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Signal Processing

Many signal processing algorithms:
e take as input a signal X as a vector

e produce transformation of signal Y = A X

Issue:

e Nalve implementation of matrix multiplication is slow

Example signal processing applications:
e Real time audio, image, speech processing

e Analysis of large data sets



Factoring Signal Transforms

e [ransformation matrices are highly structured
e Can factor transformation matrices

e Factorizations allow for faster implementations



Discrete Fourier Transform (DFT)

Highly structured, for example:

1 1 1 1]
1 i -1 —i
DFT(2%) = 1 -1 1 -1
1 i -1

Cooley-Tukey factorization or break down rule:
DFT(rs) = (DFT(r)®Is)T.° (I ® DFT(s)) L,”

Can recursively apply break down rule
Yielding 6(nlogn) algorithm (FFT)



DFT Example

DFT(2>)

= (DFT(23) ® I.) T3? (I @ DFT(22)) L§?

= ((DFT(2Y) ® I4) T§ (I, ® DFT(2?)) L8] ® I4) T3>
(Is® [((DFT(2Y) ® 1) T3 (I ® DFT(2Y)) L4]) L3?

We can visualize this

as a split tree:
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CT Rule
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Walsh-Hadamard Transform (WHT)

101 1 1
1 -1 1 -1
WHT(2®) = |1 ] 1 ]
1 -1 -1 1

Break down rule:
t

WHT(2") = ,H1(12n1+...+ni_1 QWHT(2") ® IQni+1+---+nt)
1=

for positive integers n; such that n=n1 +--- 4+ n¢



Discrete Cosine Transform (DCT) Example

DCT IV 2
RuleDCT4 3
DCT Il 23 DST Il 23
RuleDCT2 2 RuleDST2 3
DCT Il 22 DCT IV 2 DST IV 2 DST I 22
RuleDCT2 2 RuleDCT4 4 RuleDST4 1  RuleDST2 3
DCTII2 DCTIV2 DSTIV2 DSTII2 DCTIVZ DSTIV2 DSTII2
RuleDCT4 3
/\

DCTII2 DSTII2



Search Space

Large number of factorizations:

Size DFT| WHT DCT IV
21 1 1 1
pX 6 2 10
23 40 6 126
24 360 24 31,242
25 | 258,400 112| 1.9 x 10°
201 1.8 x 1013 568 | 7.3 x 1018
27 7.2 x 1013 3,032 | 1.1 x 1038
28 1 7.2x 1014 | 16,768 | 2.3 x107°
29111.5x 10| 95,199 1.1 x 10133

210123 % 1017 |551,613|2.2 x 10306



Varying Performance

Varying performance of factorizations:
e Formulas have very different running times
e Same number of arithmetic operations, but different:
— Cache performance
— Execution unit performance

— Register file performance

e Small changes in the split tree can lead to
significantly different running times

e Optimal formulas across machines are different



Histogram of WHT(21®) Running Times
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Thesis Problem

Find the best implementation for a given:
e [ransform
e Size

e Computing platform
Huge search space of implementations

Constrained by a given:
e Set of break down rules
e Code implementation strategy for formulas
(possibly tunable)

e Method of obtaining runtime performance



Contributions

Search methods for optimizing performance
e Intelligently search space

e Avoid timing all formulas

Automated methods for modeling performance

e Learn models to predict performance of formulas

Method for generating fast implementations
e Use learned models to optimize performance
e Control the construction of formulas

e Given model, no need to time any formulas
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Infrastructure

Defined Transforms
Break Down Rules

L

2 Formula Generation

(Transform Factorization)

l 4 Search for Fast Implementations

3

Code Generation = =—

Y
Executable Code

SPIRAL: Signal Processing algorithms Implementation

Research for Adaptable Libraries

Download system at: http://www.ece.cmu.edu/ spiral



Search Methods Implemented in SPIRAL

e Exhaustive Search

e Dynamic Programming (DP)

e Random Search

e Hill Climbing

e STEER (evolutionary algorithm)

e Timed Search (a meta-search algorithm)

e Search over new user-defined transforms and break
down rules

e Search over formulas and options to code generator



STEER: Split Tree Evolution for Efficient Runtimes

Generate a population of random legal split trees
Repeatedly “evolve” the population:
e Time trees in current set
e Generate new population with fithess proportional
reproduction while:
— Maintaining the current best trees
— Randomly applying mutation to individual trees

