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Random Sampling of States in Dynamic Programming

Christopher G. Atkeson and Benjamin J. Stephens

Abstract—We combine three threads of research on approxi-
mate dynamic programming: sparse random sampling of states,
value function and policy approximation using local models, and
using local trajectory optimizers to globally optimize a policy and
associated value function. Our focus is on finding steady-state poli-
cies for deterministic time-invariant discrete time control prob-
lems with continuous states and actions often found in robotics.
In this paper, we describe our approach and provide initial results
on several simulated robotics problems.

Index Terms—Dynamic programming, optimal control, random
sampling.

I. INTRODUCTION

YNAMIC programming provides a way to find globally

optimal control laws (policies) u = u(x), which give the
appropriate action u for any state x [1], [2]. Dynamic program-
ming takes as input a one-step cost (a.k.a. “reward” or “loss”)
function and the dynamics of the problem to be optimized.
This paper focuses on the offline planning of nonlinear control
laws for control problems with continuous states and actions,
deterministic time-invariant discrete time dynamics Xp41 =
f(xx,uy), and a time-invariant one-step cost function L(x, u).
We are focusing on steady-state policies and, thus, an infinite
time horizon. We assume that we know the dynamics and one-
step cost function and have accurate state estimates. Future
work will address simultaneously learning a dynamic model,
finding a robust policy, and performing state estimation with an
erroneous partially learned model [3]—[5].

One approach to dynamic programming is to approximate the
value function V' (x) (the optimal total future cost from each
state V' (x) = miny, Y, L(xk, ui)) by repeatedly solving
the Bellman equation V' (x) = miny, (L(x,u) + V(f(x,u))) at
sampled states x until the value function estimates have con-
verged to globally optimal values [1], [2]. We explore the ap-
proximation of the value function and policy using many local
models rather than using tables or global parametric models.

A. Example Problem

We use one-link pendulum swingup as an example problem
to provide the reader with a visualizable example of a value
function and policy. In one-link pendulum swingup, a motor at
the base of the pendulum swings a rigid arm from the down-
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Fig. 1. Configurations from the simulated one-link pendulum swingup opti-
mal trajectory every half second and at the end of the trajectory.
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Fig. 2. Value function and policy for a one-link pendulum swingup. The
optimal trajectory is shown as a yellow line in the value function plot and as
a black line with a yellow border in the policy plot. The value function is cut
off above 20 so we can see the details of the part of the value function that
determines the optimal trajectory. The goal is at the state (0, 0).

ward stable equilibrium to the upright unstable equilibrium and
balances the arm there (Fig. 1). What makes this challenging is
that the one-step cost function penalizes the amount of torque
used and the deviation of the current position from the goal. The
controller must try to minimize the total cost of the trajectory.
The one-step cost function for this example is a weighted sum
of the squared position errors (f: difference between current
angle and the goal angle) and the squared torques 7 : L(x,u) =
0.160T + 72T, where 0.1 weights the position error relative
to the torque penalty and 7T is the time step of the simulation
(0.01 s). There are no costs associated with the joint velocity.
The uniform density link has a mass of 1 kg, length of 1 m, and
width of 0.1 m. Fig. 2 shows the value function and policy.

One important thread of our research on approximate dy-
namic programming is developing value function representa-
tions that adapt to the problem being solved and extend the
range of problems that can be solved with a reasonable amount
of memory and time. Random sampling of states has been
proposed by a number of researchers. In our case, we add new
randomly selected states as we solve the problem, allowing the
“grid” that results to reflect the local complexity of the value
function as we generate it.

