15,2

91 1,1,3
£ 205

G

(2

2
-
B

1,1,2

T—m—t

AT

LLS bepe bl £, T T B

AT

239

vi

et Gl £ 2 e maa e, 2502

2,4,3

3,1,1
c7

c7

7 e

AT
a7

et ,




F.2 Learned Tonality

The four pitch-class components learned for X T are shown in Table F.1. Organiza-
tion of this table is analogous to Table 7.1. For a listing of how this model partitioned

each of Grappelli’s transcribed bars, see Appendix F.5.1 through F.5.4.

‘ Symbol ‘ Pitch-Class Probabilities H Size ‘ m H Associated Scale

m | }m W 33 | 26.2% | .292 F Major scale

a |- ﬂ ﬂ ﬁ_I_l1 35 | 27.8% | .253 D Minor triad

f t of th
O |3 Jﬂ mj 24 | 19.0% | .185 FABIIEIT OF the
F Major scale

o 4 34 | 27.0% | .270 D Harmonic Minor scale
Jﬂ [ 18

| M a single mixture (for comparison)

Table F.1: Grappelli’s Learned PC Components

F.3 Learned Melodic Continuity

The five intervallic components learned for X @' are shown in Table F.2. Organization
of this table is analogous to Table 7.2. For a listing of how this model partitioned
each of Grappelli’s transcribed bars, see Appendix F.5.5 through F.5.9.
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Symbol ‘ Intervallic Probabilities H Size ‘ T H Meaning
o3 relatively continuous melodies,
W | rm 60 | 47.6% | 438 vy
. syncopation and repeated tones
o somewhat continuous,
8 |2 7 5.6% | 0.054 occasionally jagged or
H gg
syncopated melodies
mostly jagged melodies,
O |3 L H 6 | 4.8% | .049 Y Jags
1] syncopated or repeated tones
- 4|l m 24 | 19.0% | 213 relatively irregular, syncopated
melodies
027 very continuous melodies, rarely
o |5 m 29 | 23.0% | .246 ,
syncopation or a repeated tone
FWT_L a single mixture (for comparison)
7

Table F.2: Grappelli’'s Learned INT Components
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F.4 Learned Melodic Contour

The four directional components learned for X P are shown in Table F.3. Organiza-
tion of this table is analogous to Table 7.3. For a listing of how this model partitioned

each of Grappelli’s transcribed bars, see Appendix F.5.10 through F.5.13.

‘ Symbol ‘ Directional Probabilties H Size ‘ ™ H Meaning ‘

very syncopated/repeated tone
melodies, rarely an obvious

0.31
m | m 32 | 25.4% | .236 direction trend, but for an

occassional downards/upwards

string

0.38
= | a7 | 37.3% | 372 mostly longer downwards strings
O separated by upwards steps
0.45 mostly longer upwards strings
d by syncopation
O |3 22 | 17.5% | .173 separated by syncopation,
’ repeated tones, or a short

downwards string

relatively long downards strings

mo| 4] % ﬂ_*—’—'_'_‘ 25 | 19.8% | .219 separated by
1

syncopation /repeated tones

0.20
m a single mixture (for comparsion)

Table F.3: Grappelli’s Learned DIR, Components

F.5 Segregated Views

In the following subsections, three segregated views of Grappelli’s training data are
presented. With the exception that now conglomerative class tags refer to Tables F.1

through F.3, the organization of this section is analogous to Appendix E.2.
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F.5.6 INT Component 2
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F.5.10 DIR Component 1
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F.5.13 DIR Component 4

F.6 Tonality in Time

Figure F.1 presents an analogous view for Grappelli’s PC component usage that
Figure 7.1 did for Parker’s. However, in this case, each symbol corresponds to one of
the bars in Grappelli’s four 32-bar AABA choruses rather than to one of the bars in
Figure 3.1. Each symbol is defined in Table F.1.

SRCCR 0 O W
Ot T T o
NURERNR o NRCHN oo Do o[ NRNE
ARl o A RN NN RRBOR e

2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

chorus

Figure F.1: Grappelli’s PC Modes and the 32-bar AABA Form
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F.7 Melodic Continuity in Time

Figure F.2 presents an analogous view for Grappelli’s INT components that Figure F.1

did for his PC components. Each symbol’s meaning is defined in Table F.2.

d O (e oo
| IEEeE B oo | o an mn
QEREEN N R o HRNRER el el
olRRLL] ||| L) LR ERT || DL

1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

chorus
N [

w

N

Figure F.2: Grappelli’s INT Modes and the 32-bar AABA Form

F.8 Melodic Contour in Time

Figure F.3 presents an analogous view for Grappelli’s DIR components that Figure F.1

did for his PC components. Each symbol’s meaning is defined in Table F.3.

o0 LUNCED T Tl
WV B8 ol @ BN NEEE NNROENe
WA B0 NNERE WA S ANENREN

MO BN LN L SR CE

1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

chorus

Figure F.3: Grappelli’s DIR Modes and the 32-bar AABA Form
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Appendix G

Listener Tests

This appendix lists the solos that were generated by BoB for the listening experiments
(Section 7.7).

