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Introduction

My long-term goal is to interactively improvise with the
computer, using it as a tool when I practice at home alone
in order to help me capture and experiment with my own
spontaneous musical ideas. Towards this end, I am building
Band-OUT-of-a-Box (BoB), a software system that inter-
acts with a live, improvising (monophonic) musician in the
jazz/blues setting. My goal is for BoB to provide personal-
ized improvisational companionship to a specific musician,
trading “musically-appropriate” short improvised solos on
top of a fixed harmonic background. Spontaneity and per-
sonalization make itcrucial that the system automatically
configures itself,learning its aesthetic musical sense from
its user’s improvisational example. As such, my focus is
on developing techniques that enable BoB to perceive and
generate solos in a musically-appropriate, musician-specific
manner. Here I will focus on the perceptual part, which pro-
vides the abstraction needed to guide the musically-intentful
generation discussed in (Thom 2000b).

In addition to providing a novel and interesting test-
bed for synthesizing machine learning (ML) and computer-
music techniques, I claim that a subtle change in empha-
sis occurs when focusing on personalized improvisational
companionship. This shift is important because it urges
us to rethink some of the basic ways we have tradition-
ally applied ML techniques to “music-understanding” (MU)
tasks, namely the analysis and algorithmic composition of
melody. My intent here is to convince you that this claim
is reasonable by illustrating the elusive nature of this do-
main, which motivates the need for a new ML/MU-based
approach. My experience developing techniques for imple-
menting musically-appropriate perception in BoB are then
described, followed by some concrete examples that demon-
strate how this new approach perceives Bebop saxophonist
Charlie Parker.
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Personalized Improvisational
Companionship

With personalized improvisational companionship, success
depends upon the system’s ability to get to know you and
your current musical mood, using this knowledge to listen,
interact, and adapt to you in the musical conversation that is
evolving. As noted by drummer Keith Copeland, in the ideal
interaction:

I can answer him halfway through his phrase [...] He’ll
bring you to the point where you can actually sing
what he’s going to play next, and then, instead of play-
ing that, he’ll play something against it which com-
plements what you’re singing in your head. (Berliner
1994)

In pursuing this goal on the computer, the observations
of practicing improvisors compel my thinking and beg to be
addressed. Below is a brief sketch; the reader is left to draw
their own conclusions.

1. As guitarist and experimental improvisor Derek Bailey
notes: “There is no general widely held theory of improvi-
sation and I would have thought it self-evident that impro-
visation has no existence outside of its practice” (Bailey
1992). Thus, musical specificity, in contrast to musical
generality, is imperative.

2. Notes jazz saxophonist Steve Lacy: “The difference be-
tween composition and improvisation is that in composi-
tion you have all the time you want to decide what to say
in fifteen seconds, while in improvisation you have fifteen
seconds.” This statement, while obvious, takes on a new
meaning when rephrased — since improvisation is not
composed, what does it mean toauthorit? Because many
interactive computer music systems ultimately expect the
composer/musician/programmer to configure them with
an appropriate musical aesthetic (e.g., (Rowe 1993) (Dan-
nenberg 1993)), those approaches are less useful here.

3. It is glaringly obvious that one cannot expect the improvi-
sor tooperationalize(i.e., write a computer algorithm that
does) what they do. For example, consider Jazzist Ron-
nie Scott’s frustratingly vague cognitive construction of
his musical personality: “I would like ideally to express
my, I don’t know, personality or whatever, musically, to



the limits of my ability. [... to...] play in such a way
that it would be recognizable as me, and it would express
something to people about the way I feel about things”
(Bailey 1992). Bailey cuts to the chase: “... the impro-
visors I spoke to, in almost all cases, did not find any
sort of technical description adequate. It wasn’t that they
weren’t interested in technical matters. They just did not
find them suitable for illuminating improvisation. They
finally chose to describe it in so-called ‘abstract’ terms.
And it became clear that, whatever its deficiencies, this is
the best method available” (Bailey 1992).

In spite of the computational difficulties these observations
raise, an assumption commonly made in the the arts-and-
entertainment community, as exemplified by work in believ-
able agents (Mateas 1999), gives one hope (Thom 2000a).
We can assume the musician — provided a modicum of
musical competence and adaptation — is willing to “sus-
pend their disbelief” that the computer is simply “a stupid
computer.” This observation certainly applies when I use
the non-interactivecommercial accompaniment program,
Band-in-a-Box(PGMusic 1999).

Musically Appropriate
Perception

In the context of BoB, I define musically-appropriate per-
ception to be:

the transformation of a given bar of a solo (lick, phrase,
motive, ...)1 into one of a finite number of classes (com-
ponents, clusters, etc.).

In other words, perceptionisclustering, where the goal is for
each class to reflect one of the musician’s different playing-
modes (bag-of-licks, moods, aesthetic affects, etc.).