Another important thread in this paper is developing ways
for grids or random samples to be as sparse as possible. One
technique that we apply here is to represent full trajectories
from each sampled state to the goal and to refine each trajectory
using local trajectory optimization [6]. One key aspect of the
local trajectory optimizer that we use is that it provides a
local quadratic model of the value function and a local linear
model of the policy at the sampled state. These local mod-
els help our function approximators handle sparsely sampled
states. To obtain globally optimal solutions, we incorporate
the exchange of information between nonneighboring sampled
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Fig. 3. (Left) example of a local approximation of a 1-D value function using
three quadratic models. (Right) (dots) random states used to plan one-link
swingup superimposed on a contour map of the value function. (Black lines)
optimized trajectories are shown starting from the random states.

states. Fig. 3 (left) shows how local quadratic models can be
used to represent a 1-D value function. Fig. 3 (right) shows
a randomly generated set of 2-D states superimposed on a
contour plot of the value function for one-link swingup and the
optimized trajectories used to generate 2-D locally quadratic
value function models.

B. On What Problems Will the Proposed Approach Work Well?

We believe that our approach can discover underlying sim-
plicity in many typical problems. An example of a problem that
appears complex but is actually simple is a problem with linear
dynamics and a quadratic one-step cost function. Dynamic
programming can be done for such linear quadratic regulator
(LQR) problems even with hundreds of dimensions, and it is not
necessary to build a grid of states [7]. The cost of representing
the value function is quadratic in the dimensionality of the
state. The cost of performing a “sweep” or update of the value
function is at most cubic in the state dimensionality. Continuous
states and actions are easy to handle. Perhaps, many problems,
such as the examples in this paper, have simplifying charac-
teristics similar to LQR problems. For example, problems that
are only “slightly” nonlinear and have a locally quadratic cost
function may be solvable with quite sparse representations. One
goal of this paper is to develop methods that do not immediately
build a hugely expensive representation if it is not necessary
and attempt to harness simple and inexpensive parallel local
planning to solve complex planning problems. Another goal
of this paper is to develop methods that can take advantage
of situations where only a small amount of global interaction
is necessary to enable local planners capable of solving local
problems to find globally optimal solutions.

II. RELATED WORK

A. Random State Selection

Random grids and random sampling are well known in
numerical integration [8], finite element methods, and partial
differential equations [9]. Rust applied random sampling of
states to dynamic programming [10]-[13]. He showed that
random sampling of states can avoid the curse of dimensionality
for stochastic dynamic programming problems with a finite set
of discrete actions. In reinforcement learning, random sampling
of states is sometimes used to provide training data for function
approximation of the value function (e.g., [14]-[16]). Rein-
forcement learning also uses random exploration for several
purposes [17]. In the field of partially observable Markov

decision processes, there has been some work on randomly
sampling belief states and also using local models of the value
function and its first derivative at each randomly sampled belief
state (e.g., [18]-[23]). In robot planning for obstacle avoidance,
random sampling of states is now quite popular [24]. An
alternative to random sampling of states is irregular or adaptive
grids [25], but in our experience, they have not performed as
well on the example problems as random state approaches.

B. Trajectories and Trajectory Libraries

In our approach, we use trajectories to provide a more
accurate estimate of the value of a state. Larson suggested the
evaluation of the value in the Bellman equation after several
time steps rather than a single step [26]. In reinforcement
learning, “rollout” or simulated trajectories are often used to
provide training data for approximating value functions [12],
[14] as well as evaluating expectations in stochastic dynamic
programming. Murray et al. used trajectories to provide
estimates of the values of a set of initial states [27]. A number
of efforts have been made to use collections of trajectories to
represent policies [6], [28]-[34]. Schierman et al. [30] created
sets of locally optimized trajectories to handle changes to the
system dynamics. In [6] and [29], information transfer between
stored trajectories was used to form sets of globally optimized
trajectories for control.

C. Local Models

Werbos proposed the use of local quadratic models of the va-
lIue function [35]. The use of trajectories and a second-order
gradient-based trajectory optimization procedure such as differ-
ential dynamic programming (DDP) allows us to use Taylor
series-like local models of the value function and policy [36],
[37]. Similar trajectory optimization approaches could have
been used [38], including robust trajectory optimization ap-
proaches [39]-[41]. An alternative to local value function and
policy models are global parametric models, for example, [14],
[17], and [42]. A difficult problem is choosing a set of basis
functions or features for a global representation. Usually, this
has to be done by hand. An advantage of local models is that
the choice of basis functions or features is not as important.
Random sampling of states can also play an important role in
training global parametric models. However, this paper focuses
on the use of local models.

