
Automating

the Modeling and Optimization of the

Performance of Signal Processing Algorithms

Bryan Singer

December 13, 2001

Thesis Committee:
Manuela Veloso (Chair)
Scott Fahlman
John Lafferty
Jeremy Johnson (Drexel University)



Overview

• Background and Motivation

• Optimizing Performance by Searching

• Modeling Performance

• Generating Fast Formulas

• Conclusions



Signal Processing

Many signal processing algorithms:

• take as input a signal X as a vector

• produce transformation of signal Y = AX

Issue:

• Näıve implementation of matrix multiplication is slow

Example signal processing applications:

• Real time audio, image, speech processing

• Analysis of large data sets



Factoring Signal Transforms

• Transformation matrices are highly structured

• Can factor transformation matrices

• Factorizations allow for faster implementations



Discrete Fourier Transform (DFT)

Highly structured, for example:

DFT (22) =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



Cooley-Tukey factorization or break down rule:

DFT (rs) = (DFT (r)⊗ Is)T rss (Ir ⊗DFT (s))Lrsr

Can recursively apply break down rule

Yielding θ(n logn) algorithm (FFT)



DFT Example

DFT (25)

= (DFT (23)⊗ I4)T32
4 (I8 ⊗DFT (22))L32

8

= ([(DFT (21)⊗ I4)T8
4 (I2 ⊗DFT (22))L8

2]⊗ I4)T32
4

(I8 ⊗ [(DFT (21)⊗ I2)T4
2 (I2 ⊗DFT (21))L4

2])L32
8

We can visualize this

as a split tree: CT Rule

CT RuleCT Rule

DFT( 2 ) DFT( 2 ) DFT( 2 ) DFT( 2 )

DFT( 2 )DFT( 2 )

DFT( 2 )

1 1

23

1 2

5



Walsh-Hadamard Transform (WHT)

WHT (22) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Break down rule:

WHT (2n) =
t∏

i=1
(I

2n1+···+ni−1 ⊗WHT (2ni)⊗ I
2ni+1+···+nt)

for positive integers ni such that n = n1 + · · ·+ nt



Discrete Cosine Transform (DCT) Example

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

RuleDCT2_2 RuleDCT4_4 RuleDST4_1 RuleDST2_3
22�DCT II 22�DCT IV 22�DST IV 22�DST II

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV DSTIV2 DSTII2

DCTII 2 DSTII2

RuleDCT4_3

RuleDCT4_3



Search Space

Large number of factorizations:

Size DFT WHT DCT IV

21 1 1 1
22 6 2 10
23 40 6 126
24 360 24 31,242
25 258,400 112 1.9× 109

26 1.8× 1013 568 7.3× 1018

27 7.2× 1013 3,032 1.1× 1038

28 7.2× 1014 16,768 2.3× 1076

29 1.5× 1016 95,199 1.1× 10153

210 2.3× 1017 551,613 2.2× 10306



Varying Performance

Varying performance of factorizations:

• Formulas have very different running times

• Same number of arithmetic operations, but different:

– Cache performance

– Execution unit performance

– Register file performance

• Small changes in the split tree can lead to

significantly different running times

• Optimal formulas across machines are different



Histogram of WHT (216) Running Times
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Thesis Problem

Find the best implementation for a given:

• Transform

• Size

• Computing platform

Huge search space of implementations

Constrained by a given:

• Set of break down rules

• Code implementation strategy for formulas

(possibly tunable)

• Method of obtaining runtime performance



Contributions

Search methods for optimizing performance

• Intelligently search space

• Avoid timing all formulas

Automated methods for modeling performance

• Learn models to predict performance of formulas

Method for generating fast implementations

• Use learned models to optimize performance

• Control the construction of formulas

• Given model, no need to time any formulas
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Infrastructure

4

Executable Code

Code Generation

Search for Fast Implementations

(Transform Factorization)

2

3

Formula Generation

1
Break Down Rules
Defined Transforms

SPIRAL: Signal Processing algorithms Implementation

Research for Adaptable Libraries

Download system at: http://www.ece.cmu.edu/~spiral



Search Methods Implemented in SPIRAL

• Exhaustive Search

• Dynamic Programming (DP)

• Random Search

• Hill Climbing

• STEER (evolutionary algorithm)

• Timed Search (a meta-search algorithm)

• Search over new user-defined transforms and break

down rules

• Search over formulas and options to code generator



STEER: Split Tree Evolution for Efficient Runtimes

Generate a population of random legal split trees

Repeatedly “evolve” the population:

• Time trees in current set

• Generate new population with fitness proportional

reproduction while:

– Maintaining the current best trees

– Randomly applying mutation to individual trees

– Randomly applying crossover to pairs of trees



Mutation: Regrow

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

DCTII 2 DSTII2

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV DSTIV2 DSTII2

22�DCT II 22�DCT IV 22�DST IV 22�DST II

RuleDCT4_3

RuleDCT4_3

RuleDCT2_2 RuleDCT4_4 RuleDST4_1 RuleDST2_3

Original



Mutation: Regrow

24DCT IV

RuleDST2_3RuleDCT2_2
23DCT II 23DST II

DCTII 2 DSTII2

DCTII2 DCTIV2 2DSTIV 2DSTII 22�DCTIV

22�DCT II 22�DCT IV 22�DST IV 22�DST II

RuleDCT4_3

RuleDCT4_3

RuleDCT2_2 RuleDCT4_4 RuleDST4_1

Original ⇒ Truncate



Mutation: Regrow

24

23DCT II 23DST II
RuleDST2_3RuleDCT2_2

2DCTII DSTII2

22�DCTIV2DSTII2DSTIVDCTIV2DCTII2

22�DCT II 22�DCT IV 22�DST IV

2DCTII 2DCTIV

22�DCTII

22�DST II

RuleDCT4_3
DCT IV

RuleDCT4_3

RuleDCT2_2 RuleDCT4_4 RuleDST4_1

RuleDCT2_2

RuleDST2_2

Original ⇒ Truncate ⇒ Regrow



Running STEER
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FFT on a Pentium III
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FFT on a Sun UltraSparc IIi
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DCT Type II on a Pentium III
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Summary: Optimization by Intelligent Search

• Many search methods implemented

• No one search method dominates for all transforms

and sizes

• Requires timing many formulas, but not all
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Learning to Predict Performance

Can we learn to predict performance of formulas?

• Can gather empirical data by running formulas

• Use automated machine learning techniques

Machine learning task:

• Predict performance for entire formulas

• Predict performance for individual nodes in split tree

– Sum predictions for nodes to predict for formula

– For WHT, computation occurs in leaves only

– For FFT, computation occurs in all nodes

– Limit FFT to Cooley-Tukey factorization



Learning Algorithm

1. Collect runtimes for nodes in split trees

2. Divide runtimes by size of overall transform

3. Train a function approximator to predict runtimes

for split tree nodes

Need to describe split tree nodes with features



Features for Split Tree Nodes

• Size and stride of the given node

• Size and stride of the parent of the given node

• Size and stride of the common parent

• Size and stride of each of the children and grandchildren

11

PrevLeaf: -
ComPar: -
Stride: 0

4 7

PrevLeaf: -
ComPar: -
Stride 0

1 3 2

PrevLeaf: 3
ComPar: 4
Stride: 10

ComPar: -
PrevLeaf: -

Stride: 0

PrevLeaf: 2
ComPar: 7
Stride: 2

PrevLeaf: 5
ComPar: 11

Stride: 7

PrevLeaf: 5
ComPar: 11
Stride: 7

5



Learning Algorithm

1. Collect runtimes for nodes in split trees

2. Divide runtimes by size of overall transform

3. Describe nodes with features

4. Train a function approximator to predict a node’s

runtime given the node’s features



Training

• Trained regression trees using RT4.0

• Data from subsets of FFT and WHT formulas of

size 216

• Trained different regression trees for:

– WHT leaves

– FFT leaves

– FFT internal nodes

• Predicted for entire formulas by summing predictions

for all nodes



Predicted Runtime Versus Actual Runtime

FFT on a Pentium III

FFT (214) FFT (217)
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• Trained only on nodes from FFT (216) split trees

• Predicts well across different sizes, even larger sizes!



Predicted Runtime Versus Actual Runtime

WHT on a Sun UltraSparc IIi

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)
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• Trained only on leaves from WHT (216) split trees

• Predicts well across different sizes, even larger sizes!



Summary: Predicting Runtimes

Train a function approximator:

• Predict runtimes for nodes

• Train using runtime data collected for nodes

• Describe nodes with numeric features

By learning to predict runtimes for nodes:

• Accurately predict runtimes for entire formulas

• Accurately predict across many transform sizes while

trained on one size
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Generating Fast Formulas

• Can now predict runtimes for formulas

• But still MANY formulas to search through

Can we learn to generate fast formulas?

Control Learning Problem:

• Learn to control the generation of formulas to

produce fast ones



Generating Fast Formulas: Approach

Want to grow the fastest split tree:

• Begin with a root node of the desired size: 20



Generating Fast Formulas: Approach

Want to grow the fastest split tree:

• Begin with a root node of the desired size

• Choose best set of children out of all possible:

20

1 19
......