In addition to classifying solos, I require that musically-
appropriate perception:

1. Is based on a probabilistic model. As McLaughlin
warns, ad hoc clustering functions,2 lacking a statistical
basis, are not a priori believable (McLachlan & Basford
1988). Probabilistic models also provide important mu-
sical skills: perception and per-class generation of novel
samples, and a metric for musical surprise (how unlikely
is a sample?).

2. Is circular. Define the musical meaning (class) of a solo
in terms of what themusiciandoes (rather than in terms
of what some theory purports).

3. Accommodates musical common-sense.Provide access
to details regarding things that humans perceive as inap-
propriate when violated (melodies should contain a local
tonal sense, not jump around too much, etc.).

4. Defines similarity in terms of average local trends(ver-
sus individual notes). Avoid building in predefined biases

1The syntax “x (y,z,...)” indicates that where “x” is used, one
could equally well use “y” or “z”.

2For example, methods using “edit-based” similarity heuristics,
e.g.,(Rolland & Ganascia 1996) (H¨ornel & Ragg 1996).

concerning what pitch-classes (intervals, etc.) are more
“alike” — let the solos themselves determine such things.

Because we do not know which solos belong to what
classes (or even how many modes-of-playing the musician
has), to learn this classification functionfrom the musician’s
improvised examplesis anunsupervised learningproblem.
The goal is not to “best predict some target function” but
to “best explain the musical features that are contained in
the examples,” letting the solos determine what is “similar.”
Because this learning scenario is musician-specific, circu-
larity is given. What remains is for the classifier to inter-
nalize common-sense musical features, which is representa-
tion dependent. With an adequate representation, I believe
that the perception that emerges from this definition will be
within the musician’s own context and, with respect to them,
musically-appropriate.

Machine Learning and Music
Understanding

Because we transcribe and analyze music in symbolic terms,
it seems natural to use knowledge-based methods to solve
“music-understanding” (MU) based tasks (namely, melodic
analysis and algorithmic composition). However,creating
melody, as simple an act as improvised humming, is funda-
mental — as much about the “ingenious” use of exceptions
as rules (Loy 1991) (Papadopoulos & Wiggins 1999). How
does one engineer this creativity in situations where the im-
mediate, unknown environment determines what is appro-
priate? ML-techniquesinfer musical knowledge about the
world from a set of examples (training set), offering an alter-
native to human-engineered approaches. However, machine
learning is not a panacea: the performance obtained depends
entirely upon the representation and the learning algorithm.

Typical ML/MU-based systems rely on one or more of
the following scenarios:

1. Supervised learning is used, the concept (class) to be
learned explicitly provided in the training set (e.g., (Dan-
nenberg, Thom, & Watson 1997) (Biles 1994)). Often su-
pervised learning applies because musical sequences are
recast asprediction problems.For example: predict the
next note (or few notes) given some context (history) (e.g.,
(H. Hild & Menzel 1991) (Feulner & H¨ornel 1994) (Thom
1995) (Widmer 1996) (Reis 1999)).

2. Base learning on a large musical corpus (sets of jazz
tunes, J.S. Bach chorales, etc.); of the citations in Item 1,
only (Dannenberg, Thom, & Watson 1997) and (Biles
1994) avoid this.

3. Explicitly build higher-level features into the representa-
tion. For instance, (Feulner & H¨ornel 1994), (H¨ornel &
Menzel 1998), and (Rolland & Ganascia 1996) describe
features related to scalar/harmonic functionality.

Unfortunately, I do not believe these approaches map to un-
derstanding a particular improvisor in a particular situation
at a particular moment.



Consider Item 1. Suppose we tried to learn a map-
ping from bar-of-notes into pitch-class-of-the-next-note-to-
be-played.
During training, what cost3 should we assign to predictions
that do not match their target values in the training set? Typ-
ically, zero-one cost (sum-of-squared-errors) is used, which
treats all pitch-class values except the target value as equally
wrong. However, improvisors will sensibly tell you that the
appropriateness of a note is not all-or-nothing and depends
on many things: the notes preceding/following it; the har-
monic and melodic context; the evolving trends in musical
surprise; etc. As discussed in (H¨ornel & Menzel 1998), we
can address this problem with a probabilistic model: penal-
ize according to how confidently the classifier misclassifies
an example (cross-entropy-error (Bishop 1995)). Although
mistakes are not all-or-nothing, we are still modelling the
isolatednext note as entirely dependent upon the previous
bar, while melodic improvisors tend to think in terms oflo-
calized chunks(licks, phrases, motives, ...).

