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Signal processing includes the study of algorithms that take as an input a signal,

as a numerical dataset, and output a transformation of the signal that highlights

specific aspects of the dataset. For example, the Fourier Transform takes as an input

the values of a signal over time and returns the corresponding frequency variations.

Many signal processing algorithms can be represented by a transformation matrix

which is multiplied by an input data vector to produce a desired output vector. That

is, for an input vector X representing the signal, a signal transform produces the

output vector Y = AX, where A is the transformation matrix (Nussbaumer, 1982;

Rao and Yip, 1990; Tolimieri et al., 1997).

Signal processing is particularly challenging for large datasets for which an imple-

mentation of the transform as a straightforward matrix-vector multiplication would

require O(n2) operations. However, the transformation matrices for signal transforms

often can be factored into a product of structured matrices, allowing for faster im-

plementations with O(n log n) operations. Furthermore, these factorizations can be

represented by mathematical formulas and a single signal processing algorithm can be

represented by many different, but mathematically equivalent, formulas (Auslander

et al., 1996).

The number of different formulas for a given transform is often very large and

grows with transform size. For example, with just a few different methods of factor-

ization, the Fast Fourier Transform (FFT) has 258,400 different formulas for size 25

and 1.8×1013 for size 26. Again with just a few methods of factorization, the Discrete

Cosine Transform (DCT) of type IV has 2.2 × 10306 different formulas for size 210.

Clearly, as the transform size increases, it becomes infeasible to even enumerate all
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possible formulas let alone time them.

Interestingly, when these formulas are actually implemented in code and executed,

their runtimes can vary by a factor of 2 to 10. While many of the factorizations may

produce the exact same number of arithmetic operations, the different orderings of

the operations that the factorizations produce can greatly impact the performance of

the formulas on modern processors. For example, different operation orderings can

greatly impact the number of cache misses and register spills that a formula incurs

or its ability to make use of the available execution units in the processor. The

complexity of modern processors makes it difficult to analytically predict or model

by hand the performance of formulas.

Figure 1 shows a histogram of runtimes for a set of 70,376 different FFT formulas

of size 218. All of these formulas were run on the same Pentium III 450 MHz running

Linux. The histogram shows a significant spread of runtimes, almost a factor of 4

from fastest to slowest. Further, it shows that there are relatively few formulas that

are among the fastest.
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Figure 1: Histogram of runtimes for 70,376 different FFT (218) formulas.

The differences between current processors lead to very different optimal formulas

from machine to machine. The optimal formula on one machine is very suboptimal

on another machine. To make this point, Püschel et al. (2001b) searched for fast

FFT (220) formulas on four different platforms. Then we timed these implementations
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on each of the other platforms. The results are displayed in Table 1. Each row

corresponds to a timing platform; each column corresponds to a fast formula found

for a particular machine. For example, the runtime of the formula found for the

Pentium 4, timed on an Athlon is in row 3 and column 2. The fastest runtime for

each machine corresponds to the formula found for that machine. Furthermore, for a

given machine, the other formulas run significantly slower.

Table 1: Comparing fast FFT (220) implementations generated for different machines.

The entries are runtimes given in seconds. (Püschel et al., 2001b)

fast formula for

PIII P4 Athlon Sun

Pentium III 900 MHz 0.83 1.08 0.99 1.10

Pentium 4 1.4 GHz 0.97 0.63 0.73 1.23

Athlon 1.1 GHz 1.23 1.23 1.07 1.22

ti
m

ed
on

Sun UltraSparc II 450 MHz 0.95 1.67 1.42 0.82

Given this complexity, hand tuning signal transform implementations for a given

architecture is very difficult and time consuming for humans to perform. The size of

the search space of possible formulas for a single transform is very large, and it is not

easy to understand why one formula runs faster than another. As different transforms

require different operations to be performed and data to be accessed differently, each

transform requires a separate effort to hand tune. Compounding this problem is the

fact that each new computer platform requires a completely new effort to understand

the new architecture and to tune code for that platform.

1 Thesis Problem and Approach

The thesis question is:

How can machine learning techniques automate the optimization of the

performance of signal transform implementations?

