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Abstract

The shading processors in graphics hardware are be-

coming increasingly general-purpose. We test, through sim-

ulation and benchmarking, the potential performance im-

pact of replacing these processors with a fully general-

purpose parallel processor, without the fixed-function

graphics hardware legacy of current graphics processing

units (GPUs). The representative general-purpose proces-

sor we test against is XMT (for eXplicit Multi-Threading1),

a PRAM-like single-chip parallel architecture. Perfor-

mance is compared for two characteristic shaders running

in a fragment-limited GPU benchmark harness and on a

cycle-accurate XMT simulator. The general-purpose pro-

cessor is found to be significantly faster at a compute-only

shader, but slower on a memory bound texture shader. Fi-

nally we analyze the design tradeoffs that would allow com-

bining the best of both worlds: (i) a competitive XMT tex-

ture shader, with (ii) a general-purpose easy-to-program

XMT many-core approach that scales up or down to the

amount of parallelism provided by the application and is

even compatible with serial code.

1. Introduction

Procedural Shading is the ability for users to insert cus-

tom code into a graphics system to change the computa-

tion of surface color and light interaction. Procedural shad-

ing first appeared in the complex CPU-based graphics ren-
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dering software for film [11, 33, 18]. Since the advent

of shading in graphics hardware [25, 31], GPU designs

have become increasingly more programmable, and more

general-purpose [24, 25, 29]. The subsequent wide avail-

ability of large-scale parallel processing has inspired re-

searchers to perform general-purpose computation on GPUs

(GPGPU) [6, 7, 8, 16, 22]. However GPUs retain certain

limitations from their graphics roots that make them diffi-

cult to program effectively.

The parallel random access machine (PRAM) model for

high performance parallel programming is a natural gener-

alization of the serial model where memory accesses take

a uniform amount of time across all threads and further

synchronization, such as barriers, is unnecessary. It is an

easy model for parallel reasoning and programming [13].

As such, PRAM came to be the dominant model for par-

allelism in the theory community, and at least three ma-

jor standards texts on serial algorithms and data structures

include a major chapter on PRAM algorithms [2, 12, 26].

Some limited empirical validation regarding the relative

PRAM ease-of-programming was reported by Hochstein,

Basili, Vishkin and Gilbert [21]. A recent innovation of the

XMT project, demonstrated with high school students and

through a university course offered to Freshmen that are not

majors in computer science, is that these people can com-

prehend PRAM high-level parallel algorithmic thinking and

successfully turn it into PRAM programming.

The continued increase of silicon capacity has finally

made possible building a PRAM-like chip which could re-

place a serial CPU. It seems evident that as long as single

core clock rates remain stable, some such on-chip parallel

system will replace the standard general-purpose CPU, and

that system must be easy to program as well as highly ef-

ficient. XMT (for eXplicit Multi-Threading) is a possible

candidate to be this general-purpose on-chip parallel CPU.



Currently an XMT simulator and FPGA implementation are

available for performance testing [41, 42]. For these reasons

we chose XMT as a representative general-purpose parallel

chip for our benchmarks.

If an architecture can perform graphics tasks competi-

tively while conforming to the PRAM model, it will of-

fer benefits beyond ease of programming to developers.

The PRAM model allows for arbitrary memory reads and

writes as well as dependencies between threads. In addi-

tion, within a PRAM algorithm it is easy to spawn differing

numbers of threads for different purposes during the algo-

rithm — per-pixel, but also per-texture sample on an object,

or per-sample on an illuminance texture. These operations

do not fit the GPU stream model well, generally resulting

in multiple rendering passes to overcome the limitations of

streaming [19, 15, 44].

In this paper we explore the possibility that this re-

cently available PRAM-like architecture may have a place

in graphics hardware. We examine replacing the most

general-purpose component of a modern GPU, the shading

processors, with a true general-purpose parallel processing

unit, specifically an XMT-like subsystem. Clearly, this hy-

brid GPU would have some of the programming advantages

of PRAM, including flexible, load balanced spawning of

parallel threads, and thread-to-thread or pixel-to-pixel com-

munication. What is not clear is how it would perform on

typical GPU tasks. Therefore, we performed tests on two

simple characteristic shaders, one performing MIP-mapped

texture lookup, and one computing a brick shader without

texture access. GPU versions of these were run on several

GPUs, and XMT versions were run on the XMT simulator

under several configurations.

