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Abstract—We present work on compliant control of dynamic
humanoid balance and walking. We use the Linear Biped Model
(LiBM) to model the dynamics of balance on two feet. To
achieve periodic motion, as in walking, we derive an orbital
energy controller for this model. We also present our methods
for applying this control to a torque-controlled humanoid robot,
which include estimating the center of mass state and generating
feed-forward torque commands.

I. INTRODUCTION

Humanoid robots are complex systems that are often studied
using simple models. One such model is the Linear Inverted
Pendulum Model (LIPM) [1]. Often, this model is used in
combination with desired foot trajectories. A trajectory for the
center of mass is created so that the center of pressure, or zero
moment point, is always within the base of support. Rather
than following pre-determined trajectories, we would like to
utilize reactive controllers that stabilize the system from large
and unknown perturbations.

We develop an extension of the LIPM, which we call the
“Linear Biped Model” (LiBM) that describes the dynamics
of having two legs and feet, shown in Figure 1. During
single support, the dynamics are equivalent to a LIPM. During
double support, however, the dynamics are described by two
superimposed LIPMs. We present a controller that regulates
periodic motion and is inspired by the concept of orbital
energy [2]. An analytic controller for our simple model is
derived that can achieve a desired energy level. The concept
of orbital energy allows us to control periodic motion without
using an internal clock.

The Linear Biped Model is used for controlling our torque-
controlled humanoid robot. It is very useful because it approx-
imates dynamic motion and ground reaction forces. We use the
torques and forces predicted by the simplified model as feed-
forward controls. The linear model is also used for improved
motion estimation by combining various sensor measurements
in a Kalman Filter. Finally, this biped model can be used to
make quick decisions about stepping to recover balance as
well as planning high-level walking trajectories.

This paper is outlined as follows. First, in Section II, we
describe the Linear Biped Model and derive the linear dy-
namics. In Section III, we derive the orbital energy controller
for coronal balance. We describe how a stepping controller can
be written for the Linear Biped Model in IV. Then we focus

Fig. 1. The Linear Biped Model consists of two superimposed Linear Inverted
Pendulum Models. It can be used for modeling, estimation and control of
biped systems, such as a humanoid robot.

on applying this model to control of our humanoid robot in
V.

A. Related Work

Simple models have been widely used for control and
estimation of humanoid locomotion. The LIPM has been
used in combination with a model-predictive controller called
“preview control” [3]. Footstep planning for the ASIMO robot
[4] was achieved by ignoring much of the robot dynamics and
balance control, considering only a fixed set of foot placements
at each step and searching over a fixed horizon.

Many researchers have begun to focus on biped balance
control. Standing dynamic balance of humanoids has been
studied using simple models [5] [6] [7], integral control [8],
optimization [9], and nonlinear computed torque techniques
[10] [11]. Stepping has also been studied using simple models
[12], reinforcement learning [13], and manifold learning [14].
In addition, the graphics community has used momentum-
based techniques [15] to optimize motions for balance and
stepping based on motion capture data [16].

The author has previously investigated control of standing
sagittal balance [6] using simple models. We have also con-



sidered ankle torque and foot placement control of a compass
model in the lateral (coronal) plane [17]. The model presented
in this paper is also intended for studying balance in the
coronal plane. Often, motion in this plane is periodic, as during
walking. From studies of passive dynamic walking, it is shown
that lateral motion is unstable, but can be stabilized by suitable
control [18].

II. LINEAR BIPED MODEL

For legged robots, balance is determined by the motion of
the center of mass relative to the base of support. For biped
robots, the base of support changes depending on whether
there are one or two feet on the ground. We define a simple
model that takes into account the two feet of the robot, shown
in Figure 1, called the Linear Biped Model (LiBM). Like
the LIPM, this model maintains a constant height above the
ground, z = L. The dynamics vary continuously through
single and double support phases. During single support, the
dynamics are equivalent to the LIPM,
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However, during double support, the dynamics are two super-
imposed LIPMs,
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ωL (ỹ − yL) +

g

L
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where yL and yR are the locations of the two feet and ỹ =
y− 1

2 (yL+ yR) is the distance from halfway between the two
feet. The two stance weights, ωL and ωR, vary continuously
and satisfy ωR + ωL = 1. The complete state of the planar
model is given by
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We define a double support region, shown in Figure 2, as
a fraction, γ, called the double support ratio, of the distance
between the two feet. As the stance width changes, so does
the width of the double support region. The intuition behind
this is that the legs have limited length and will come off the
ground at roughly the same place. This greatly simplifies the
transition between phases, which we can describe using the
stance weights,

ωL =
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γW+ỹ
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0 , ỹ ≤ −γW
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where W = 1
2 (yL − yR) is half the stance width. The other

weight is found simply by ωR = 1 − ωL. Because of this,
Eq.(2) can be simplified to
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γ
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Fig. 2. The double support region is defined in the phase space of the center
of mass.

