
Automating

the Modeling and Optimization of the

Performance of Signal Processing Algorithms

Bryan Singer

December 13, 2001

Thesis Committee:
Manuela Veloso (Chair)
Scott Fahlman
John Lafferty
Jeremy Johnson (Drexel University)

Overview

• Background and Motivation

• Optimizing Performance by Searching

• Modeling Performance

• Generating Fast Formulas

• Conclusions

Signal Processing

Many signal processing algorithms:

• take as input a signal X as a vector

• produce transformation of signal Y = AX

Issue:

• Näıve implementation of matrix multiplication is slow

Example signal processing applications:

• Real time audio, image, speech processing

• Analysis of large data sets

Factoring Signal Transforms

• Transformation matrices are highly structured

• Can factor transformation matrices

• Factorizations allow for faster implementations

Discrete Fourier Transform (DFT)

Highly structured, for example:

DFT (22) =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



Cooley-Tukey factorization or break down rule:

DFT (rs) = (DFT (r)⊗ Is)T rss (Ir ⊗DFT (s))Lrsr

Can recursively apply break down rule

Yielding θ(n logn) algorithm (FFT)

DFT Example

DFT (25)

= (DFT (23)⊗ I4)T32
4 (I8 ⊗DFT (22))L32

8

= ([(DFT (21)⊗ I4)T8
4 (I2 ⊗DFT (22))L8

2]⊗ I4)T32
4

(I8 ⊗ [(DFT (21)⊗ I2)T4
2 (I2 ⊗DFT (21))L4

2])L32
8

We can visualize this

as a split tree: CT Rule

CT RuleCT Rule

DFT(2) DFT(2) DFT(2) DFT(2)

DFT(2)DFT(2)

DFT(2)

1 1

23

1 2

5

Walsh-Hadamard Transform (WHT)

WHT (22) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Break down rule:

WHT (2n) =
t∏

i=1
(I

2n1+···+ni−1 ⊗WHT (2ni)⊗ I
2ni+1+···+nt)

for positive integers ni such that n = n1 + · · ·+ nt

Discrete Cosine Transform (DCT) Example

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

RuleDCT2_2 RuleDCT4_4 RuleDST4_1 RuleDST2_3
22�DCT II 22�DCT IV 22�DST IV 22�DST II

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV DSTIV2 DSTII2

DCTII 2 DSTII2

RuleDCT4_3

RuleDCT4_3

Search Space

Large number of factorizations:

Size DFT WHT DCT IV

21 1 1 1
22 6 2 10
23 40 6 126
24 360 24 31,242
25 258,400 112 1.9× 109

26 1.8× 1013 568 7.3× 1018

27 7.2× 1013 3,032 1.1× 1038

28 7.2× 1014 16,768 2.3× 1076

29 1.5× 1016 95,199 1.1× 10153

210 2.3× 1017 551,613 2.2× 10306

Varying Performance

Varying performance of factorizations:

• Formulas have very different running times

• Same number of arithmetic operations, but different:

– Cache performance

– Execution unit performance

– Register file performance

• Small changes in the split tree can lead to

significantly different running times

• Optimal formulas across machines are different

Histogram of WHT (216) Running Times

0.5 1 1.5 2 2.5 3

x 10
7

0

50

100

150

200

250

300

350

400

Running time in CPU cycles

N
um

be
r

of
 fo

rm
ul

as

Thesis Problem

Find the best implementation for a given:

• Transform

• Size

• Computing platform

Huge search space of implementations

Constrained by a given:

• Set of break down rules

• Code implementation strategy for formulas

(possibly tunable)

• Method of obtaining runtime performance

Contributions

Search methods for optimizing performance

• Intelligently search space

• Avoid timing all formulas

Automated methods for modeling performance

• Learn models to predict performance of formulas

Method for generating fast implementations

• Use learned models to optimize performance

• Control the construction of formulas

• Given model, no need to time any formulas

Overview

• Background and Motivation

• Optimizing Performance by Searching

• Modeling Performance

• Generating Fast Formulas

• Conclusions

Infrastructure

4

Executable Code

Code Generation

Search for Fast Implementations

(Transform Factorization)