Parts of this paper have appeared at conferences [43], [44].

III. COMBINING RANDOM STATE SAMPLING WITH
LoCcAL MODELS AND LOoCAL OPTIMIZATION

We first present an overview of our approach. We store
local quadratic models of the value function and local linear
models of the policy at sampled states. The local models are
created as a byproduct of our trajectory optimization process. A
global approximation of the value function and policy is formed
by using the local model for the sampled state closest to the
query state. New candidate states are randomly sampled, and
a number of acceptance criteria are used to reject redundant
states or states whose value estimate is likely to be incorrect.
Information is propagated between sampled states to ensure
that the Bellman equation is satisfied everywhere and the value
function and policy are globally optimal.

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 25, 2008 at 20:53 from |IEEE Xplore. Restrictions apply.



926 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

A. Local Models of the Value Function and Policy

We need to represent value functions as sparsely as possible.
We propose a hybrid tabular and parametric approach: Paramet-
ric local models of the value function and policy are represented
at sampled locations. This representation is similar to using
many Taylor series approximations of a function at different
points. At each sampled state xP, the local quadratic model for
the value function is

VP(x) = VP + VEx + %f(Tngfc (1)
where X = x — xP is the vector from the sampled state x?, V¥
is the constant term of the local model, V? is the first derivative
of the local model (and the value function) at x?, and V2 _ is the
second derivative of the local model (and the value function)
at xP. The local linear model for the policy is

u”(x) =uh — KPx (2)

where u) is the constant term of the local policy and K? is the
first derivative of the local policy and also the gain matrix for
a local linear controller. V, V,, V.., and K are stored with
each sampled state.

B. Creating the Local Model

These local models of the value function can be created by
using DDP [6], [29], [36], [37]. This local trajectory optimiza-
tion process is similar to LQR design in that a local model of the
value function is produced. In DDP, value function and policy
models are produced at each point along a trajectory. Suppose,
at a point (x¢, u’), we have the following: 1) a local second-
order Taylor series approximation of the optimal value func-
tion: Vi(x) ~ V@ + Vix + (1/2)%xTVE % where x = x — x/;
2) a local second-order Taylor series approximation of the robot
dynamics, which can be learned by using local models of the
dynamics (f! and f! correspond to A and B, respectively, of
the linear plant model used in LQR design): f'(x,u) ~ fJ +
fix+fia+ (1/2)x7Tf,x +xTfl a+ (1/2)aTf 4 where
i = u — u’; and 3) a local second-order Taylor series approx-
imation of the one-step cost, which is often known analytically
for human specified criteria (L,, and L,, correspond to Q
and R, respectively, of LQR design): L!(x,u) ~ L{ + L{x +
Lia+ (1/2)x"Li x +xTL! ja + (1/2)a’Li a.

Given a trajectory, one can integrate the value function
and its first and second spatial derivatives backward in time
to compute an improved value function and policy. We uti-
lize the “Q function” notation from reinforcement learning:
Q(x,u) = L(x,u) + V(f(x,u)). The backward sweep takes
the following form (in discrete time):

Q, =L, +V.fl; Q,=L,+V.f, 3)
Le=Li, Vil 4 (£) Vg @)
Lo =L+ VIEL 4+ (£)T V£ )
b =Li, + ViEL + (£) Vif (©6)

Au' = (Q.)  Qu

1 . Ny

V. =Q, - QK%
where subscripts indicate derivatives and superscripts indicate
the trajectory index. After the backward sweep, forward inte-

K= (Qu) Q. O
Vi = QL - QLK ®

T

gration can be used to update the trajectory itself: ul,, = u’ —
Au’ — K'(x!,, — X"). We note that the cost of this approach
grows at most cubically rather than exponentially with respect

to the dimensionality of the state.