Fig. 3. The torque limits defined by the LiBM during different support
phases. The solid lines are due to the center of pressure constraint and the
dashed lines are due to the friction cone.

The result is a spring-mass system, or a simple harmonic
oscillator, that is stable for any initial state that satisfies

yL + d ≥ ẏ

√
L

g
+ y ≥ yR − d (7)

where d is half the width of the foot and the bounds represent
the edges of the base of support.

One of the benefits of this model is we can also determine
the forces on the feet, FLY

FLZ
MLX

 =
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LτL
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 (8)

and similarly for the right foot forces. Notice, of course, that
FLY + FRY = mÿ and FLZ + FRZ = mg.

Additionally, we impose the constraint that the center of
pressure remain beneath the foot,{

|τL| ≤ FLZd
|τR| ≤ FRZd

(9)



Fig. 4. Different energy profiles define different behaviors in the phase space
of the center of mass.

Fig. 5. The energy controller defines continuous nonlinear torque policies
for the two ankles

By inserting Eq.(8) into Eq.(9), we get{
|τL| ≤ ωLmgd
|τR| ≤ ωRmgd

(10)

Notice that we can also write the constraint,

|τL + τR| ≤ mgd. (11)

We can also write constraints on the friction cone, which
specifies that FY < µFZ , where µ is a coefficient of friction,
or

ωL (−Lµ− y + yL) ≤ τL
mg
≤ ωL (Lµ− y + yL) (12)

These constraints are illustrated in Figure 3. The amount of
overlap between the friction constraints and center of pressure
constraints depends on the coefficient of friction and the width
of the foot. As the width of the foot increases, the maximum
torque allowed by the center of pressure constraints increases,
but the friction constraints remain the same. This suggests
that the friction constraints are less important in the lateral
direction, where the foot width is smaller, than in the sagittal
direction where the foot length is larger.

Fig. 6. Controlling the energy in the coronal plane causes the system to
converge to a limit cycle

III. ORBITAL ENERGY CONTROL

We have borrowed the idea of orbital energy to generalize
control for balancing at a point as well as to a cycle. Zero
energy corresponds to regulating to a point while non-zero
energy corresponds to a cyclic motion. We define coronal
energy with the ellipse,
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, (13)

defined in the phase space of the center of mass. This ellipse
follows the trajectory,
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which gives the oscillation a frequency of

f =
a

2πb
. (15)

Figure 4 illustrates various behaviors that can be represented
by orbital energy. Our objective is to control the energy of the
system. We achieve this by defining a Lyapunov function of
the form,

V =
1
2

(Ed − E)2 (16)

The time derivative of Eq.(16) is
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(
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)
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In order to make V̇ ≤ 0, we choose

ÿdes = −a
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ỹ +Kẏ (Ed − E) (18)

where K defines the rate of convergence to the desired energy.
Using Eq.(5), we can write the inverse dynamics,
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ỹ +

g

L
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where u = τL + τR. The remaining task is to decide how
to distribute the control between τL and τR while satisfying



Fig. 7. Simulated trajectories using an N-step controller for 1, 2, and 3 step
lookahead.

Eq.(10). A simple answer is to weight the torques linearly
using {

τL = ωLu
τR = ωRu

(20)

The resulting control policies are shown in Figure 5 and
example trajectories are shown in Figure 6.

IV. STEPPING CONTROL

Given an orbital energy controller that allows us to regulate
the motion of the center of mass of the system, we propose
an additional controller that decides where to step. Stepping
can make use of knowledge of the future, as several steps are
often required to bring the system back to a stable state. In
addition, during a walking gait like the one defined by the
orbital energy controller above, the steps should return the
system to the original location after a large perturbation.

The pre-defined double support region, as described above,
eliminates the decision of when to pick up or place the swing
foot. Instead, as we leave the double support region, we only
decide how far to move the swing leg. This determines the
rest of the trajectory until the next single support phase when
we can move the other swing leg. Because of this structure,
we can write an N-step lookahead controller that considers a
set of step distances from the current state and chooses the
next step distance as the distance that minimizes an objective
function of the form,

f =
∑
i

k1(E(Xi)−Ed)2+k2(W (Xf )−Wd)2+k3(Xf−Xd)2,

(21)
where Xi are the states of the resulting trajectory, Xf is the
final state, Wd is the desired stance width and Xd is a desired
state. E(X) and W (X) represent the energy and step width,
respectively, of the state X . The first term returns the system to
the desired orbital energy, the second drives the stance width
back to the desired stance width, and the third can be used to
regulate the position of the system. The gains, ki, are chosen
by the user. Example trajectories using this controller can be
seen in Figure 7.

