Automating

the Modeling and Optimization of the Performance of Signal Processing Algorithms

Bryan Singer

December 13, 2001

Thesis Committee:
Manuela Veloso (Chair)
Scott Fahlman
John Lafferty
Jeremy Johnson (Drexel University)

Overview

- Background and Motivation
- Optimizing Performance by Searching
- Modeling Performance
- Generating Fast Formulas
- Conclusions

Signal Processing

Many signal processing algorithms:

- ullet take as input a signal X as a vector
- ullet produce transformation of signal Y = AX

Issue:

Naïve implementation of matrix multiplication is slow

Example signal processing applications:

- Real time audio, image, speech processing
- Analysis of large data sets

Factoring Signal Transforms

- Transformation matrices are highly structured
- Can factor transformation matrices
- Factorizations allow for faster implementations

Discrete Fourier Transform (DFT)

Highly structured, for example:

$$DFT(2^{2}) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

Cooley-Tukey factorization or break down rule:

$$DFT(rs) = (DFT(r) \otimes I_s) T_s^{rs} (I_r \otimes DFT(s)) L_r^{rs}$$

Can recursively apply break down rule Yielding $\theta(n \log n)$ algorithm (FFT)

DFT Example

$$DFT(2^{5})$$

$$= (DFT(2^{3}) \otimes I_{4}) T_{4}^{32} (I_{8} \otimes DFT(2^{2})) L_{8}^{32}$$

$$= ([(DFT(2^{1}) \otimes I_{4}) T_{4}^{8} (I_{2} \otimes DFT(2^{2})) L_{2}^{8}] \otimes I_{4}) T_{4}^{32}$$

$$(I_{8} \otimes [(DFT(2^{1}) \otimes I_{2}) T_{2}^{4} (I_{2} \otimes DFT(2^{1})) L_{2}^{4}]) L_{8}^{32}$$

We can visualize this as a split tree:

Walsh-Hadamard Transform (WHT)

Break down rule:

$$WHT(2^n) = \prod_{i=1}^t (I_{2^{n_1+\cdots+n_{i-1}}} \otimes WHT(2^{n_i}) \otimes I_{2^{n_{i+1}+\cdots+n_t}})$$

for positive integers n_i such that $n = n_1 + \cdots + n_t$

Discrete Cosine Transform (DCT) Example

Search Space

Large number of factorizations:

Size	DFT	WHT	DCT IV
2^1	1	1	1
2^2	6	2	10
2^3	40	6	126
24	360	24	31,242
2 ⁵	258,400	112	1.9×10^{9}
2 ⁶	1.8×10^{13}	568	7.3×10^{18}
2 ⁷	7.2×10^{13}	3,032	1.1×10^{38}
2 ⁸	7.2×10^{14}	16,768	2.3×10^{76}
2 ⁹	1.5×10^{16}	95,199	1.1×10^{153}
2^{10}	2.3×10^{17}	551,613	2.2×10^{306}

Varying Performance

Varying performance of factorizations:

- Formulas have very different running times
- Same number of arithmetic operations, but different:
 - Cache performance
 - Execution unit performance
 - Register file performance
- Small changes in the split tree can lead to significantly different running times
- Optimal formulas across machines are different

Histogram of $WHT(2^{16})$ Running Times

Thesis Problem

Find the best implementation for a given:

- Transform
- Size
- Computing platform

Huge search space of implementations

Constrained by a given:

- Set of break down rules
- Code implementation strategy for formulas (possibly tunable)
- Method of obtaining runtime performance

Contributions

Search methods for optimizing performance

- Intelligently search space
- Avoid timing all formulas

Automated methods for modeling performance

• Learn models to predict performance of formulas

Method for generating fast implementations

- Use learned models to optimize performance
- Control the construction of formulas
- Given model, no need to time any formulas

Overview

- Background and Motivation
- Optimizing Performance by Searching
- Modeling Performance
- Generating Fast Formulas
- Conclusions

Infrastructure

SPIRAL: Signal Processing algorithms Implementation Research for Adaptable Libraries

Download system at: http://www.ece.cmu.edu/~spiral

Search Methods Implemented in SPIRAL

- Exhaustive Search
- Dynamic Programming (DP)
- Random Search
- Hill Climbing
- STEER (evolutionary algorithm)
- Timed Search (a meta-search algorithm)
- Search over new user-defined transforms and break down rules
- Search over formulas and options to code generator

STEER: Split Tree Evolution for Efficient Runtimes

Generate a population of random legal split trees Repeatedly "evolve" the population:

- Time trees in current set
- Generate new population with fitness proportional reproduction while:
 - Maintaining the current best trees
 - Randomly applying mutation to individual trees
 - Randomly applying crossover to pairs of trees

Mutation: Regrow

Original

Mutation: Regrow

Original \Rightarrow Truncate

Mutation: Regrow

Original \Rightarrow Truncate \Rightarrow Regrow

Running STEER

FFT on a Pentium III

FFT on a Sun UltraSparc IIi

DCT Type II on a Pentium III

Summary: Optimization by Intelligent Search

- Many search methods implemented
- No one search method dominates for all transforms and sizes
- Requires timing many formulas, but not all

Overview

- Background and Motivation
- Optimizing Performance by Searching
- Modeling Performance
- Generating Fast Formulas
- Conclusions

Learning to Predict Performance

Can we learn to predict performance of formulas?

- Can gather empirical data by running formulas
- Use automated machine learning techniques

Machine learning task:

- Predict performance for entire formulas
- Predict performance for individual nodes in split tree
 - Sum predictions for nodes to predict for formula
 - For WHT, computation occurs in leaves only
 - For FFT, computation occurs in all nodes
 - Limit FFT to Cooley-Tukey factorization

Learning Algorithm

- 1. Collect runtimes for nodes in split trees
- 2. Divide runtimes by size of overall transform
- 3. Train a function approximator to predict runtimes for split tree nodes

Need to describe split tree nodes with features

Features for Split Tree Nodes

- Size and stride of the given node
- Size and stride of the parent of the given node
- Size and stride of the common parent
- Size and stride of each of the children and grandchildren

Learning Algorithm

- 1. Collect runtimes for nodes in split trees
- 2. Divide runtimes by size of overall transform
- 3. Describe nodes with features
- 4. Train a function approximator to predict a node's runtime given the node's features

Training

- Trained regression trees using RT4.0
- Data from subsets of FFT and WHT formulas of size 2¹⁶
- Trained different regression trees for:
 - WHT leaves
 - FFT leaves
 - FFT internal nodes
- Predicted for entire formulas by summing predictions for all nodes

Predicted Runtime Versus Actual Runtime

FFT on a Pentium III

- \bullet Trained only on nodes from $FFT(2^{16})$ split trees
- Predicts well across different sizes, even larger sizes!

Predicted Runtime Versus Actual Runtime

WHT on a Sun UltraSparc IIi

- \bullet Trained only on leaves from $WHT(2^{16})$ split trees
- Predicts well across different sizes, even larger sizes!

Summary: Predicting Runtimes

Train a function approximator:

- Predict runtimes for nodes
- Train using runtime data collected for nodes
- Describe nodes with numeric features

By learning to predict runtimes for nodes:

- Accurately predict runtimes for entire formulas
- Accurately predict across many transform sizes while trained on one size

Overview

- Background and Motivation
- Optimizing Performance by Searching
- Modeling Performance
- Generating Fast Formulas
- Conclusions

Generating Fast Formulas

- Can now predict runtimes for formulas
- But still MANY formulas to search through

Can we learn to generate fast formulas?

Control Learning Problem:

 Learn to control the generation of formulas to produce fast ones

Generating Fast Formulas: Approach

Want to grow the fastest split tree:

• Begin with a root node of the desired size:

20

Generating Fast Formulas: Approach

Want to grow the fastest split tree:

- Begin with a root node of the desired size
- Choose best set of children out of all possible:

Generating Fast Formulas: Approach

Want to grow the fastest split tree:

- Begin with a root node of the desired size
- Choose best set of children
- Recurse on each of the children:

Choosing the Best Children

How do we choose the best children?

- Define a value function over nodes
- Node's value = runtime of best subtree
- Choose children with minimal sum of values

How do we calculate this value function?

Problem Structure

Overlapping Subproblems

- Many duplicated subtrees in different formulas
- Consider all possible $WHT(2^{20})$ split trees
- Given subtree of node 8:
 - Appears many times in trees for size 2^{20}
 - Appears once for every different subtree of 12

Problem Structure

Optimal Substructure

- Best subtree for node 8:
 - Independent of node 12's subtree
 - But dependent on node 8's location
- Features already capture this

Dynamic Programming

Duplicated Subproblems + Optimal Substructure = Properties needed for DP

Describe nodes with features

- State = One set of feature values, describing a node
- Features describe context not just size of node
- 2 nodes in different trees can be same state

Run DP

- Calculate values for states
- Memoize results to save duplicating work

Value Function

State = node in split tree described by features

State's value = runtime of best subtree

- Accurate runtimes are expensive to obtain
- Plus may not have a fully grown tree to run
- Use the regression trees to predict runtimes!