Ultimately, this line of thinking leads me to question the
suitability of using strings-of-notes-based prediction to sim-
ulate the creative behavior required in personalized impro-
visational companionship. With interactive improvisation,
the goal is to “listen to me, but not to play my stuff back
at me”4 — to do something a little bit different, which can
range from transforming a situation into something unex-
pected to bringing it back to the norm. Novelty, outliers,
and average behaviors are equally important, yet prediction-
based paradigms explicitly attempt to memorize their train-
ing sequences, and failing that, estimate sequences that
best describe the data’s average sequential behavior. While
all learning schemes attempt to balance generalization and
memorization needs, I fear that “predicting-the-next-thing”
contains a more myopic, anti-creative bias than a less rigid
approach might.

Now consider Item 2. The main reason to train with a
larger corpus is to minimize the chance of over-fitting, which
results when there is not enough data upon which to base
inference.5 While this approach has been useful in learn-
ing to predict if something is in the style of so-and-so (e.g.,
J.S. Bach (H¨ornel & Menzel 1998)), it is inappropriate here.
What “corpus” should we use? Seasoned improvisors re-
port that musicians play very differently at different times
— What did they eat for dinner? Who are they listening to
these days? etc. The only thing that makes sense to train
upon is the user’srecentimprovisations, obtained via a pre-
liminary “warmup” session (as was done in (Dannenberg,
Thom, & Watson 1997)). While this training set captures the
musician’s current state-of-mind, its size is limited. Never-
theless, when context is properly localized, improvement in
harmonic understanding has been reported (e.g., training on
a single song (Thom 1995) (Widmer 1996)); it is reasonable
to expect similar results with melodic improvisation.

3Learning algorithms minimize cost; this directly effects infer-
ence.

4Jazzist John McNeil (Berliner 1994).
5Rather than generalizing, algorithms with too little data tend

to memorize their training sets.

Finally, consider Item 3. A system’s ability to generalize
is often improved by including pertinent higher-level fea-
tures, because the system no longer needs to learn them.
When these features rely on an “expert” human, as in the
case of determining what chords were played during a par-
ticular jazz solo, I question their usefulness in this domain.
Consider (Hörnel et al. 1999), notable in its attempt to
standardize the evaluation of two different improvisational
learning systems. While the improvised skills that were
learned are impressive, each system knew what chords were
transcribed, a non-trivial task given that: chord substitutions
abound; roots are often missing; color-tones are common;
etc. Add to this the fact that transcriptions are often inac-
curate, and, as one seasoned improvisor said with respect to
the chords in Parker’sOmnibook, “we always used to change
those.”

Band-OUT-of-a-Box: a New
Approach

A common thread in these ML critiques concerns what it
means togeneralizewhencreatingan improvised solo. For
example, in BoB, an ideal solo response generator should be
able to:

� Identify some trend in several “related” musical frag-
ments (approach memorization: use few datapoints).

� Extend this “trend” in some novel way (generalizing, but
not really, because the data may not support such a leap).

To my knowledge, current ML/MU approaches do not pro-
vide this type of flexibility or functionality. To address
this shortcoming, I propose to learn perception via anex-
plicit probabilistic model, one that infers itsownnotions of
similarity by converting trajectories of individual notes into
explicit (but trivially calculable) higher-level features that
summarize various viewpoints of a melody’s local surface
structure.

As detailed in (Thom 1999), BoB’s novel perception
scheme proceeds as follows. For eachbar:

1. Convert the bar of a solo into a tree.The tree’s internal
structure encodes rhythm; an in-order walk of the leaves
encodes the pitch-sequence. While this tree is suitable
for encoding rhythm — it makes sense to create a novel,
yet similar, rhythm by growing and/or collapsing various
parts of a tree — the encoding of pitch is nothing more
than a glorified string-of-notes, which motivates the need
for the next item below.

2. Calculate summary views of the pitch-sequence.
Namely, three histograms are calculated, recording the us-
age of pitch-classes, intervals, and changes in directional
motion.

3. Determine to which class each histogram is most likely
to belong and then assign it to the most likely one.
There is a separate clustering scheme for pitch-class, in-
tervals, and direction; a bar’s overall perception is thus the
combinationof all three clusterings.



Examples From Cluster I

Examples From Cluster II

Examples From Cluster III

Table 1: Examples from Charlie Parker’sMohawk

Because BoB’s probabilisticclustering model is learned, this
last step provides musician-specific abstraction (generaliza-
tion). Specifically, BoB’s training procedure involves:

1. Calculating the histograms of the musician’s “warmup”
session (training set).

2. For each histogram type, using a probabilistic mixture-
of-multinomials model (Thom 2000c) to cluster themac-
cording to their tendencies to prefer certain histogram-
bins.

In this scheme, learning amounts to:

� Inferring the parameters ofC different discrete probabil-
ity distributions (C playing-modes).

� Classifying the histograms according to how likely they
were to have been generated by a particular mode’s distri-
bution.