TABLE I
COMPARISON OF N-STEP CONTROLLERS

Controller Fall Percentage Normalized Cost

1-step 5.6% 1.0
2-step 1.8% 0.9266
3-step 1.7% 0.9230

Fig. 8. Sarcos Humanoid robot

We compare the performance of 1, 2 and 3-step lookahead
controllers in Table I. 1000 random initial states and desired
energies were used to generate this data. Our results indicate
that it is more reliable to perform a 2-step lookahead.

V. HUMANOID ROBOT CONTROL

Using the energy and stepping controllers developed for the
Linear Biped Model, we can control our humanoid robot to
perform similar tasks. Our humanoid robot, shown in Figure
8 uses hydraulic actuators at each joint with potentiometers
to measure joint angles and load sensors to measure actuator
force. After compensating for the viscous damping of the
hydraulic actuators [19], we control the torque at each of the
joints. The robot has 33 degrees of freedom (not including
eyes, mouth and fingers). For the purposes of this paper, we
only control the 14 joints of the lower body (7 joints in each
leg).

A. Estimating Center of Mass

We can generalize our models to more complex systems,
such as our humanoid robot. To do this we need to accurately
estimate the state of the center of mass. We combine several
sensors (joint potentiometers, accelerometers and feet force-
torque sensors) and our simple model to give us an improved
estimate of center of mass motion, as shown in Figure 9.
Using the Linear Biped Model, we can use a Kalman Filter to
combine these measurements. Our sensors give us one position



Fig. 9. Multiple measurements are combined using a Kalman filter to get
improved center of mass state estimates.

Fig. 10. A Kalman Filter using the LiBM gives smoother estimates of the
position, velocity and acceleration of the center of mass.

measurement from the potentiometers and kinematics and two
acceleration measurements from an accelerometer attached to
the hip and the force sensors on the feet.

The process model is just the linear forward dynamics
defined by Eq.(1) and Eq.(2), which can be written in state
space form as(
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The sensor model, however, becomes
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We discretize this model for our robot, which runs in a
1kHz control loop. Using a Kalman filter, we can combine
these measurements to give us smooth position and improved
velocity and force estimates, as shown in Figure 10.

B. Feedforward Control

The LiBM can be used to generate feedforward controls
for the humanoid robot. Eq.(8) predicts the forces at the feet
needed to perform energy control. We control the robot by
trying to re-create these forces.

Let JR(q) and JL(q) be the Jacobian from the middle of the
feet to the center of mass, as shown in Figure 11. We use the
feet force sensors to detect when the feet are on the ground,
in which case we treat each leg as a manipulator attached to

Fig. 11. The Jacobian from the center of mass to each foot relates the LiBM
to the humanoid robot. We treat the upper body as a lumped mass.

the ground. To control the robot, we apply a controls to the
joints of the left and right leg of the form,

τL = JTL (q)fL + τpdL (24)

τR = JTR (q)fR + τpdR (25)

where fL and fR are found using Eq.(8) and τpdL and τpdR
are low-gain PD controllers that correspond to a desired home
pose and zero velocity.

VI. RESULTS AND DISCUSSION

In this paper, we defined energy as an ellipse in the phase
plane of the center of mass in Eq.(13). We are not limited
to elliptical energy profiles. Other parametric curves could be
used to customize behaviors or optimize for control effort.
We have has explored non-parametric representations, such
as optimal trajectories found through dynamic programming.
However, these solutions are sometimes difficult to compute
and generally have to be recalculated for different parameters,
such as desired energy or double support ratio.

Stepping control was achieved through a lookahead proce-
dure that only considers the size of the next few steps. While
we were able to achieve a lower cost by looking ahead more
steps, the improvement was small. A one-step lookahead can
be performed very quickly and was still able to recover about
95% of the time. It is unclear whether additional lookahead
is worth the additional computation time. For this reason,
we attempted to fit a linear policy to approximate the 2-step
lookahead while only calculating the 1-step lookahead. This
proved to be difficult and did not result in better performance.

We have performed a variety of experiments on our Sarcos
robot using the methods described in this paper. We are
currently able to march in place, lifting the feet slightly off the
ground. The center of mass is controlled to achieve a desired



Fig. 12. Robot center of mass trajectory while marching in place

energy profile, as shown in Figure 12. We have also explored
a variety of center of mass filter formulations which can be
used not only to estimate state, but estimate other parameters
such as offsets, model parameters and external pushes.

Pushing and step recovery are the primary focus of our
research. Figure 13 shows a push experiment where the robot
was marching in place and then pushed to the side. It took
two steps while controlling itself to return to a desired stance
width and remained balanced.