G.1 Parker Mode Variation Pairs

For each listening trial, a pair of call contexts was created as follows:

e Select Rhythm: randomly sample a rhythm VLT from the following set of training
bars: { 7,15,27,42/48 } .

e Select Modes: randomly sample a pair of modes from the set:

{{(21,1),(1,2,2)), ((4,2,2),(1,4,3)), (2,1,3),(1,4,2)) }.

e Select Trial: randomly sample whether or not the calls should have the same or

different modes.

e Generate: the following generation setup was used to generate each solo: @ = o' =

0; ¢ =1; n,,. =20; p,... =i,. = 15. In addition, Parker’s absolute pitch range

values were used.

For a given trial, each calls’ rhythms, MRPs, and last clamps were identical.
Rhythm and MRP were defined by the training bar obtained in the select rhythm
step. The last clamp came from the MRP of the subsequent training bar. The mode

of r was always the first element in the pair sampled in the select mode step. When
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the second solo was to be different, the mode of r' was the second element. The

remaining subtly concerned what to do with each call’s surprise. Since no call was

presented to the listener, and since the goal was to determine if different and same
modes could be distinguished, each mode’s likelihood was set to zero (the “best” solo
was the most expected one). This decision had the added benefit of reducing some

of the randomness in these experiments, as did the decision to employ last clamping

and hold rhythm modification constant.

Trial 1: rhythm bar 7; different
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Trial 7: rhythm bar 7; same
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Trial 9: rhythm bar 42; different
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Trial 10: rhythm bar 42; different
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Trial 19: rhythm bar 15; same Trial 20: rhythm bar 42; same
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.2 Learn Variation Pairs

For each listening trial, a pair of call contexts was created as follows:

e Select Call: randomly determine the start and end of the call context by sampling
a tuple from a specific range of training bars. In particular, when the experiment was

Grappelli based, select from the following range of bars:
{(34, 36), (92, 95), (119, 122>}.
When the experiment was Parker based, select from the following range:
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{(25, 27), (42, 44), (74, 76), (106, 108) }

e Select Trial: randomly sample whether or not the same or different learned models
should be used.

e Generate: the following generation setup was used to generate each solo: @ = o' =

0; " =1; n = 20; p,... =1,,. = 15. The training data for the musician in the

walks

select call step was used to determine the absolute pitch range values.

For a given trial, each response used the same call solo, and this solo ranged over
those bars in the training set defined by the select call step. Thus, for example, if the
start bar was 34, the call would include what Grappelli played in bars 34 through 36,
including each bars’” VLTs, MRPs, and last clamps. The learned model for response
r was always the musician in the select call step. What varied between trials was
whether or not the same (or different) learned model was used to perceive the call’s

goal (surprise and mode) and generate the “in kind” response for context r'.
G.2.1 Grappelli Based

Trial 1: rhythm bars 34 to 36; different
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Trial 3: rhythm bars 119 to 122; same

Trial 4: rhythm bars 34 to 36; same
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Trial 8: rhythm bars 92 to 95; same
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Trial 13: rhythm bars 34 to 36; different
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rhythm bars 42 to 44; same
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rhythm bars 106 to 108; same
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rhythm bars 74 to 76; same
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Appendix H

Trading Solos

This appendix accompanies Section 7.7.5.

Four scores are transcribed below:

Figure H.1: Parker trading solos with BoB trained on Parker;

Figure H.2: Parker trading solos with BoB trained on Grappells;

Figure H.3: Grappelli trading solos with BoB trained on Grappellz;

e Figure H.4: Grappelli trading solos with BoB trained on Parker.

The bold font identifies which training set the calls are taken from and the bold
ttalicized font identifies which training set the model has been trained on. The

following setup was used to generate solos:

=50; p =12.

incr Zincr

Furthermore, the call musician’s absolute pitch range values were used and last clamp-
ing is not enabled. There is about a one-third chance that a particular fringe node
will be modified.
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Figure H.1: Parker and BoB Trained on Parker
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Figure H.2: Parker and BoB Trained on Grappelli
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Figure H.3: Grappelli and BoB Trained on Grappelli
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Figure H.4: Grappelli and BoB Trained on Parker
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