20

2

20

18 1195 15

20



Generating Fast Formulas: Approach

Want to grow the fastest split tree:

• Begin with a root node of the desired size

• Choose best set of children

• Recurse on each of the children:

20

5 15

3 2 5 10



Choosing the Best Children

How do we choose the best children?

• Define a value function over nodes

• Node’s value = runtime of best subtree

• Choose children with minimal sum of values

How do we calculate this value function?



Problem Structure

Overlapping Subproblems

• Many duplicated subtrees in different formulas

• Consider all possible WHT (220) split trees

• Given subtree of node 8:

– Appears many times in trees for size 220

– Appears once for every different subtree of 12

20

8 12



Problem Structure

Optimal Substructure

• Best subtree for node 8:

– Independent of node 12’s subtree

– But dependent on node 8’s location

• Features already capture this

20

8 12



Dynamic Programming

Duplicated Subproblems + Optimal Substructure =

Properties needed for DP

Describe nodes with features

• State = One set of feature values, describing a node

• Features describe context not just size of node

• 2 nodes in different trees can be same state

Run DP

• Calculate values for states

• Memoize results to save duplicating work



Value Function

State = node in split tree described by features

State’s value = runtime of best subtree

• Accurate runtimes are expensive to obtain

• Plus may not have a fully grown tree to run

• Use the regression trees to predict runtimes!



Mathematically: Value Function on States

State = node in split tree described by features

The value of a state is:

V (state) = min
subtrees

∑
node∈subtree

PredictedRuntime(node)

• Min over all possible subtrees of the given state



Recursive Formulation of Value Function

State = node in split tree described by features

The value of a state is:

V (state) = min
splittings

∑
children

V (child)

+ PredictedRuntime(state)

DP can calculate this value function!



Computing the Value Function

Use dynamic programming to calculate value function:

• Consider all possible sets of children of the root

• Recursively call DP on each of the children states

– Determine values of children states

– Memoizing results

• Determine set of children with minimal sum of values

• Root’s value is this minimal sum of values plus the

root’s predicted runtime



Generating Fast Formulas

Use value function to control generation of formulas

Generate split tree with minimal value

• Consider all possible sets of children of the root

• Look up values of children states

• Choose those that have the minimal sum of values

• Recurse on children



Generating with a Tolerance

Generates single tree with fastest predicted runtime

Two approximations made:

• Regression trees used to predict runtimes

• Assumed optimal substructure

Given a tolerance:

• Generate all trees with values within tolerance of

best value

• Rank formulas according to values (predicted runtimes)

Generation Rank 1 2 3 4 ...
Predicted Runtime 4.4 4.5 4.7 4.8 ...

Actual Runtime 4.4 4.7 4.3 5.2 ...



Fast Formula Generation Results

FFT on a Pentium III

Size

Generation rank

of fastest formula

Rank 1 formula is X%

slower than fastest for-

mula
212 16 14.3%
213 1 0.0%
214 2 13.6%
215 1 0.0%
216 1 0.0%
217 82 3.6%
218 11 6.5%

70,376 different FFT (218) formulas



Fast Formula Generation Results

FFT on a Pentium III
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Fast Formula Generation Results

WHT on a Pentium III

Size

Generation rank of best

known formula

Rank 1 formula is X%

slower than best known

formula
213 5 3.4%
214 4 3.0%
215 3 2.1%
216 4 1.7%
217 5 0.1%
218 4 2.0%
219 1 0.0%
220 4 1.7%

398,041 different WHT (220) formulas



Fast Formula Generation Results

WHT on a Sun UltraSparc IIi

Size

Generation rank of best

known formula

Rank 1 formula is X%

slower than best known

formula
213 14 77.7%
214 20 12.8%
215 1 0.0%
216 2 4.3%
217 7 18.0%
218 38 5.9%
219 17 3.3%
220 47 1.4%

398,041 different WHT (220) formulas



Fast Formula Generation Results

• Method never sees a timing for sizes other than 216

• First formula generated is very fast

• Generates fastest known formula within first several

formulas



Summary: Fast Formula Generation

Run dynamic programming:

• Determine value of different states

• Use regression trees to predict runtimes for nodes

Generate fast formulas:

• By choosing children with minimal sum of values

Excellent results:

• Generates the fastest known formulas

• Trained only on data of one transform size, and

generates fast formulas of many different sizes
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Contributions