C. Utilizing the Local Models

For the purpose of explaining our algorithm, let us assume
that we already have a set of sampled states; each of which has
a local model of the value function and the policy. How should
we use these multiple local models? The simplest approach is
to just use the predictions of the nearest sampled state, which
is what we currently do. We use a kd-tree to efficiently find
nearest neighbors, but there are many other approaches that will
find nearby sampled states efficiently [45]. In the future, we will
investigate by using other methods to combine local model pre-
dictions from nearby sampled states: distance weighted averag-
ing (kernel regression), linear locally weighted regression, and
quadratic locally weighted regression for value functions [45].

D. Creating New Random States

For tasks with a goal state, we initialize the set of sampled
states by storing the goal state itself. We have explored a num-
ber of distributions to select additional states from the follow-
ing: uniform within bounds on the states; Gaussian with the
mean at the goal; sampling near existing states; and sampling
from an underlying low resolution regular grid. The uniform ap-
proach is a useful default approach, which we use in the swing-
up examples, the Gaussian approach provides a simple way to
tune the distribution, sampling near existing states provides a
way to efficiently sample while growing the solved region in
high dimensions, and sampling from an underlying low resolu-
tion grid seems to perform well when only a small number of
sampled states are used (similar to using low dispersion se-
quences [10], [24]). A key point of our approach is that we
do not generate the random states in advance but instead select
them as the algorithm progresses. This allows us to apply an
acceptance criteria to candidate states, which we describe in
the next paragraph. We have also explored the changing of the
distribution we generate candidate states from as the algorithm
progresses, for example, using a mixture of Gaussians with
the Gaussians centered on existing sampled states. Another
reasonable hybrid approach would be to initially sample from a
grid and then bias more general sampling to regions of higher
value function approximation error.

E. Acceptance Criteria for Candidate States

We have several criteria which are applied in sequence to ac-
cept or reject states to be permanently stored [1)-4) hereafter].
In the future, we will explore “forgetting” or removing stored
states, but at this point, we apply all memory control techniques
at the storage event. To focus the search and limit the volume
considered, a value limit is maintained (Vjiyit). This limit is
increased to consider a growing volume of state space (Fig. 4).
The approximated value function is used to predict the value of
the candidate state.

1) If the prediction is above Wi, the candidate state
is rejected. Otherwise, a trajectory is created from the
candidate state using the current approximated policy and
then locally optimized.
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Fig. 4. Sampled states and trajectories for the one-link swingup problem after 10, 20, 30, 40, 50, and 60 states are stored. These figures correspond to Fig. 3

(right), with position on the z-axis and velocity on the y-axis.

2) If the value of that trajectory is above Vjinit, the candidate
state is rejected.

3) If the value of the trajectory is within 10% of the pre-
dicted value, the candidate state is rejected. We refer to
this as our “surprise” criteria in that only surprises are
stored.

4) For problems with a goal state, if the trajectory does not
reach the goal, the candidate state is rejected.

Other criteria such as an A*-like criteria (cost-to-go (x) +
cost-from-start (x) > threshold) can be used to reject candidate
states [24]. All of the thresholds mentioned can be changed as
the algorithm progresses. For example, Vit is gradually
increased during the solution process to increase the volume
considered by the algorithm. In future work, we will explore
starting with a larger surprise threshold and decreasing this
threshold with time to further reduce the number of samples
accepted and stored while improving convergence. It is possible
to take the distance to the nearest sampled state into account in
the acceptance criteria for new samples. The common approach
of accepting states beyond a distance threshold enforces a mi-
nimum resolution and leads to a potentially severe curse of
dimensionality effects. Rejecting states that are too close to
existing states will increase the error in representing the value
function but may be a way for preventing too many samples
near complex regions of the value functions that have little prac-
tical effect. For example, we often do not need much accuracy
in representing the value function near policy discontinuities
where the value function has discontinuities in its spatial deriv-
ative and “creases.” In these areas, the trajectories typically
move away from the discontinuities, and the details of the value
function have little effect.