— Randomly applying crossover to pairs of trees



Mutation: Regrow

DCT IV 2
RuleDCT4 3
DCTII 2 DST Il 23
RuleDCT2 2 RuleDST2 3
DCT I 22 DCT IV 2 DST IV 2 DST Il 2
RuleDCT2 2 RuleDCT4 4 RuleDST4 1  RuleDST2 3
DCTII2 DCTIV2 DSTIV2 DSTII2 DCTIVZ DSTIV2 DSTII2
RuleDCT4 3
/\

DCTII2 DSTII2

Original



Mutation: Regrow

DCT IV 2
RuleDCT4 3

/\

DCTII 2 DST Il 23
RuleDCT2 2 RuleDST2 3

/\ /\

DCT I 22 DCT IV 2 DST IV 2 DST Il 2
RuleDCT2 2 RuleDCT4 4  RuleDST4 1

DCTII2 DCTIV2 DSTIV2 DSTII2 DCTIVZ
RuleDCT4 3

T

DCTII2 DSTII2

Original = Truncate



Mutation: Regrow

DCT IV 2
RuleDCT4 3

/\

DCT Il 2 DST Il 23
RuleDCT2 2 RuleDST2 3

/\ /\

DCT Il 22 DCT IV 2 DST IV 2 DST Il 2
RuleDCT2 2 RuleDCT4 4 RuleDST4 1  RuleDST2 2

DCTII2 DCTIV2 DSTIV2 DSTI2 DCTIVZ DCTII 22
RuUeDCT4 3  RuleDCT2 2

T RN

DCTII2 DSTII2 DCTIIZ2 DCTIVZ2

Original = Truncate = Regrow



Running STEER
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FFT on a Pentium III
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FFT on a Sun UltraSparc Il
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DCT Type Il on a Pentium III
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Summary: Optimization by Intelligent Search

e Many search methods implemented
e NO one search method dominates for all transforms
and sizes

e Requires timing many formulas, but not all
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Learning to Predict Performance

Can we learn to predict performance of formulas?
e Can gather empirical data by running formulas

e Use automated machine learning techniques

Machine learning task:
e Predict performance for entire formulas
e Predict performance for individual nodes in split tree
— Sum predictions for nodes to predict for formula
— For WHT, computation occurs in leaves only
— For FFT, computation occurs in all nodes

— Limit FFT to Cooley-Tukey factorization



Learning Algorithm

1. Collect runtimes for nodes in split trees
2. Divide runtimes by size of overall transform

3. Train a function approximator to predict runtimes

for split tree nodes

Need to describe split tree nodes with features



Features for Split Tree

Nodes

Size and stride of the given

Size and stride of each of t

node

Size and stride of the parent of the given node
Size and stride of the common parent

he children and grandchildren

11
Stride: O

ComPar: -
PrevLeaf: -

/\

A4

Stride: 7
ComPar: 11
PrevLeaf: 5

T

1 3

Stride: 10 Stride: 7
ComPar: 4 ComPar: 11
PrevLeaf: 3 PrevLeaf: 5

7
Stride 0
ComPar: -
PrevLeaf: -
5 2

Stride: 2 Stride: 0
ComPar: 7 ComPar: -
PrevLeaf: 2 PrevLeaf: -



Learning Algorithm

Collect runtimes for nodes in split trees
. Divide runtimes by size of overall transform

. Describe nodes with features

AW N F

. Train a function approximator to predict a node’s

runtime given the node’s features



Training

e [Trained regression trees using RT4.0

e Data from subsets of FFT and WH'T formulas of
size 216

e [rained different regression trees for:
— WHT leaves
— FFT leaves

— FFT internal nodes

e Predicted for entire formulas by summing predictions

for all nodes



Predicted Runtime Versus Actual Runtime

Actual Runtime (in CPU cycles)
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Predicts well across different sizes, even larger sizes!



Predicted Runtime Versus Actual Runtime

WHT on a Sun UltraSparc IIi
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e Trained only on leaves from WHT(21%) split trees
e Predicts well across different sizes, even larger sizes!



Summary: Predicting Runtimes

Train a function approximator:
e Predict runtimes for nodes
e [rain using runtime data collected for nodes

e Describe nodes with numeric features

By learning to predict runtimes for nodes:
e Accurately predict runtimes for entire formulas
e Accurately predict across many transform sizes while

trained on one size
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Generating Fast Formulas

e Can now predict runtimes for formulas
e But still MANY formulas to search through

Can we learn to generate fast formulas?