2

3

Formula Generation

1
Break Down Rules
Defined Transforms

SPIRAL: Signal Processing algorithms Implementation

Research for Adaptable Libraries

Download system at: http://www.ece.cmu.edu/~spiral

Search Methods Implemented in SPIRAL

• Exhaustive Search

• Dynamic Programming (DP)

• Random Search

• Hill Climbing

• STEER (evolutionary algorithm)

• Timed Search (a meta-search algorithm)

• Search over new user-defined transforms and break

down rules

• Search over formulas and options to code generator

STEER: Split Tree Evolution for Efficient Runtimes

Generate a population of random legal split trees

Repeatedly “evolve” the population:

• Time trees in current set

• Generate new population with fitness proportional

reproduction while:

– Maintaining the current best trees

– Randomly applying mutation to individual trees

– Randomly applying crossover to pairs of trees

Mutation: Regrow

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

DCTII 2 DSTII2

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV DSTIV2 DSTII2

22�DCT II 22�DCT IV 22�DST IV 22�DST II

RuleDCT4_3

RuleDCT4_3

RuleDCT2_2 RuleDCT4_4 RuleDST4_1 RuleDST2_3

Original

Mutation: Regrow

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

DCTII 2 DSTII2

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV

22�DCT II 22�DCT IV 22�DST IV 22�DST II

RuleDCT4_3

RuleDCT4_3

RuleDCT2_2 RuleDCT4_4 RuleDST4_1

Original ⇒ Truncate

Mutation: Regrow

24

23DCT II 23DST II
RuleDST2_3RuleDCT2_2

2DCTII DSTII2

22�DCTIV2DSTII2DSTIVDCTIV2DCTII2

22�DCT II 22�DCT IV 22�DST IV

2DCTII 2DCTIV

22�DCTII

22�DST II

RuleDCT4_3
DCT IV

RuleDCT4_3

RuleDCT2_2 RuleDCT4_4 RuleDST4_1

RuleDCT2_2

RuleDST2_2

Original ⇒ Truncate ⇒ Regrow

Running STEER

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 20 40 60 80 100 120 140

R
un

tim
e

(in
 s

ec
on

ds
)

�

Generations

Average
Best

FFT on a Pentium III

0.8

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 R
un

tim
e

�

Log Size

DP
STEER
Hill Climbing
Random Search
Timed Search

FFT on a Sun UltraSparc IIi

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 R
un

tim
e

�

Log Size

DP
STEER

DCT Type II on a Pentium III

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 R
un

tim
e

�

Log Size

DP
STEER
Hill Climbing
Random Search
Timed Search

Summary: Optimization by Intelligent Search

• Many search methods implemented

• No one search method dominates for all transforms

and sizes

• Requires timing many formulas, but not all

Overview

• Background and Motivation

• Optimizing Performance by Searching

• Modeling Performance

• Generating Fast Formulas

• Conclusions

Learning to Predict Performance

Can we learn to predict performance of formulas?

• Can gather empirical data by running formulas

• Use automated machine learning techniques

Machine learning task:

• Predict performance for entire formulas

• Predict performance for individual nodes in split tree

– Sum predictions for nodes to predict for formula

– For WHT, computation occurs in leaves only

– For FFT, computation occurs in all nodes

– Limit FFT to Cooley-Tukey factorization

Learning Algorithm

1. Collect runtimes for nodes in split trees

2. Divide runtimes by size of overall transform

3. Train a function approximator to predict runtimes

for split tree nodes

Need to describe split tree nodes with features

Features for Split Tree Nodes

• Size and stride of the given node

• Size and stride of the parent of the given node

• Size and stride of the common parent

• Size and stride of each of the children and grandchildren

11

PrevLeaf: -
ComPar: -
Stride: 0

4 7

PrevLeaf: -
ComPar: -
Stride 0

1 3 2

PrevLeaf: 3
ComPar: 4
Stride: 10

ComPar: -
PrevLeaf: -

Stride: 0

PrevLeaf: 2
ComPar: 7
Stride: 2

PrevLeaf: 5
ComPar: 11

Stride: 7

PrevLeaf: 5
ComPar: 11
Stride: 7

5

Learning Algorithm

1. Collect runtimes for nodes in split trees

2. Divide runtimes by size of overall transform

3. Describe nodes with features

4. Train a function approximator to predict a node’s

runtime given the node’s features

Training

• Trained regression trees using RT4.0

• Data from subsets of FFT and WHT formulas of

size 216

• Trained different regression trees for:

– WHT leaves

– FFT leaves

– FFT internal nodes

• Predicted for entire formulas by summing predictions

for all nodes

Predicted Runtime Versus Actual Runtime

FFT on a Pentium III

FFT (214) FFT (217)

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

4e+06 6e+06 8e+06 1e+07 1.2e+071.4e+071.6e+07

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)
Predicted Runtime (in CPU cycles)

• Trained only on nodes from FFT (216) split trees

• Predicts well across different sizes, even larger sizes!

Predicted Runtime Versus Actual Runtime

WHT on a Sun UltraSparc IIi

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

1e+06 2e+06 3e+06 4e+06

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

5e+07 1e+08 1.5e+08 2e+08
A

ct
ua

l R
un

tim
e

(in
 C

P
U

 c
yc

le
s)

Predicted Runtime (in CPU cycles)

• Trained only on leaves from WHT (216) split trees

• Predicts well across different sizes, even larger sizes!

Summary: Predicting Runtimes

Train a function approximator:

• Predict runtimes for nodes

• Train using runtime data collected for nodes

• Describe nodes with numeric features

By learning to predict runtimes for nodes:

• Accurately predict runtimes for entire formulas

• Accurately predict across many transform sizes while

trained on one size

Overview

• Background and Motivation

• Optimizing Performance by Searching

• Modeling Performance

• Generating Fast Formulas

• Conclusions

Generating Fast Formulas

• Can now predict runtimes for formulas

• But still MANY formulas to search through

Can we learn to generate fast formulas?

Control Learning Problem:

• Learn to control the generation of formulas to

produce fast ones

Generating Fast Formulas: Approach

Want to grow the fastest split tree:

• Begin with a root node of the desired size: 20

Generating Fast Formulas: Approach

Want to grow the fastest split tree:

• Begin with a root node of the desired size

• Choose best set of children out of all possible:

20

1 19
......

20

2

20

18 1195 15

20

Generating Fast Formulas: Approach

Want to grow the fastest split tree:

• Begin with a root node of the desired size

• Choose best set of children

• Recurse on each of the children:

20

5 15

3 2 5 10

Choosing the Best Children

How do we choose the best children?

• Define a value function over nodes

• Node’s value = runtime of best subtree

• Choose children with minimal sum of values

How do we calculate this value function?

Problem Structure

Overlapping Subproblems

• Many duplicated subtrees in different formulas

• Consider all possible WHT (220) split trees

• Given subtree of node 8:

– Appears many times in trees for size 220

– Appears once for every different subtree of 12

20

8 12

Problem Structure

Optimal Substructure

• Best subtree for node 8:

– Independent of node 12’s subtree

– But dependent on node 8’s location

• Features already capture this

20

8 12

Dynamic Programming

Duplicated Subproblems + Optimal Substructure =

Properties needed for DP

Describe nodes with features

• State = One set of feature values, describing a node

• Features describe context not just size of node

• 2 nodes in different trees can be same state

Run DP

• Calculate values for states

• Memoize results to save duplicating work

Value Function

State = node in split tree described by features

State’s value = runtime of best subtree

• Accurate runtimes are expensive to obtain

• Plus may not have a fully grown tree to run

• Use the regression trees to predict runtimes!