And specifically how can machine learning techniques help identify what influences

performance?
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This thesis investigates how machine learning techniques can effectively analyze

runtime performance data for different signal transform implementations to then aid

in optimizing the signal transform. While it is difficult for a human to analyze and

understand performance by hand, it is easy to collect runtime performance data for

specific implementations of a given signal transform on a specific computing platform.

This data provides an opportunity both for learning to model and predict runtime

performance and for runtime feedback while searching for fast implementations. By

collecting runtime performance data for different signal transform implementations,

machine learning techniques can be used to automatically analyze this data and con-

struct performance models that can predict runtime performance for implementa-

tions. By timing specific signal transform implementations, search methods can use

this runtime performance data to guide the search towards faster implementations.

Thus, the problem that this thesis addresses is to find the best implementation

for:

• a signal transform of interest,

• a size of interest for that transform,

• a computing platform for which the code is to be tuned, and

• a performance metric to be optimized.

We constrain this problem by assuming the following are given:

• a set of break down rules to factor the given transform, defining the space of

formulas that can be considered,

• a method for implementing mathematical formulas representing transform fac-

torizations into machine code for the given platform, possibly with parameters

that influence the exact method of implementing the formulas, allowing another

degree of freedom, and

• a method of obtaining the runtime performance for specific implementations on

the given computing platform.

Instead of trying to optimize a single implementation for a signal transform across

all possible sizes, we consider each different transform size to be a different prob-

lem. Each transform size has a different space of formulas for factoring a transform

4



of that size. Further, the transform size can have a big impact on how different

types of implementations may perform, particularly as the transform size crosses the

sizes of different cache levels. However, we use machine learning techniques to learn

performance models that can accurately predict across a range of sizes.

While most of the results presented in this thesis have concentrated on optimizing

the runtime of implementations, the methods are general and can be used with any

performance metric that can be measured. For example, in hardware design, other

metrics such as power consumed or chip size may be of interest.

We have taken three different approaches to address this problem:

• Optimizing performance by searching for fast implementations. Our search

methods generate a number of different implementations and run them on the

given computing platform to determine their runtimes. The search methods

then use this runtime information to determine new implementations to time,

and the process is repeated.

• Modeling performance of different formulas. We have developed methods that

are able to learn to predict performance of different formulas on a given com-

puting platform.

• Generation of optimized implementations by using learned performance models.

We have developed a method that is able to construct fast implementations of

signal transforms without performing a search that requires timing formulas.

Instead, our method uses learned performance models to guide it in controlling

the construction of fast formulas.

Thus, we can optimize the performance of signal transform implementations by either

performing a search in the space of implementations or by using our learned models

of performance to guide the generation of fast implementations.

This research has been conducted as part of a larger research effort by the SPIRAL

(Signal Processing algorithms Implementation Research for Adaptable Libraries) re-

search group (Moura et al., 1998). The ultimate goal of the SPIRAL group is to

develop adaptable, optimized libraries for signal processing algorithms. This thesis

focuses on how artificial intelligence and particularly machine learning techniques can

be used to further this goal.
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2 Infrastructure

Instead of considering every arbitrary implementation of a signal transform, we have

constrained our problem in two ways. First, we fixed a set of break down rules that

our methods could use in factoring any given transform. This defines the space of

possible formulas that can be considered. As we have already discussed, the number

of possible formulas is huge, in some cases exceeding 10300 for a transform size of

210. Second, we have used software developed by others to translate mathematical

formulas representing a transform factorization into machine code. This software

defines how a formula is implemented on the computing platform of interest.

Some other members of the SPIRAL group produced a Walsh-Hadamard Trans-

form (WHT) package (Johnson and Püschel, 2000). This package takes any WHT

formula as input and is able to implement the WHT according to the factorization

specified by the formula. The package is then able to run and time this implementa-

tion. Much of the work with the WHT in this thesis has used this package.

More recently, the SPIRAL group has also developed a system that can implement

and time a wide variety of different signal transforms, including new user-specified

transforms (Püschel et al., 2001b). Figure 2 gives an overview of the SPIRAL system.

This system consists of four main components:

1. Transform and Break Down Rule Specification. The system begins by

allowing the user to specify new transforms and new break down rules to factor

the transforms, but also comes with a number of common transforms and break

down rules already defined.