Search Engine

• Works with many transforms and break down rules

• Searches over formulas and compiler options

• Includes newly developed STEER

Automatic Performance Modeling

• Uses collected runtimes to train ML techniques

• Uses developed and analyzed feature sets

• Learns models that predict across sizes

Fast Formula Generation

• Generates fastest formulas

• Never sees a timing for most transform sizes



Future Work

• Extend modeling and generation to other transforms

– For example, DTTs

– Multiple break down rules possible

– Children are different transforms

• Learn across different computer platforms

– Features of the architecture

• Apply work to multiprocessors or hardware

– New compiler options

– Different performance metrics (e.g., power usage)

• Optimizing other signal processing algorithms

beyond transforms or other numerical algorithms
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Questions?



Extras



Cross Platform Results

fast formula for
PIII P4 Athlon Sun

Pentium III 900 MHz 0.83 1.08 0.99 1.10
Pentium 4 1.4 GHz 0.97 0.63 0.73 1.23

Athlon 1.1 GHz 1.23 1.23 1.07 1.22

ti
m

e
d

o
n

Sun UltraSparc II 450 MHz 0.95 1.67 1.42 0.82



Related Work

• Signal transform optimization

– Minimizing arithmetic operations

– Optimizing signal transforms for real computers
FFTW (Frigo & Johnson)

∗ Explicitly only considers FFTs
∗ Restricted search space, chosen by hand without

justification

• Automatic performance tuning and
platform adaptation

– PHiPAC (Bilmes et al.) and ATLAS (Whaley & Dongarra)
– Using reinforcement learning

(Lagoudakis & Littman; Vuduc et al.)
– Using statistical modeling (Brewer)
– Compiler Optimization (Moss et al.; Nisbet; Bodin et al.)
– Combinatorial Optimization (Boyan; Zhang & Dietterich)



DP

Algorithm:

• Try all possible ways to split the root node

• For each child, use previously found best split tree

• Keep track of best found tree

Assumes:

• Best way to split a node is independent of its

location in the split tree

Can generalize:

• Keep track of the n-Best formulas for each

transform/size



FFT on a Pentium
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FFT on a Pentium: Number of Formulas Timed
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DCT Type II on a Pentium
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DCT Type IV on a Pentium
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DCT IV on a Pentium: Number of Formulas Timed
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FFT on a Sun
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FFT on a Pentium with Local Unrolling
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FFT with Local Unrolling: Number of Formulas Timed
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WHT Runtime Vs. Cache Misses on a Pentium III
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WHT Leaf Cache Misses on a Pentium III
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Predicted Cache Misses Versus Actual Runtime

WHT on a Pentium III

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)
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WHT on a Sun UltraSparc IIi
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Predicted Runtime Versus Actual Runtime

WHT on a Pentium III
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WHT (214) Rightmost WHT (220)
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Generating Fast Formulas: Approach

• Try to formulate in terms of Markov Decision

Processes (MDPs) and Reinforcement Learning (RL)

• Final formulation not an MDP

• Final formulation borrows concepts from RL



MDPs

An MDP is a tuple (S,A, T, C):

• S is a set of states

• A is a set of actions

• T :S ×A → S is a transition function that maps the

current state and action to the next state

• C:S ×A → < is a cost function that maps the

current state and action onto its real valued cost

Markov Property: T and C only depend on the current

state and action



MDPs and RL

Agent:

• Observes current state

• Selects action to take

• Receives the cost for that action in that state

• Observes next state, and repeat

Reinforcement learning provides methods for finding a

policy π:S → A that selects the best action at each

state that minimizes the sum of costs incurred



Basic Formulation

Given a size, want to grow a fast split tree

Framing this problem in the MDP framework:

• States = unexpanded nodes in split tree

• Start state = root node of given size w/ no children

• Actions = ways to split a node, giving it children

OR, make the node a leaf

• Cost Function = runtime of node

• Goal = minimize sum of costs



Detail: State Space Representation

States = unexpanded nodes in split tree

But how to represent the states???

Same features as before:

• Size and stride of the given node

• Size and stride of the parent of the given node

• Size and stride of the common parent to this node

• Size and stride of children and grandchildren if

internal node



Detail: Cost Function

Ideal Cost Function =

Runtime of node represented by state

But, a node’s runtime is not easily obtained

However, we can predict runtimes for nodes!



Difficulty: Transition Function

What is the transition function for this problem?

Given that 2 children of the root are grown:

• Which node is the next state?

• When will we transition back to the sibling?

• Where to transition to from a leaf node?

• And still maintain the Markov property?

We depart from the MDP framework here . . .
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