F. Creating a Trajectory From a State

We create a trajectory from a candidate state or refine a tra-
jectory from a sampled state in the same way. The first step is to
use the current approximated policy until the goal or a time limit
is reached. In the current implementation, this involves finding
the sampled state nearest to the current state in the trajectory
and using its locally linear policy to compute the action on each
time step. The second step is to locally optimize the trajectory.
We use DDP in the current implementation [6], [29], [36], [37].

G. Combining Parallel Greedy Local Optimizers to Perform
Global Optimization

As currently described, the algorithm finds a locally optimal
policy but not necessarily a globally optimal policy. For exam-
ple, the sampled states could be divided into two sets of nearest
neighbors. One set could have a suboptimal policy but have no
interaction with the other set of states that had a globally opti-
mal policy because no nearest neighbor relations joined the two

sets. We expect the locally optimal policies to be fairly good
because we 1) gradually increase the solved volume (Fig. 4)
and 2) use local optimizers. Given local optimization of actions,
gradually increasing the solved volume will result in a globally
optimal policy if the boundary of this volume never touches a
nonadjacent section of itself. Figs. 2 and 3 show the creases in
the value function (discontinuities in the spatial derivative) and
corresponding discontinuities in the policy that typically result
when the constant cost contour touches a nonadjacent section
of itself as Vj;nit is increased.

By enforcing the consistency of the local value function
models across all nearest neighbor pairs, we can create a
globally consistent value function estimate. Consistency means
that any state’s local model correctly predicts values of nearby
states. If the value function estimate is consistent everywhere,
the Bellman equation is solved and we have a globally optimal
policy. We can enforce consistency of nearest neighbor value
functions by the following: 1) using the policy of one state of
a pair to reoptimize the trajectory of the other state of the pair
and vice versa and 2) adding more sampled states in between
nearest neighbors that continue to disagree [6]. This approach
is similar to using the method of characteristics to solve partial
differential equations [46] and finding value functions for
games [47]-[49].

In theory, the approach we have described will produce a
globally optimal policy if it has infinite resolution and all the
sampled states form a densely connected set in terms of nearest
neighbor relations [6]. The proposed approach becomes similar
to a standard dynamic programming approach as the resolution
becomes infinite and thus inherits the convergence properties of
grid-based dynamic programming [1], [2].

In practice, we cannot achieve infinite resolution. To increase
the likelihood of finding a globally optimal policy with a limited
resolution of sampled states, we need an analog to exploration
and global minimization with respect to actions found in the
Bellman equation. We approximate this process by periodically
reoptimizing each sampled state using the policies of other
sampled states. As more and more states are sampled and many
alternative sampled states are considered in optimizing any
given sampled state, a wide range of actions are considered
for each state. We run a reoptimization phase of the algorithm
after every N (typically 100) states have been stored. There are
several ways to design this reoptimization phase. Each state
could use the policy of a nearest neighbor or a randomly chosen
neighbor with the distribution being distance dependent or
just choosing another state randomly with no consideration of
distance (what we currently do). In [6], how to follow a policy
of another sampled state if its trajectory is stored or can be
recomputed as needed is described. In this paper, we explored
a different approach that does not require each sampled state
to save its trajectory or recompute it. To “follow” the policy of
another state, we follow the locally linear policy for that state
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Fig. 6. Configurations every quarter second from a simulated response to a forward impulse (to the right) of 22.5 N - s. The lower black rectangle indicates the

extent of the symmetric foot.

until the trajectory begins to go away from the state. At that
point, we switch to following the globally approximated policy.
Because we apply this reoptimization process periodically with
different randomly selected policies, over time, we explore the
use of a wide range of actions from each state. Our termination
condition for the algorithm is to see if multiple runs of the
algorithm get the same or similar answers.