Mathematically: Value Function on States

State = node in split tree described by features

The value of a state is:

V (state) = min
subtrees

∑
node∈subtree

PredictedRuntime(node)

• Min over all possible subtrees of the given state

Recursive Formulation of Value Function

State = node in split tree described by features

The value of a state is:

V (state) = min
splittings

∑
children

V (child)

+ PredictedRuntime(state)

DP can calculate this value function!

Computing the Value Function

Use dynamic programming to calculate value function:

• Consider all possible sets of children of the root

• Recursively call DP on each of the children states

– Determine values of children states

– Memoizing results

• Determine set of children with minimal sum of values

• Root’s value is this minimal sum of values plus the

root’s predicted runtime

Generating Fast Formulas

Use value function to control generation of formulas

Generate split tree with minimal value

• Consider all possible sets of children of the root

• Look up values of children states

• Choose those that have the minimal sum of values

• Recurse on children

Generating with a Tolerance

Generates single tree with fastest predicted runtime

Two approximations made:

• Regression trees used to predict runtimes

• Assumed optimal substructure

Given a tolerance:

• Generate all trees with values within tolerance of

best value

• Rank formulas according to values (predicted runtimes)

Generation Rank 1 2 3 4 ...
Predicted Runtime 4.4 4.5 4.7 4.8 ...

Actual Runtime 4.4 4.7 4.3 5.2 ...

Fast Formula Generation Results

FFT on a Pentium III

Size

Generation rank

of fastest formula

Rank 1 formula is X%

slower than fastest for-

mula
212 16 14.3%
213 1 0.0%
214 2 13.6%
215 1 0.0%
216 1 0.0%
217 82 3.6%
218 11 6.5%

70,376 different FFT (218) formulas

Fast Formula Generation Results

FFT on a Pentium III

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

12 14 16 18 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 R
un

tim
e

�

Log Size

DP
Exhaust
Generate 1
Generate 20
Generate 100

Fast Formula Generation Results

WHT on a Pentium III

Size

Generation rank of best

known formula

Rank 1 formula is X%

slower than best known

formula
213 5 3.4%
214 4 3.0%
215 3 2.1%
216 4 1.7%
217 5 0.1%
218 4 2.0%
219 1 0.0%
220 4 1.7%

398,041 different WHT (220) formulas

Fast Formula Generation Results

WHT on a Sun UltraSparc IIi

Size

Generation rank of best

known formula

Rank 1 formula is X%

slower than best known

formula
213 14 77.7%
214 20 12.8%
215 1 0.0%
216 2 4.3%
217 7 18.0%
218 38 5.9%
219 17 3.3%
220 47 1.4%

398,041 different WHT (220) formulas

Fast Formula Generation Results

• Method never sees a timing for sizes other than 216

• First formula generated is very fast

• Generates fastest known formula within first several

formulas

Summary: Fast Formula Generation

Run dynamic programming:

• Determine value of different states

• Use regression trees to predict runtimes for nodes

Generate fast formulas:

• By choosing children with minimal sum of values

Excellent results:

• Generates the fastest known formulas

• Trained only on data of one transform size, and

generates fast formulas of many different sizes

Overview

• Background and Motivation

• Optimizing Performance by Searching

• Modeling Performance

• Generating Fast Formulas

• Conclusions

Contributions

Search Engine

• Works with many transforms and break down rules

• Searches over formulas and compiler options

• Includes newly developed STEER

Automatic Performance Modeling

• Uses collected runtimes to train ML techniques

• Uses developed and analyzed feature sets

• Learns models that predict across sizes

Fast Formula Generation

• Generates fastest formulas

• Never sees a timing for most transform sizes

Future Work

• Extend modeling and generation to other transforms

– For example, DTTs

– Multiple break down rules possible

– Children are different transforms

• Learn across different computer platforms

– Features of the architecture

• Apply work to multiprocessors or hardware

– New compiler options

– Different performance metrics (e.g., power usage)

• Optimizing other signal processing algorithms

beyond transforms or other numerical algorithms

Acknowledgements

Thesis Committee:

• Manuela Veloso

• Scott Fahlman

• John Lafferty

• Jeremy Johnson

SPIRAL group:

• José Moura, ECE, CMU

• Jeremy Johnson, MCS, Drexel

• Robert Johnson, MathStar

• David Padua, CS, University of Illinois

• Viktor Prasanna, CS, USC

• Markus Püschel, ECE, CMU

• Manuela Veloso, CS, CMU

• Gavin Haentjens, ECE, CMU

• David Sepiashvili, ECE, CMU

• Jianxin Xiong, CS, University of Illinois

Questions?