We show that XMT can perform computational shading

operations faster than a GPU. However it is not competitive

enough with texture shading to replace a modern GPU. This

observation supports either a general-purpose system with

additional graphics specific hardware or the idea of a hybrid

XMT/GPU system where the GPU does the work for which

it is optimized, and the XMT processor handles all other se-

rial and parallel operations. This system would have better

performance and make it easier to program custom tasks.

A GPU would not have to support custom shading or other

secondary parallel application at all if its co-processor does

a better job of it. The first approach of adding additional

texture decompression, caching and filtering hardware to

XMT is similar to the approach taken by Intel’s Larrabee

[37], while the second approach is similar to that taken in

the PlayStation 3, coupling a Cell Processor and GPU [10].

2. Related Work

GPUs have historically been designed to conform to the

stream model of parallel computation [29], or an extension

thereof where each kernel operates on multiple data at once.

Even with recent advances, this model and its limitations

are still present in the graphics APIs for GPUs. The stream

model requires programmers to decompose an algorithm

into a series of kernels with explicit dependencies between

kernels, no dependencies within a kernel, and limited local

data storage [34, 32]. The primary advantage of this model

is that data access is highly predictable, which reduces hard-

ware complexity.

The concurrent read concurrent write (CRCW) PRAM

model, which XMT closely follows, has not been as well

used for graphics. In fact, we are unaware of any recent

studies of vertex or fragment processing under the PRAM

model. The difficulty of building a machine that looks to a

programmer like a PRAM has contributed to this situation.

This has not prevented other researchers from exploring

alternate architectures for graphics. Recent works include

Humphreys et al.’s Chromium networks of PCs [23], Chen

et al.’s reconfigurable architecture based on the Raw multi-

core processor [9], and Whitted and Kajiya’s proposal for a

fully-procedural SIMD graphics processor [43].

Within the stream GPU architectures, the kernel proces-

sors themselves have become increasingly general multi-

threaded parallel cores. The first programmable pixel pro-

cessing was register combiners, which defined a config-

urable ALU stage consisting of two 4-element SIMD adders

feeding into a single 4-element SIMD multiplier [28].

These stages were “programmed” by explicitly setting the

inputs to each adder and multiplier for up to eight combiner

stages in a pipeline. This was succeeded by deep pipelines

of ALUs programmed in a special-purpose branch-free as-

sembly language, with a direct mapping from instructions to

pipeline stages [14]. Recent GPUs schedule threads to sev-

eral more general programmable cores for the kernel pro-

cessors, with variations including the NVIDIA GeForce 6

architecture’s shallow pipeline of 4- element computational

units [24], and the NVIDIA GeForce 8800’s cluster of 16

single-element computational units, with much more gen-

eral thread scheduling [29].

These general computational units increasingly make up

the bulk of the GPU, as compared to a CPU, where cache

dominates. In addition to its general computational units,

the GPU includes special-purpose hardware assisting the

general computational units in texture filtering, clipping,

rasterization, and other graphics-specific tasks.

General-purpose programming languages are appearing

for the newest of these systems, including CUDA and

Brook+ [30, 1]. While the graphics APIs for these new

chips still appear to follow a streaming model, CUDA ex-

poses non-streaming details of the GPU architecture, in-

cluding the partitioning of threads into blocks and SIMD-

like warps, as well as the ability for fast shared data ac-

cess within a warp and slower shared access within a block.



Though the CUDA model is more general-purpose, adapt-

ing even a classic parallel programming primitive to it is

complex enough to merit independent publication [36]. We

show that XMT could be the next step, and that a similar or

better computational efficiency can be achieved with XMT

using the easier to program PRAM model.

3. XMT System

Parallel programming can be an intimidating task. Im-

plementing an efficient algorithm on a real system can in-

volve details such as explicit management of memory, com-

munications, and threads. Furthermore, an implementation

that works well on a two or four processor system may not

be useful at all on a thousand processor system.