Control Learning Problem:
e Learn to control the generation of formulas to

produce fast ones



Generating Fast Formulas: Approach

Want to grow the fastest split tree:

e Begin with a root node of the desired size:



Generating Fast Formulas: Approach

Want to grow the fastest split tree:
e Begin with a root node of the desired size

e Choose best set of children out of all possible:

20 20 20 20

1 19 2 18 5 15 19

1



Generating Fast Formulas: Approach

Want to grow the fastest split tree:
e Begin with a root node of the desired size
e Choose best set of children

e Recurse on each of the children:

20
/\
5 15
NN
3 2 5 10



Choosing the Best Children

How do we choose the best children?
e Define a value function over nodes
e Node’'s value = runtime of best subtree

e Choose children with minimal sum of values

How do we calculate this value function?



Problem Structure

Overlapping Subproblems
e Many duplicated subtrees in different formulas
e Consider all possible WHT(229) split trees
e Given subtree of node 8:
— Appears many times in trees for size 229
— Appears once for every different subtree of 12

N

38 12




Problem Structure

Optimal Substructure
e Best subtree for node 8:
— Independent of node 12's subtree
— But dependent on node 8’'s location

e Features already capture this

AN

38 12




Dynamic Programming

Duplicated Subproblems 4+ Optimal Substructure =
Properties needed for DP

Describe nodes with features
e State = One set of feature values, describing a node
e Features describe context not just size of node

e 2 nodes in different trees can be same state

Run DP
e Calculate values for states

e Memoize results to save duplicating work



Value Function

State = node in split tree described by features

State’s value = runtime of best subtree
e Accurate runtimes are expensive to obtain
e Plus may not have a fully grown tree to run

e Use the regression trees to predict runtimes!



Mathematically: Value Function on States

State = node in split tree described by features

The value of a state is:

V(state) = min > Predicted Runtime(node)

subtrees nodecsubtree

e Min over all possible subtrees of the given state



Recursive Formulation of Value Function

State = node in split tree described by features

The value of a state is:

V(state) = min > V(child)
splittings children

+ Predicted Runtime(state)

DP can calculate this value function!



Computing the Value Function

Use dynamic programming to calculate value function:
e Consider all possible sets of children of the root
e Recursively call DP on each of the children states
— Determine values of children states
— Memoizing results
e Determine set of children with minimal sum of values
e Root’s value is this minimal sum of values plus the

root’s predicted runtime



Generating Fast Formulas

Use value function to control generation of formulas

Generate split tree with minimal value
e Consider all possible sets of children of the root
e ook up values of children states
e Choose those that have the minimal sum of values

e Recurse on children



Generating with a Tolerance

Generates single tree with fastest predicted runtime

Two approximations made:
e Regression trees used to predict runtimes

e Assumed optimal substructure

Given a tolerance:
e Generate all trees with values within tolerance of
best value

e Rank formulas according to values (predicted runtimes)

Generation Rank | 1 2 3 4
Predicted Runtime | 4.4 45 4.7 4.8
Actual Runtime (4.4 4.7 4.3 5.2




Fast Formula Generation Results

FFT on a Pentium III

Generation rank

Rank 1 formula is X%

slower than fastest for-

Size | of fastest formula | mula

212 16 14.3%
213 1 0.0%
214 2 13.6%
215 1 0.0%
216 1 0.0%
217 82 3.6%
218 11 6.5%

70,376 different FFT(218) formulas



Fast Formula Generation Results

Runtime Divided by DP Runtime
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Fast Formula Generation Results

WHT on a Pentium III

Rank 1 formula is X%
Generation rank of best | slower than best known
Size | known formula formula
213 5 3.4%
214 4 3.0%
215 3 2.1%
216 4 1.7%
217 5 0.1%
218 4 2.0%
219 1 0.0%
220 4 1.7%

398,041 different WHT(22°) formulas



Fast Formula Generation Results

WHT on a Sun UltraSparc IIi

Generation rank of best

Rank 1 formula is X%

slower than best known

Size | known formula formula

213 14 77.7%
214 20 12.8%
215 1 0.0%
216 2 4.3%
217 7 18.0%
218 38 5.9%
219 17 3.3%
220 47 1.4%

398,041 different WHT(22°) formulas



Fast Formula Generation Results

e Method never sees a timing for sizes other than 216
e First formula generated is very fast
e Generates fastest known formula within first several

formulas



Summary: Fast Formula Generation

Run dynamic programming:
e Determine value of different states

e Use regression trees to predict runtimes for nodes

Generate fast formulas:

e By choosing children with minimal sum of values

Excellent results:
e Generates the fastest known formulas
e [rained only on data of one transform size, and

generates fast formulas of many different sizes
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Contributions