Mathematically: Value Function on States

State = node in split tree described by features

The value of a state is:

$$V(state) = \min_{subtrees} \sum_{node \in subtree} PredictedRuntime(node)$$

• Min over all possible subtrees of the given state

Recursive Formulation of Value Function

State = node in split tree described by features

The value of a state is:

$$V(state) = \min_{\substack{splittings \\ children}} \sum_{children} V(child)$$

$$+ PredictedRuntime(state)$$

DP can calculate this value function!

Computing the Value Function

Use dynamic programming to calculate value function:

- Consider all possible sets of children of the root
- Recursively call DP on each of the children states
 - Determine values of children states
 - Memoizing results
- Determine set of children with minimal sum of values
- Root's value is this minimal sum of values plus the root's predicted runtime

Generating Fast Formulas

Use value function to control generation of formulas

Generate split tree with minimal value

- Consider all possible sets of children of the root
- Look up values of children states
- Choose those that have the minimal sum of values
- Recurse on children

Generating with a Tolerance

Generates single tree with fastest predicted runtime

Two approximations made:

- Regression trees used to predict runtimes
- Assumed optimal substructure

Given a tolerance:

- Generate all trees with values within tolerance of best value
- Rank formulas according to values (predicted runtimes)

Generation Rank	1	2	3	4	
Predicted Runtime	4.4	4.5	4.7	4.8	
Actual Runtime	4.4	4.7	4.3	5.2	

FFT on a Pentium III

		Rank 1 formula is $X\%$		
	Generation rank	slower than fastest for-		
	of fastest formula	mula		
2^{12}	16	14.3%		
2^{13}	1	0.0%		
2^{14}	2	13.6%		
2^{15}	1	0.0%		
2^{16}	1	0.0%		
2^{17}	82	3.6%		
2^{18}	11	6.5%		

70,376 different $FFT(2^{18})$ formulas

WHT on a Pentium III

		Rank 1 formula is $X\%$
	Generation rank of best	slower than best known
Size	known formula	formula
2^{13}	5	3.4%
2^{14}	4	3.0%
2^{15}	3	2.1%
$\frac{1}{2^{16}}$	4	1.7%
2^{17}	5	0.1%
2^{18}	4	2.0%
2^{19}	1	0.0%
$\frac{1}{2}^{20}$	4	1.7%

398,041 different $WHT(2^{20})$ formulas

WHT on a Sun UltraSparc IIi

		Rank 1 formula is $X\%$
	Generation rank of best	slower than best known
Size	known formula	formula
2^{13}	14	77.7%
2^{14}	20	12.8%
2^{15}	1	0.0%
2^{16}	2	4.3%
2^{17}	7	18.0%
2^{18}	38	5.9%
2^{19}	17	3.3%
2^{20}	47	1.4%

398,041 different $WHT(2^{20})$ formulas

- Method never sees a timing for sizes other than 2¹⁶
- First formula generated is very fast
- Generates fastest known formula within first several formulas

Summary: Fast Formula Generation

Run dynamic programming:

- Determine value of different states
- Use regression trees to predict runtimes for nodes

Generate fast formulas:

By choosing children with minimal sum of values

Excellent results:

- Generates the fastest known formulas
- Trained only on data of one transform size, and generates fast formulas of many different sizes

Overview

- Background and Motivation
- Optimizing Performance by Searching
- Modeling Performance
- Generating Fast Formulas
- Conclusions

Contributions

Search Engine

- Works with many transforms and break down rules
- Searches over formulas and compiler options
- Includes newly developed STEER

Automatic Performance Modeling

- Uses collected runtimes to train ML techniques
- Uses developed and analyzed feature sets
- Learns models that predict across sizes

Fast Formula Generation

- Generates fastest formulas
- Never sees a timing for most transform sizes

Future Work

- Extend modeling and generation to other transforms
 - For example, DTTs
 - Multiple break down rules possible
 - Children are different transforms
- Learn across different computer platforms
 - Features of the architecture
- Apply work to multiprocessors or hardware
 - New compiler options
 - Different performance metrics (e.g., power usage)
- Optimizing other signal processing algorithms
 beyond transforms or other numerical algorithms

Acknowledgements

Thesis Committee:

- Manuela Veloso
- Scott Fahlman
- John Lafferty
- Jeremy Johnson

SPIRAL group:

- José Moura, ECE, CMU
- Jeremy Johnson, MCS, Drexel
- Robert Johnson, MathStar
- David Padua, CS, University of Illinois
- Viktor Prasanna, CS, USC
- Markus Püschel, ECE, CMU
- Manuela Veloso, CS, CMU
- Gavin Haentjens, ECE, CMU
- David Sepiashvili, ECE, CMU
- Jianxin Xiong, CS, University of Illinois

Questions?