XMT [40, 27, 41, 42, 39] was designed as a system to im-

prove overall parallel productivity. One obvious measure of

productivity is single task completion time, and this is a pri-

mary goal of XMT. However XMT strives to optimize other

factors as well. It provides a methodology for converting

PRAM algorithms to programs in XMT-C — an extension

of C with a small number of special instructions. The XMT-

C compiler then applies techniques such as data prefetch-

ing and broadcasting to further increase performance while

maintaining some natural memory consistency guarantees.

Such a program should run on an XMT architecture of any

size with performance modeled by the work-depth model

of PRAM efficiency. This model measures a program by its

total number of operations executed (work) and its runtime

(depth) assuming unlimited hardware. For an in-depth look

at XMT performance modeling, see [39].

3.1. Architecture

The XMT architecture consists of a single master thread

control unit (MTCU), multiple clusters of TCUs, multi-

ple memory modules, an interconnection network between

them, and additional support for some XMT specific opera-

tions. Figure 1 provides a block diagram of the system.

The system alternates between serial mode, with only the

MTCU running, and parallel mode, with each of the cluster

TCUs running. The MTCU is a modern uniprocessor with

its own cache. When the MTCU runs a spawn instruc-

tion, the system switches to parallel mode until all TCUs en-

counter a join, as in Figure 2. Each cluster consists of sev-

eral TCUs, functional units shared between them, and a sin-

gle memory port. There is a small read only cache/prefetch

buffer for each cluster, however all writes are committed

directly to memory.

The memory system consists of a set of independent

memory modules that partition the address space. There

are one or two times as many memory modules as clus-

ters. Each module has a single FIFO port to the high speed,

highly parallel interconnection network[3]. Using hashing,

Figure 1. The XMT architecture. Blocks are
a master thread control unit (MTCU), global

register file (GRF), memory modules (MM),

and clusters of thread control units (C).

Spawn Join Spawn Join

Figure 2. Multithreaded execution flow on
XMT.

the address space is spread out among the modules so that

nearby or evenly spaced addresses do not necessarily map

to the same module. Thus there are no likely access pat-

terns which will cause low contention on average but high

contention at a small number of modules. Reducing mem-

ory contention can make a significant difference in memory

access latency. The remaining latency can be partially or

totally hidden through the use of prefetching reads, non-

blocking writes, and the small read only cache within each

cluster.

3.2. Programming with XMT-C

XMT-C is largely C with the additional instructions

spawn/join and ps. From the programmer’s perspective

a spawn block acts as an asynchronous parallel for loop.

In its simplest usage a spawn(low,high) can replace a

serial for loop from low to high as long as there are no

data dependencies between loop iterations. Each iteration

through the original loop becomes one virtual thread with

the thread ID, accessed through the reserved character $,

replacing the loop variable. Virtual threads are mapped to

TCUs as they become available. Once all virtual threads

complete, the spawn ends and the MTCU resumes serial

execution. Figure 2 shows the flow between serial and par-

allel mode using spawn.

There are two ways to guarantee an ordering be-

tween instructions in different virtual threads. The first



method is to end one spawn and start another as in Fig-

ure 2. The second involves the use of the prefix sum

instruction, ps(local,psReg) (prefix-sum to memory

psm(local,variable) is similar). When local=1

this instruction acts as an atomic fetch and increment on

the accumulator psReg with the previous value stored in

local. Within a spawn block the psReg global register

can only be accessed through a ps statement. ps is often

used to generate values over a range that are unique across

all virtual threads.

For example, the underlying mechanism that assigns vir-

tual thread IDs to TCUs is a ps with local=1. When one

virtual thread completes, its TCU uses ps to get its next ID.

We spawn virtual threads for each fragment and use this ID

to locate the per-fragment data. For threads that generate a

variable amount of data (as in a geometry shader [5]), a psm

with local values equal to the number of outputs will give

each thread a unique address to store its outputs in a packed

result buffer.

Other work has established XMT’s ability to handle

general algorithms, even those with nontrivial parallelism.

Vishkin et al. [39] give a detailed explanation and runtime

analysis of several applications written for XMT-C. They

include but are not limited to BFS, quicksort, sample sort,

dense matrix multiplication, and graph connectivity.