IV. RESULTS

In addition to the one-link swingup example presented in
Section 1, we present results on two-link swingup (4-D state),
three-link swingup (6-D state), and four-link balance (8-D
state). For the one-link swingup case, the random state approach
found a globally optimal trajectory (the same trajectory found
by our grid-based approaches [50]) after adding only 63 random
states. Fig. 3 shows the distribution of states and their trajecto-
ries superimposed on a contour map of the value function for
one-link swingup, and Fig. 4 shows how the solved volume
represented by the sampled states grows. For the two-link
swingup case, the random state approach finds what we believe
is a globally optimal trajectory (the same trajectory found by
our tabular approaches [50]) after storing an average of 12 000
random states compared to 100 million states needed by a
tabular approach. For the three-link swingup case, the random
state approach found a good trajectory after storing less than
22000 random states (Fig. 5). We were not able to solve this
problem using regular grid-based approaches with a 4-GB table.

A. Simple Model of Standing Balance

We provide results on a standing robot balancer that is pushed
(Fig. 6) to demonstrate that we can apply the approach to
systems with 8-D states. This problem is hard because the ankle
torque is quite limited to prevent the foot from tilting and the
robot from falling. We created a four-link model that included
a knee, shoulder, and arm. Each link is modeled as a thin rod,
with a calf and thigh length of 0.5 meters and 17.5 kg each. The
torso is 1 m long with a weight of 26.25 kg; the arm is 1 m
long with a weight of 8.75 kg. We assume that, in standing, the
center of pressure is at the center of the foot. We therefore use
a symmetric foot that is 0.2 m long in our model. This results
in a maximum ankle torque of approximately =70 N - m.

We model perturbations as horizontal impulses applied to the
middle of the torso. The perturbations instantaneously change
the joint velocities from zero to values appropriate for the
perturbation: Af = H1JT f force - dt, where the elements of
the inertia matrix H(6) are the coefficients of angular accel-
erations in the rigid body dynamics (7 = HO +...), J(6) is

the Jacobian matrix, and [ force - dt is the impulse applied
(measured in Newton-seconds). We assume no slipping or other
change of contact state during the perturbation.

The states are bounded by —0.4 < 0, < 0.8 rad, —0.01 <
0, < 2.5rad, —1.5 < 0;, < 0.1 rad, and —0.5 < 0, < 2.5 rad,
where 6, is the ankle angle, 6 is the knee angle, 6}, is the hip
angle, 0, is the shoulder angle, and 6; = 0 is upright with the
arms hanging down. The ankle torque is bounded by =70 N - m
to keep the center of pressure within the foot. The knee and
hip torques are bounded by £500 N - m. The shoulder torque is
bounded by £250 N - m. The one-step optimization criterion
is a combination of quadratic penalties on the deviations of
the joint angles from their desired positions (straight up with
the arm hanging down), the joint velocities, and the joint
torques: L(x,u) = (02 + 63 + 07 + 62)T + (02 + 67 + 07 +
02)T + 0.002(72 + 72 + 72 + 72)T, where 0.002 weights the
torque penalty relative to the position and velocity errors and
T is the time step of the simulation (0.01 s). The penalty on
joint velocities reduces knee and shoulder oscillations. After
dynamic programming based on approximately 60 000 sampled
states, Fig. 6 shows the response to the largest perturbations that
could be handled in the forward direction. We have designed an
LQR controller that optimizes the same criterion on the four-
link model. For perturbations of 17.5 N - s and higher, the LQR
controller falls down, whereas the controller presented here is
able to handle larger perturbations of 22.5 N - s.

V. CONCLUSION

We have combined random sampling of states, local models,
and local trajectory optimization to create a promising approach
to practical dynamic programming for robot control problems.
We are able to solve problems that we could not solve before
using tabular or global function approximation approaches.
Future work will optimize aspects and variants of this approach
and do a thorough comparison with alternative approaches.
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