2. Formula Generation. The second step is to apply these break down rules

repeatedly to produce a complete factorization of a given transform as a math-

ematical formula (Püschel et al., 2001a).

3. Code Generation. Given a formula, the third step is to implement it in exe-

cutable code. This is done by compiling the formula into Fortran or C which is

in turn compiled using the native compiler. This step allows for different por-

tions of the code to be optionally unrolled into straight-line code (code without

loops or function calls). This step can also measure the performance of the

resulting implementation. (Xiong, 2001)
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Figure 2: Overview of the SPIRAL system.

4. Optimization. The final step is to search for a fast implementation and one

of the main focuses of this thesis.

The SPIRAL system has formed the infrastructure for rest of the thesis that explores

transforms beyond just the WHT.

This infrastructure then defines the space of possible implementations considered

for a given transform. It provides two different sources of degrees of freedom. First,

there are the different possible formulas for a given transform. Second, with the

SPIRAL system there are also options in what portions of the code are unrolled.

Outside of these degrees of freedom, our work is constrained by this infrastructure.

For example, if the code generation step in the SPIRAL system always produced very

slow code, our work would never be able to find a really fast implementation, but

only the fastest implementation that the code generation step allows. So, the goal of

this thesis is to find the fastest implementations possible in the search space defined

by the used infrastructure.
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3 Performance Optimization by Searching

One of the major components of the SPIRAL system is the search engine which

contains search methods for finding fast implementations of given transforms using the

infrastructure that rest of the SPIRAL system provides. The search methods control

the formula generation and code generation steps to produce an implementation which

is run to determine its performance. This performance information is then used by

the search engine to determine new implementations to generate and time. Since the

user can specify new transforms and break down rules to the SPIRAL system, the

search engine must be able to handle arbitrary transforms and break down rules.

We have developed a number of different search methods in the search engine,

including exhaustive search, dynamic programming, random search, hill climbing

search, STEER, and timed search. All of these search methods can optimize new

user-specified transforms using user-specified break down rules. Not only do all of

these search methods search over different factorizations for a given transform, but

almost all of these search methods are also able to search over different code unrolling

parameters that the SPIRAL system’s code generation method allows.

Each of these search methods have a different bias that directs how it searches the

space of possible implementations and how it uses feedback from timing implementa-

tions. Thus, a user can explore a variety of different search methods when trying to

optimize a particular transform. Further, the timed search method that we developed

allows the user to use multiple search methods while specifying a time limit for search.

We have developed a stochastic evolutionary search method called STEER for

searching for fast implementations in this domain. STEER is similar to a genetic

algorithm except that it uses a richer representation for individuals, namely a compact

tree representation of a factorization. STEER generates a population of random

implementations and then evolves this population using two operators. Mutation

makes small changes to a factorization to produce another factorization. Crossover

works between two different factorizations to exchange subformulas.

We have tested each of these search methods and have found that no one search

method tends to outperform all of the others for all transforms and sizes. One of the

advantages of the search engine is that many different search methods are provided

and can be tried, allowing for faster implementations to be found than if a single

search method was provided. However, we have found that for small sized Discrete
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Trigonometric Transforms (DTTs), STEER outperforms the other search methods,

finding formulas up to 20% faster than the standard dynamic programming search

method.

4 Performance Modeling

Given the infrastructure provided by the SPIRAL system or the WHT package, it is

possible to generate many different implementations of a given transform and to ob-

tain runtime performance data for those implementations on a given platform. While

we have implemented a number of search methods for trying to find a fast imple-

mentation using this runtime data as feedback, we have also used this runtime data

to automatically train machine learning methods to model performance of different

formulas for a given transform. These performance models can then predict the per-

formance of new formulas more quickly than an accurate measurement of runtime

performance can be obtained.

One of the most difficult parts of using machine learning techniques to learn

to predict performance for signal transform formulas was developing a good set of

features to describe formulas. We have contributed a number of different feature sets

in this thesis and have evaluated them. One very important step in developing good

features was to to view the mathematical formulas using a compact tree representation

of a factorization that we have called a split tree. This representation highlights only

the most important aspects of the factorization while hiding some of the mathematical

details. Thus, we focused on developing features that described split trees.