4. Simulated Architecture

We simulate an architecture consisting of XMT-based

fragment processing, with all other portions of the GPU

pipeline unchanged. In this model all fragment process-

ing is managed by XMT, giving XMT full control over the

fragment-level parallelism. One potential benefit is that the

XMT/fragment programmer can use multiple spawns and

joins within a fragment program. This capability is not used

to its fullest extent in our testing since the GPU cannot do it

and thus it is not compatible with our head-to-head testing

paradigm. However, generally it could allow a programmer

to express multiple types of parallelism and multiple data to

thread remappings within a single fragment program.

To simulate this architecture, we modified a version of

the Mesa OpenGL Library to record span information dur-

ing rendering to a file, and to accept processed spans from a

file to complete the pipeline. Since Mesa operates on spans

and our XMT fragment program assumes a fragment buffer,

we include two additional processing stages to transform

this span data to and from fragment buffer form (Figure 3).

The converted fragment data is placed in simulated memory

as input to an XMT-C program running on an XMT simula-

tor.

The simulator executes a program one clock cycle at a

time, modeling the cycle accurate behavior of individual

hardware elements. It takes into account factors including

Figure 3. This diagram shows the process

by which the fragment information passes
through the XMT simulator.

but not limited to functional unit contention and latency, in-

terconnection network contention and latency at each node

of the network, L1 cache behavior, and prefetch buffers.

We gathered statistics for three different sets of XMT

implementations. All of them use a base system with 64

clusters of 16 TCUs, for a total of 1024 TCUs, each run-

ning at 1GHz. The simulator gives clock cycles in terms of

the interconnection network, which is twice the rate of the

TCUs.

We had significant freedom in choosing the scale of our

base system. To provide the fairest comparison, we wanted

a system that would closely match the GeForce 8800. How-

ever published specifications are not sufficiently detailed for

us to determine with certainty how closely a target XMT

and the commercial GPU match. For example, we know

from the technical brief that the NVidia GeForce 8800 has

128 scalar processors, but not which instructions are sup-

ported by those processors, their level of pipelining, or the

latency of arithmetic operations. One important and easily

comparable detail they give is that the GeForce 8800 has

”roughly 520 gigaflops of raw shader horsepower.”[29] Our

base design closely matches the GeForce in this regard with

roughly 512 raw gigaflops in 8 floating point units per clus-

ter.

The following shaders are hand-written in XMT-C. The

first two match the operations and algorithm of the GPU

versions, and the third matches those operations modulo

some approximations.

XMT version 1: The first set of tests was a direct con-

version from the Mesa code. The only XMT specific op-

timization involved was that for loops over all fragments

were replaced by spawn blocks to exploit their parallelism.

XMT version 2: The next set of tests adapts to work

around limitations of the current XMT-C compiler. While

work is ongoing to automate these features, the compiler

does not make use of memory prefetching or non-blocking



stores. For version 2, instructions for these features were

added manually. Additionally, the compiler treats code

within a spawn block as it would treat a function; it does

not do optimizations such as moving idempotent reads and

calculations out of the iterated section. As a result, each

TCU in version 1 may reload constants once per fragment,

when they could be loaded once per TCU regardless of how

many fragments that TCU processes. If we cluster the op-

erations such that we spawn exactly one thread per TCU

and use ps to iterate over the fragments, then the compiler

is able to identify and load constants once per TCU. This

blocking factor is on par with the blocking factors of some

current GPUs.

XMT version 3: The third version applies to texture

shading only. For this version we add additional graphics-

specific instructions to the simulator, compiler, and XMT-C

code. These include equivalents to the GPU instructions

FLR (floor), FRC (fractional part), and LRP (linear interpo-

lation). These all are simple operations that a floating point

ALU could handle in one step, and are known to be com-

mon operations within shading computations. Yang and Lee

further discuss the benefits such ISA extensions [45].

In addition to these new instructions, XMT version 3

also includes an estimate of the performance improvement

possible by operating on four channels at once within each

TCU, as GPU ALUs do natively. This is an improvement

for many graphics programs, though recent GPUs have

avoided this optimization to achieve greater ALU utiliza-

tion. We do not simulate this change to XMT explicitly, but

approximate it by loading and operating on only one of the

four channels. This accurately captures the impact of com-

mon 3-vector and 4-vector operations. It underestimates the

performance gains possible by packing less-related compu-

tations into a four-channel ALU, as is common in GPU pro-

gramming.