Extras

Cross Platform Results

		fast formula for			
		PIII	P4	Athlon	Sun
O	Pentium III 900 MHz	0.83	1.08	0.99	1.10
þ	Pentium 4 1.4 GHz	0.97	0.63	0.73	1.23
med	Athlon 1.1 GHz	1.23	1.23	1.07	1.22
t:	Sun UltraSparc II 450 MHz	0.95	1.67	1.42	0.82

Related Work

- Signal transform optimization
 - Minimizing arithmetic operations
 - Optimizing signal transforms for real computers FFTW (Frigo & Johnson)
 - * Explicitly only considers FFTs
 - * Restricted search space, chosen by hand without justification
- Automatic performance tuning and platform adaptation
 - PHiPAC (Bilmes et al.) and ATLAS (Whaley & Dongarra)
 - Using reinforcement learning
 (Lagoudakis & Littman; Vuduc et al.)
 - Using statistical modeling (Brewer)
 - Compiler Optimization (Moss et al.; Nisbet; Bodin et al.)
 - Combinatorial Optimization (Boyan; Zhang & Dietterich)

DP

Algorithm:

- Try all possible ways to split the root node
- For each child, use previously found best split tree
- Keep track of best found tree

Assumes:

 Best way to split a node is independent of its location in the split tree

Can generalize:

 Keep track of the n-Best formulas for each transform/size

FFT on a Pentium

FFT on a Pentium: Number of Formulas Timed

DCT Type II on a Pentium

DCT Type IV on a Pentium

DCT IV on a Pentium: Number of Formulas Timed

FFT on a Sun

FFT on a Pentium with Local Unrolling

WHT Runtime Vs. Cache Misses on a Pentium III

WHT Leaf Cache Misses on a Pentium III

Predicted Cache Misses Versus Actual Runtime

WHT on a Pentium III

1.5e + 08

2.0e+06

4.0e+06

Predicted Number of Cache Misses

6.0e+06

WHT on a Sun UltraSparc IIi

Predicted Runtime Versus Actual Runtime

WHT on a Pentium III

Binary No- 2^1 -Leaf Rightmost $WHT(2^{20})$

Generating Fast Formulas: Approach

- Try to formulate in terms of Markov Decision
 Processes (MDPs) and Reinforcement Learning (RL)
- Final formulation not an MDP
- Final formulation borrows concepts from RL

MDPs

An MDP is a tuple (S, A, T, C):

- S is a set of states
- A is a set of actions
- $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ is a transition function that maps the current state and action to the next state
- $C: \mathcal{S} \times \mathcal{A} \to \Re$ is a cost function that maps the current state and action onto its real valued cost

Markov Property: T and C only depend on the current state and action

MDPs and RL

Agent:

- Observes current state
- Selects action to take
- Receives the cost for that action in that state
- Observes next state, and repeat

Reinforcement learning provides methods for finding a policy $\pi: \mathcal{S} \to \mathcal{A}$ that selects the best action at each state that minimizes the sum of costs incurred

Basic Formulation

Given a size, want to grow a fast split tree

Framing this problem in the MDP framework:

- States = unexpanded nodes in split tree
- Start state = root node of given size w/ no children
- Actions = ways to split a node, giving it children
 OR, make the node a leaf
- Cost Function = runtime of node
- Goal = minimize sum of costs

Detail: State Space Representation

States = unexpanded nodes in split tree
But how to represent the states???

Same features as before:

- Size and stride of the given node
- Size and stride of the parent of the given node
- Size and stride of the common parent to this node
- Size and stride of children and grandchildren if internal node

Detail: Cost Function

Ideal Cost Function =

Runtime of node represented by state

But, a node's runtime is not easily obtained

However, we can predict runtimes for nodes!

Difficulty: Transition Function

What is the transition function for this problem?

Given that 2 children of the root are grown:

- Which node is the next state?
- When will we transition back to the sibling?
- Where to transition to from a leaf node?
- And still maintain the Markov property?

We depart from the MDP framework here . . .