The mapping of the controls from the simple LiBM to the
full robot can be improved in a variety of ways. In particular,
using a rigid body dynamics model of the robot, we can
use inverse dynamics to achieve desired reaction forces or,
equivalently, center of mass accelerations. Such calculations
can be performed efficiently online [11] [20], but rely heavily
on an accurate model and robot calibration.

Future work will focus on applying robust control tech-
niques to the LiBM and then transferring this robustness to
the humanoid robot. It is our hope that this type of controller
design technique will simplify the often brittle and tedious
design of humanoid robot controllers.

VII. CONCLUSION

The Linear Biped Model has been used to study a wide
range of humanoid behaviors, including balance and step
recovery. The energy controller we derived is useful for
stabilizing the robot during these often periodic activities.
Future work is focusing on a 3D version of the LiBM, which
can be used for walking and also step recovery of pushes in
all directions.

REFERENCES

[1] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged
terrain-derivation andapplication of the linear inverted pendulum mode,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 2, April 1991, pp. 1405–1411.

[2] S. Kajita, T. Yamaura, and A. Kobayashi, “Dynamic walking control
of a biped robot along a potential energy conserving orbit,” IEEE
Transactions on Robotics and Automation, vol. 8, no. 4, pp. 431–438,
Aug 1992.

[3] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proceedings fo the 2003 IEEE
International Conference on Robotics and Automation, Taipei, Taiwan,
September 2003, pp. 1620–1626.

[4] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, April 2005.

[5] J. Pratt and R. Tedrake, “Velocity based stability margins for fast bipedal
walking,” in First Ruperto Carola Symposium in the International
Science Forum of the University of Heidelberg entitled “Fast Motions
in Biomechanics and Robots”. Heidelberg Germany: Springer Berlin
/ Heidelberg, September 7-9 2005.

[6] B. Stephens, “Humanoid push recovery,” in Proceedings of the IEEE-
RAS International Conference on Humanoid Robots, 2007.

[7] S.-H. Lee and A. Goswami, “Reaction mass pendulum (rmp): An explicit
model for centroidal angular momentum of humanoid robots,” in IEEE
International Conference on Robotics and Automation, April 2007, pp.
4667–4672.

[8] B. Stephens, “Integral control of humanoid balance,” in Proceedings of
the IEEE/RSJ 2007 International Conference on Intelligent Robots and
Systems, 2007.

[9] C. Atkeson and B. Stephens, “Multiple balance strategies from one
optimization criterion,” in The IEEE-RAS 2007 International Conference
on Humanoid Robots, 2007.

[10] L. Sentis and O. Khatib, “A whole-body control framework for hu-
manoids operating in human environments,” in Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006, pp. 2641–
2648.

[11] S.-H. Hyon, J. Hale, and G. Cheng, “Full-body compliant humanhu-
manoid interaction: Balancing in the presence of unknown external
forces,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 884–898,
October 2007.

[12] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in 6th IEEE-RAS International
Conference on Humanoid Robots, December 2006, pp. 200–207.

[13] J. Rebula, F. Canas, J. Pratt, and A. Goswami, “Learning capture points
for bipedal push recovery,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2008, pp. 1774–1774.

[14] S. Ramamoorthy and B. Kuipers, “Trajectory generation for dynamic
bipedal walking through qualitative model based manifold learning,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2008, pp. 359–366.

[15] Y. Abe, C. K. Liu, and Z. Popovic, “Momentum-based parameteriza-
tion of dynamic character motion,” ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, pp. 194–211, 2004.

[16] K. Yin, D. K. Pai, and M. van de Panne, “Data-driven interactive
balancing behaviors,” Pacific Graphics, Oct 12-14 2005.

[17] D. Choi, C. Atkeson, S. J. Cho, and J.-Y. Kim, “Phase plane control of
a humanoid,” in 8th IEEE-RAS International Conference on Humanoid
Robots, Dec 2008, pp. 145–150.

[18] A. Kuo, “Stabilization of lateral motion in passive dynamic walking,”
International Journal of Robotics Research, vol. 18, no. 9, pp. 917–930,
1999.

[19] D. C. Bentivegna, C. G. Atkeson, and J.-Y. Kim, “Compliant control of
a hydraulic humanoid joint,” in IEEE Conference on Humanoids, 2007.

[20] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, “Inverse kinematics
with floating base and constraints for full body humanoid robot control,”
in Proceedings of the IEEE-RAS International Conference on Humanoid
Robots, 2008, pp. 22–27.



Fig. 13. While marching in place, the robot is pushed, takes a step to maintain its stance width and recovers. See more videos at
http://www.youtube.com/humanoidbalance