5. Results

We compare the fragment shading performance of the

three modeled XMT systems and three GPUs from differ-

ent generations and manufacturers. To compare fragment

performance to fragment performance, we carefully con-

structed a test program to be fragment limited. Our test

bench consists of an OpenGL program rendering a simple

screen-filling pyramid, covering several MIP levels (Fig-

ure 4). It consists of approximately 800,000 fragments to

be shaded.

Since test shaders needed to be re-implemented on the

GPU and in multiple XMT versions, we chose two short

characteristic shaders. The first is a standard MIP-mapped

texture mapping of a 256×256 texture, to test memory ac-

cess. Since the XMT system does not have the texture filter-

ing or texture caching hardware of the GPU, we expect this

Figure 4. The 768×1024 pixel scene used in
the experiments. This is the texture mapped

version of the scene.

to be a memory-bandwidth challenge for it. The GPU ver-

sion uses native texturing. The second fragment program

is a classic brick shader, to test computational speed. The

GPU version is implemented as a fragment shader. Neither

shader requires more than a single stream pass, and there-

fore they do not test any of the fined grained communication

of XMT or the newer GPUs. If anything this focus on clas-

sical graphics tasks biases our results in favor of the GPUs.

Because the XMT programs only include the fragment

processing stage, for the best comparison we needed to ver-

ify that this stage is the bottleneck on the GPUs. Follow-

ing the methodology for locating bottlenecks in the pipeline

outlined by Rege and Brewer [35] and Hart [20], we ran

a series of tests designed to add work to a limited section

of the pipeline while keeping work elsewhere constant. If

the FPS rate does not change much, that stage can be elim-

inated as a potential bottleneck. We found that shading was

the bottleneck on both the ATI x700 Pro and the GeForce

7900 GTX. However, the results were inconclusive on the

GeForce 8800 GTX. Unfortunately we know of no way to

isolate a bottleneck in the 8800’s unified architecture.

5.1. Benchmark Results

Our tests show that the GPUs are faster at texture shad-

ing, while XMT has faster brick shading performance and

the significantly better programmability of a PRAM. The

results from each of the configurations is given in Table 1.

The most heavily optimized versions of the XMT shaders -

XMT version 2 for the brick shader - ran at 3222 FPS and

- XMT version 3 for the texture shader - ran at 487 FPS.

This demonstrates an improvement over all GPUs tested for

the brick shader, but a substantial loss for the texture shader

(.26× vs the ATI and .15× vs the GeForce). At first it is

counterintuitive that XMT would be faster with one oper-

ation while the GPUs are much faster with the other. We

now suggest some reasons for this inversion, and what it

says about using XMT for graphics.



Configuration Texture Brick

ATI x700 1846 354

NVidia GeForce 7900 8632 1917

NVidia GeForce 8800 3179 2760

XMT version 1 197 1423

XMT version 2 275 3222

XMT version 3 487

Table 1. Frames per second results for all
shaders. The best XMT version does better

at brick shading than any GPU tested, how-
ever it performs worse than the GPUs on tex-

ture shading. Also the 8800 sacrifices texture

shading performance for more general per-
formance compared to the 7900.

When looking at the XMT-C shader programs in isola-

tion, these results seem reasonable since the texture shad-

ing program is much more computationally and memory

intensive than the brick shading program. The brick shader

does a few floating point operations to determine whether

the fragment should be brick or mortar colored and then

writes the appropriate color values. The texture shader has

to figure out the correct level, read values from multiple lev-

els of the texture, interpolate those values, and write out the

result. The XMT architecture is not optimized for either

shader over the other, so its results reflect the actual diffi-

culty of the programs.

Therefore the asymmetry can best be explained on the

GPU side. Specifically the GPU hardware is heavily opti-

mized for streaming texture shading, with specialized cache

and functional units for texture management. The natural

conclusion here is that the GPUs do better than a general-

purpose architecture at tasks for which they are optimized,

and the general-purpose system does better on other tasks.