Extras

Cross Platform Results

fast formula for
PIII P4 Athlon Sun

Pentium III 900 MHz 0.83 1.08 0.99 1.10
Pentium 4 1.4 GHz 0.97 0.63 0.73 1.23

Athlon 1.1 GHz 1.23 1.23 1.07 1.22

ti
m

e
d

o
n

Sun UltraSparc II 450 MHz 0.95 1.67 1.42 0.82

Related Work

• Signal transform optimization

– Minimizing arithmetic operations

– Optimizing signal transforms for real computers
FFTW (Frigo & Johnson)

∗ Explicitly only considers FFTs
∗ Restricted search space, chosen by hand without

justification

• Automatic performance tuning and
platform adaptation

– PHiPAC (Bilmes et al.) and ATLAS (Whaley & Dongarra)
– Using reinforcement learning

(Lagoudakis & Littman; Vuduc et al.)
– Using statistical modeling (Brewer)
– Compiler Optimization (Moss et al.; Nisbet; Bodin et al.)
– Combinatorial Optimization (Boyan; Zhang & Dietterich)

DP

Algorithm:

• Try all possible ways to split the root node

• For each child, use previously found best split tree

• Keep track of best found tree

Assumes:

• Best way to split a node is independent of its

location in the split tree

Can generalize:

• Keep track of the n-Best formulas for each

transform/size

FFT on a Pentium

0.8

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 R
un

tim
e

�

Log Size

DP
STEER
Hill Climbing
Random Search
Timed Search

FFT on a Pentium: Number of Formulas Timed

1

10

100

1000

10000

5 10 15 20

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log Size

DP 1-Best
DP 2-Best
DP 4-Best

STEER
Hill Climbing

Timed Search
All Formulas

DCT Type II on a Pentium

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 R
un

tim
e

�

Log Size

DP
STEER
Hill Climbing
Random Search
Timed Search

DCT Type IV on a Pentium

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 2-Best
DP 4-Best
STEER
Hill Climbing
Random Search
Timed Search

DCT IV on a Pentium: Number of Formulas Timed

1

10

100

1000

10000

1 2 3 4 5 6 7 8

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log Size

DP 1-Best
DP 2-Best
DP 4-Best

STEER
Hill Climbing

Timed Search
All Formulas

FFT on a Sun

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 4-Best
STEER
Timed Search

FFT on a Pentium with Local Unrolling

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2 4 6 8 10 12 14 16

R
un

tim
e

D
iv

id
ed

 b
y

D
P

 1
-B

es
t R

un
tim

e

Log Size

DP 1-Best
DP 1-Best Local Unrolling
DP 4-Best
DP 4-Best Local Unrolling
STEER
STEER Local Unrolling
Timed Search

FFT with Local Unrolling: Number of Formulas Timed

1

10

100

1000

10000

2 4 6 8 10 12 14 16

N
um

be
r

of
 F

or
m

ul
as

 T
im

ed

Log Size

DP 1-Best
DP 1-Best Local Unrolling

DP 4-Best
DP 4-Best Local Unrolling

STEER
STEER Local Unrolling

Timed Search

WHT Runtime Vs. Cache Misses on a Pentium III

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

1.0e+05 2.0e+05 3.0e+05 4.0e+05 5.0e+05

R
un

tim
e

in
 C

P
U

 C
yc

le
s

�

 Level 1 Data Cache Misses

WHT Leaf Cache Misses on a Pentium III

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Level 1 Data Cache Misses

N
um

be
r

of
 L

ea
ve

s

214 215 216 2170

Predicted Cache Misses Versus Actual Runtime

WHT on a Pentium III

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)