Another important problem was framing the exact machine learning task. We

began by trying to train machine learning methods to predict performance for entire

formulas and thus developed features for entire split trees. While having good success

in doing this for transform sizes of about 210 and smaller, we found that it did not

work as well at larger sizes. Shifting our focus, we considered making predictions

for subportions of formulas, specifically individual nodes in split trees. We found

that by changing the machine learning task to predicting performance for individual

nodes, we could still accurately predict for entire formulas by simply summing our

predictions over all of the nodes. This change allowed us to predict accurately for

much larger sizes such as 220.
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While we have learned models for specific transforms and computing platforms,

we have been able to learn models that accurately predict across transform sizes. Fur-

ther, we can train these models using data from only one transform size and be able

to accurately predict for both smaller and larger sizes. Since runtime performance

data can be gathered more quickly for smaller sized transforms, being able to accu-

rately predict for larger sizes while training on data from smaller sized transforms is

particularly exciting.

5 Generating Fast Implementations

Given that we have been able to develop accurate performance models, the next step

is to be able to use those performance models to aid in the optimization of signal

transform implementations. While optimization by search requires implementing and

timing each formula that it considers, the performance models offer the possibility

to obtain predicted performance values for formulas without actually implementing

and timing them. Unfortunately, there are still so many different formulas for a given

transform that predicting for all them would be infeasible.

Ideally, we would like a method to be able to generate a formula with the fastest

predicted runtime possible without enumerating all possible formulas. Specifically,

we would like a method to learn how to control the generation of formulas so as

to produce fast ones. Producing a formula for a signal transform involves a series of

choices in how to factor that transform and the resulting factors recursively. Thus, we

wish to devise a method that learns to control the generation of fast implementations

by making the best choices possible in factoring the transforms.

By borrowing concepts from reinforcement learning, we have been able to develop

a method for controlling the generation of formulas. Our method uses learned perfor-

mance models to guide its choices, allowing it to generate fast formulas. Our method

achieves excellent results, often producing the previously fastest known formula for a

given transform and size within the first 50 formulas generated. Further, the runtime

of the first formula that our method generates is often within 6% of the fastest known

runtime.

Since the models being used can predict well across many transform sizes, our

generation method can produce fast formulas also across many sizes. While some
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formulas of one size were timed to collect data to train the performance models, our

method does not see timings for transforms of any other size and still can produce fast

formulas for those sizes. Thus, our method pays a one time cost to collect data for one

transform size to train a performance model and then can construct fast formulas for

many different sizes, including larger sizes, without timing a single formula of those

other sizes.

6 Thesis Contributions

This thesis makes three major contributions:

1. Several search methods for finding fast implementations of a variety

of signal transforms.

We have developed and implemented a variety of different search methods in

the SPIRAL system, namely exhaustive search, dynamic programming, random

search, hill climbing search, STEER, and timed search. These methods are able

to automatically optimize any transform that can be specified to the system,

including new user-specified transforms. We have specifically developed a new

search method for this domain, namely an evolutionary stochastic search algo-

rithm named STEER. Further, we have developed a meta-search algorithm that

uses the other search algorithms to try to find the best implementation given a

limited amount of time to search. In this thesis, we describe the development

and implementation of these algorithms as well as present a comparison of their

performance.

2. Automatic methods for modeling and predicting performance of sig-

nal transforms.

This thesis presents a number of methods for automatically learning to predict

performance of signal transforms. We show results for predicting both runtime

and cache misses. Most of the techniques can be immediately used with any

other performance measure as well. Two of the most difficult problems here

were determining a good set of features to use and defining a good task for

the machine learning algorithms to address. We have contributed several differ-

ent feature sets and two very different approaches to defining signal transform

performance prediction as a machine learning task.
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3. A method for automatically generating fast implementations.

We have developed a method that uses learned models of performance to gen-

erate fast WHT and FFT implementations. By using learned models of per-

formance, our method is able to construct fast formulas for a given transform

size, even though the method never times a single formula of that size. By

paying a one time cost to time a few formulas of one particular size to train

the performance model, our method is able to generate fast formulas for many

different transform sizes, including larger sizes.
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