The parametric inference bullet is most important because
it enables BoB to quantify musical surprise (likelihood es-
timation), and generate novel per-cluster samples (abstract-
driven generation).

In this learning scheme, complexity is minimized because
many parameters are assumed to be independent, e.g., pitch-
classes and intervals are not correlated; histogram bin-values
are treated nominally; etc. Furthermore, because learning
is based upon an explicit probabilistic model — versus a
black-box style approach (e.g. neural nets) — it is reason-
able to assume that training will be more efficient (both data
and computation-wise), and that the model will be easier
to understand.6 This model also facilitates the application
of musically reasonable priors (Thom 2000c), a technique

6And easier to extend with online adaptation.

which combats over-fitting. Finally, by using these multiple
views of melodic structure, we embed a level of temporal
knowledge into the representation, which is needed in or-
der to generate musically sensibletemporalpitch-sequences
from these histogram-based clusters (Thom 2000b).

This method of perception, when applied to Char-
lie Parker’sMohawk improvisations, produces impressive
musician-specific abstractions (Thom 1999) (Thom 2000c).
For example, the pitch-class clusterings imply musically
reasonable scale usage. Four different examples from three
different inferred clusters are shown in Table 1 in order to
demonstrate the types of generalizations that emerge. Ana-
lyzing Cluster I’s parameters reveals a preference for pitch-
classes in the B[-Major-Bop scale, intervals in the m2 to m3
range (with an occasional P4, P5, m6, or M6), and runs
of upwards/downwards motion (upwards being more com-
mon). While the most likely pitches are B[ and E[, the
smaller G[ probability (the scale’s m6) has high discriminat-
ing power. Similarly, Cluster II corresponds to the E[-Bop7
scale, the same set of intervals, and runs such that down-
wards motion is more common; the most likely pitches are
B[ and C; the smaller A[ is distinctive. Cluster III corre-
sponds to the E[-Major scale, prefers the unison-interval7

and intervals in the m3 to P4 range (the lack of m2 is distinc-
tive). In Cluster III, the amount of upwards/downwards mo-
tion ensures that long runs are uncommon; the most likely
pitches are D and F.

Listening to these examples is most impressive. While in
some ways they are quite different (especially with respect

7Trees are constructed so that syncopated rhythms contain
unison-intervals.



to “edit-based” heuristics), in other ways they just seem to
fit together (which is not surprising given BoB’s multiple-
viewed representation scheme). When experimenting with
concatenating bars from the different clusters together, I
found it encouraging how easily they tend to combine —
one could almost use them as distinct outcomes in Mozart’s
dice-rolling compositional games.

It is important to understand the role that histogram-
sparsity plays in BoB’s generalizations. For example, part
of what allows these examples to look “quite different,” yet
“belong to the same cluster,” is that histogram dimensions
are relatively large when compared to their sample-size (e.g.,
12 pitch-class values versus� 12:2 notes-per-bar!). In short,
we cannot expect a particular histogram to contain enough
information by itself to unequivocally determine its genera-
tive parameters; that per-class examples will prefer different
important (i.e., highly probable) bin values, and hence look
fairly different, is the result. To state this another way, con-
sider the possibility that part of what makes a musician’s
response appear “creative” is the fact that, when they are us-
ing one of their modes, they only reveal certain parts of its
essence in a localized context.

I have already outlined some of the ways in which BoB’s
approach deviates from other ML/MU approaches. How-
ever, it is also important to mention the common ground
that is shared. For example, as discussed in (H¨ornel et al.
1999) (Hörnel & Menzel 1998) and (H¨othker 1999), lack of
“motivation” in computer-generated music has led to a fo-
cus on building hierarchical music models, so that more ab-
stract levels can guide global structure while lower levels can
generate specific note-strings. Although I only have space
to briefly mention this aspect of BoB’s design, its per-bar
perception does provide the functionality needed for such a
hierarchy by providing crucial musical skills: 1) abstract-
driven per-bar solo generation; 2) the ability to reason at
multiple time scales, 3) the ability to predict abstract tempo-
ral trends; etc.

Conclusion

In this paper I have introduced the domain of personalized
improvisational companionship, identifying ways in which
this task urges us to seek out new machine learning music-
understanding paradigms. Broadly, I have focused on: 1) us-
ing unsupervised learning methods that are based upon prob-
abilistic models so that the data can affect what is simi-
lar with respect to its discrete music features; 2) combin-
ing multiple viewpoints of melodic surface, looking at lo-
cal averages rather than strings-of-notes; and 3) inferring
musically useful abstractions from smaller (more localized,
situation-specific) training sets. I have also presented Band-
OUT-of-a-Box (BoB), a system in which these ideas are be-
ing implemented, along with concrete examples that demon-
strate the power and subtlety of this approach in perceiving
Charlie Parker’sMohawksolos.
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