1e+06

2e+06

3e+06

4e+06

5e+06

2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05A
ct

ua
l R

un
ni

ng
 T

im
e

in
 C

P
U

 C
yc

le
s

�

Predicted Number of Cache Misses

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

2.0e+06 4.0e+06 6.0e+06A
ct

ua
l R

un
ni

ng
 T

im
e

in
 C

P
U

 C
yc

le
s

�

Predicted Number of Cache Misses

WHT on a Sun UltraSparc IIi

Le
ve

l 2
 C

ac
he

 M
is

se
s

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
5

0 5 10 15

x 10
5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

7

Level 1 Data Cache Misses

R
un

tim
e

in
 C

P
U

 C
yc

le
s

Eagle Whtpclprof Wht−Bin−Rightmost−Noleaf1 Size 218

Predicted Runtime Versus Actual Runtime

WHT on a Pentium III

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

1e+06 2e+06 3e+06 4e+06 5e+06

A
ct

ua
l R

un
tim

e
(in

 C
P

U
 c

yc
le

s)

Predicted Runtime (in CPU cycles)

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08
A

ct
ua

l R
un

tim
e

(in
 C

P
U

 c
yc

le
s)

Predicted Runtime (in CPU cycles)

Generating Fast Formulas: Approach

• Try to formulate in terms of Markov Decision

Processes (MDPs) and Reinforcement Learning (RL)

• Final formulation not an MDP

• Final formulation borrows concepts from RL

MDPs

An MDP is a tuple (S,A, T, C):

• S is a set of states

• A is a set of actions

• T :S ×A → S is a transition function that maps the

current state and action to the next state

• C:S ×A → < is a cost function that maps the

current state and action onto its real valued cost

Markov Property: T and C only depend on the current

state and action

MDPs and RL

Agent:

• Observes current state

• Selects action to take

• Receives the cost for that action in that state

• Observes next state, and repeat

Reinforcement learning provides methods for finding a

policy π:S → A that selects the best action at each

state that minimizes the sum of costs incurred

Basic Formulation

Given a size, want to grow a fast split tree

Framing this problem in the MDP framework:

• States = unexpanded nodes in split tree

• Start state = root node of given size w/ no children

• Actions = ways to split a node, giving it children

OR, make the node a leaf

• Cost Function = runtime of node

• Goal = minimize sum of costs

Detail: State Space Representation

States = unexpanded nodes in split tree

But how to represent the states???

Same features as before:

• Size and stride of the given node

• Size and stride of the parent of the given node

• Size and stride of the common parent to this node

• Size and stride of children and grandchildren if

internal node

Detail: Cost Function

Ideal Cost Function =

Runtime of node represented by state

But, a node’s runtime is not easily obtained

However, we can predict runtimes for nodes!

Difficulty: Transition Function

What is the transition function for this problem?

Given that 2 children of the root are grown:

• Which node is the next state?

• When will we transition back to the sibling?

• Where to transition to from a leaf node?

• And still maintain the Markov property?

We depart from the MDP framework here . . .

	Title
	Background
	DFT
	WHT
	DCT
	Search Space
	Problem
	Contribution Overview

	Optimizing
	Search Methods
	STEER
	Mutations
	Running
	Search Results
	Search Summary

	Modeling
	Predict Alg
	Features
	Training
	Eval Predict
	Pred Summary

	Generating
	Approach
	Structure
	DP
	Value
	Algorithm
	Evaluation
	Gen Summary

	Conclusions
	Contributions
	Future Work
	Acknowledge

	Questions
	Extras
	Cross Platform
	Related
	DP Search
	Extra Search Results
	FFT Results
	DCT2 Results
	DCT4 Results
	Sun Results
	Unrolling Results

	Cache Misses
	WHT Pent Pred
	MDPs
	Basic
	Details