We have only shown that this statement applies to brick

shading, but given XMT’s performance on a wide variety of

tasks shown by Vishkin et al. [39] and Gu and Vishkin [17]

it is likely that these results would extend to other applica-

tion such as physics processing.

The comparison between the two GeForce chips shows

that the 8800 sacrifices texture shading performance in fa-

vor of more general performance. This fact is indicative of

the wider trend toward more general-purpose performance

on GPUs. This trend is described by Thompson, Hahn,

and Oskin [38], and is more recently evidenced by compar-

ing the GeForce 6 series architecture [24] with the GeForce

8800 architecture [29].

5.2. XMT Scalability Analysis

Finally we explore the computational scalability of the

XMT architecture on fragment shading. We ran a series

Texture Shader Brick Shader

#TCUs
Cluster

FPS
memory

usage
FPS

memory

usage

16 487 .17 3222 .16

32 782 .26 5150 .23

64 1221 .39 7643 .31

128 1763 .59 8491 .51

192 2035 .74 8436 .56

256 2148 .85 8335 .56

Table 2. Frames per second and memory uti-
lization of XMT with varying computational

capacity.

of tests using the most heavily optimized versions of both

shaders on a subset of the scene. For these tests we kept the

memory, interconnection network, and number of clusters

constant with 64 clusters and 128 memory modules. Across

the tests we varied the number of TCUs in each cluster from

16 to 256. The 16 TCUs per cluster system is the same one

used in the previous section. For each test we recorded the

total time to completion, how long on average each instruc-

tion takes during the processing of a fragment, and what

fraction of memory access instructions are satisfied by the

cluster cache (and therefore do not require the interconnec-

tion network).

One way to implement the equivalent of 256 TCUs per

cluster without requiring much more area than the 16 TCU

base system is to bring back an idea from the Cray MTA,

where each of 16 TCUs effectively emulates 16 ”virtual

TCUs” by context switching among them in a round robin

fashion. Another technique would be to augment the ISA

with SIMD graphics instructions, that way each TCU could

operate on 16 fragments at once.

The results from these tests are shown in Table 2. It is ev-

ident that the frame rate changes nearly linearly with mem-

ory utilization. The frame rate deviates somewhat from this

pattern when under heavy load, due primarily to functional

unit contention. This observation agrees with the intuitive

idea that each fragment requires a fixed number of mem-

ory accesses, and that throughput should be linearly propor-

tional to the rate at which these happen. Thus we estimate

the maximum texture shading performance of a fixed mem-

ory system and algorithm at approximately 2800 frames per

second. A similar calculation bounds the maximum brick

shading rate at above 20000 FPS. Algorithmic changes that

could improve on this bound include compressing textures,

clustering fragments, or other methods to decrease memory

accesses. These upper bounds assume ideal memory and

computation utilization, and are thus somewhat higher than

the observed values near 2148 and 8335 respectively.

To better understand how computation and memory ca-

pacity affect throughput we examine instruction level aver-



age per fragment behavior. For the average fragment, the

program runs a fixed sequence of instructions that take T

cycles. Those cycles can be divided into memory accesses

and computation. Let C be the average number of computa-

tion cycles per fragment, and M be the number of memory

accesses that are not satisfied locally by the prefetch buffers.

The time for each memory access can be separated into un-

hidden memory latency L plus cluster port queuing delay

Q.

We give two distinct lower bounds on T . Any itera-

tion must take an average of L + Q cycles for each of M

memory accesses and C cycles of computation. Therefore

T ≥ M(L + Q) + C. Additionally, there are P TCUs

that must share a single cluster memory port for their M

accesses. If the memory port processes one of them every

a cycles, it will take a ∗ M ∗ P cycles for all of them to be

satisfied. Therefore we have a bound T ≥ a ∗ M ∗ P .

If C+M(L+Q) > a∗M ∗P we call the system compu-

tationally limited, if C +M(L+Q) < a ∗M ∗P we call it

memory limited, a system where they are equal is balanced.

When the system is computationally limited, as in our base

system, T ≥ C + M(L + Q). In such a system, decreasing

computation time or average latency will have a substan-

tial affect on performance and increasing parallelism will

linearly increase performance, though increasing memory

bandwidth will have only a marginal effect. When a system

is memory limited, the throughput is given by 1

a∗M
which

does not depend on computational resources or latency at

all. In such a configuration, performance can only be im-

proved by making the memory system faster or decreasing

the amount of memory accesses per iteration.