Search Engine
e \WWorks with many transforms and break down rules
e Searches over formulas and compiler options
e Includes newly developed STEER
Automatic Performance Modeling
e Uses collected runtimes to train ML techniques
e Uses developed and analyzed feature sets
e Learns models that predict across sizes
Fast Formula Generation
e Generates fastest formulas

e Never sees a timing for most transform sizes



Future Work

e Extend modeling and generation to other transforms
— For example, DT Ts
— Multiple break down rules possible
— Children are different transforms
e Learn across different computer platforms
— Features of the architecture
e Apply work to multiprocessors or hardware
— New compiler options
— Different performance metrics (e.g., power usage)
e Optimizing other signal processing algorithms

beyond transforms or other numerical algorithms
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Questions?
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Cross Platform Results

PIII

fast formula for
Athlon Sun

P4

Pentium III 900 MHz
Pentium 4 1.4 GHz

Athlon 1.1 GHz

Sun UltraSparc II 450 MHz

timed on

0.83
0.97
1.23
0.95

1.08
0.63
1.23
1.67

0.99
0.73
1.07
1.42

1.10
1.23
1.22
0.82



Related Work

e Signal transform optimization
— Minimizing arithmetic operations

— Optimizing signal transforms for real computers
FFTW (Frigo & Johnson)

x EXxplicitly only considers FFTs
x Restricted search space, chosen by hand without
justification

e Automatic performance tuning and
platform adaptation

— PHIPAC (Bilmes et al.) and ATLAS (Whaley & Dongarra)
— Using reinforcement learning

(Lagoudakis & Littman; Vuduc et al.)
— Using statistical modeling (Brewer)
— Compiler Optimization (Moss et al.; Nisbet; Bodin et al.)
— Combinatorial Optimization (Boyan; Zhang & Dietterich)



DP

Algorithm:
e [ry all possible ways to split the root node
e For each child, use previously found best split tree

e Keep track of best found tree

AsSsumes:

e Best way to split a node is independent of its

location in the split tree

Can generalize:

e Keep track of the n-Best formulas for each

transform/size



FFT on a Pentium
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FFT on a Pentium: Number of Formulas Timed
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DCT Type Il on a Pentium
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DCT Type IV on a Pentium
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DCT IV on a Pentium: Number of Formulas Timed
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FFT on a Sun
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FFT on a Pentium with Local Unrolling
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FFT with Local Unrolling: Number of Formulas Timed
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VWHT Runtime VSs.

Cache Misses on a Pentium III
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WHT Leaf Cache Misses on a Pentium III
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Level 1 Data Cache Misses



Predicted Cache Misses VVersus Actual Runtime
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WHT on a Sun UltraSparc IIi
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Predicted Runtime Versus Actual Runtime

WHT on a Pentium III
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Generating Fast Formulas: Approach

e [ry to formulate in terms of Markov Decision

Processes (MDPs) and Reinforcement Learning (RL)

e Final formulation not an MDP

e Final formulation borrows concepts from RL



MDPs

An MDP is a tuple (S, A, T,C):
e § IS a set of states
e A is a set of actions
e I"Sx A— S is a transition function that maps the
current state and action to the next state
e (S xA— R is a cost function that maps the

current state and action onto its real valued cost

Markov Property: T' and C' only depend on the current

state and action



MDPs and RL

Agent:
e Observes current state
e Selects action to take
e Receives the cost for that action in that state

e Observes next state, and repeat

Reinforcement learning provides methods for finding a
policy m: S — A that selects the best action at each

state that minimizes the sum of costs incurred



Basic Formulation

Given a size, want to grow a fast split tree

Framing this problem in the MDP framework:
e States = unexpanded nodes in split tree
e Start state = root node of given size w/ no children
e Actions = ways to split a node, giving it children
OR, make the node a leaf
e Cost Function = runtime of node

e Goal = minimize sum of costs



Detail: State Space Representation

States = unexpanded nodes in split tree

But how to represent the states?7??

Same features as before:
e Size and stride of the given node
e Size and stride of the parent of the given node
e Size and stride of the common parent to this node
e Size and stride of children and grandchildren if

internal node



Detail: Cost Function

Ideal Cost Function =

Runtime of node represented by state

But, a node’s runtime is not easily obtained

However, we can predict runtimes for nodes!



Difficulty: Transition Function

What is the transition function for this problem?

Given that 2 children of the root are grown:
e \Which node is the next state?
e When will we transition back to the sibling?
e Where to transition to from a leaf node?

e And still maintain the Markov property?

We depart from the MDP framework here ...
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