As P increases in a TCU, a system pivots from being

computationally limited to bandwidth limited when C +
M(L+Q) = M ∗a∗P , or alternatively C

M
+L+Q = a∗P .

This corresponds to processors generating packets for the

memory network at exactly the rate at which network can

process them. If L and Q were static with respect to the net-

work utilization, it would be a simple matter to determine

at exactly what level of per cluster parallelism the memory

system saturates, however they are not static. The unhidden

network latency L increases for two reasons. First, as the

network utilization goes up, round trips take longer. Balkan,

Qu and Vishkin examine this effect in detail[4]. They show

that for our 64 terminal configuration, one way time at low

or moderate utilization is 16.9 and increases to 42.7 at full

utilization. Secondly, as a higher percentage of each pro-

cessor’s cycles are spent waiting for memory accesses, the

fraction of the latency that is hidden decreases to 0. The

average cluster memory port queuing delay Q starts at ≈ 0
when the memory bandwidth greatly exceeds the rate of re-

quests, and approaches P minus a constant. This is because

the ratio of time spent in the queue comes to dominate each

loop iteration and any new request must be added behind all

≈ P previous requests in the queue. Since average memory

response time only increases with utilization, we observe a

range of values for P during which the system pivots from

computationally limited to memory limited.

For the texture shader our experiments show that with 8
TCUs per cluster, Llow+Qlow ≈ 25, which corresponds to

very little latency hiding and some queuing delay. Also C ≈

1860, M = 50∗prefetch buffer miss rate ≈ 16, and a ≈ 1.9
for higher numbers of TCUs. Therefore we expect the range

at which the system pivots to start with 1860

16
+25 = 1.9∗P

or P ≈ 74. The high end of the range we expect to be

near 1860

16
+ 25 + 2 ∗ (42.7 − 16.9) + (QP − Qlow) =

1.9∗P . With QP ≈ P and Qlow small this gives P ≈ 214.

The experimental results shown in Table 2 agree with this

pivot range for P . The throughput increases rapidly before

P = 64, very slowly after P = 192, and the rate changes

gradually in between.

We perform a similar analysis for the brick shader with

C = 526, M = 7 ∗ prefetch buffer miss rate ≈ 3.5,

and Llow + Qlow = 8 (corresponding to low utiliza-

tion and effective latency hiding). These parameters give

a pivot value of P between
(

526

3.5
+ 8

)

∗
1

1.9
≈ 79 and

(

526

3.5
+ 8 + 2 ∗ (42.7 − 16.9)− Qlow

)

∗
1

.9
≈ 233. Our

model does not account for measured brick shading mem-

ory utilization leveling off at .56. So to test our model we

compare the results for the two shaders on 16 to 64 TCUs,

where memory utilization is still increasing. Those results

suggest that the brick shader would reach the pivot range

with P slightly higher than the texture shader, which agrees

with the model’s brick shader range of 79 − 233.

6. Architectural Extensions

We have demonstrated the ability of the XMT system to

perform texture shading at a rate about 1

6
of the fastest GPU

we tested, and custom shading at a rate faster than any of

the GPUs we tested. We see two main directions in GPU

development that these results suggest.

6.1. Customized XMT

It should be noted that the graphics specific instructions

added to the simulator in XMT version 3 are only a few of

many potential optimizations to make. In addition, just as

current GPUs consist of somewhat general-purpose com-

putational cores supplemented by special-purpose graph-

ics subsystems, we could add the same subsystems to an

XMT-based GPU. These would include texture filtering,

per-cluster read only texture caches so texture reads would

not require a round trip to the memory system, and hard-

ware support for compressed textures. Given the faster per-

formance of XMT on the computational benchmarks, this

would help to balance the texture advantage of the current

GPUs, and could result in a new GPU with competitive



performance, but with a much more general programming

model.

6.2. Combination Systems

An alternative way to combine ideas and strengths from

the two architectures is to combine a GPU with an XMT

chip on the same system. Currently a system will pair a

GPU with a serial CPU, and all work is divided between

them such that inherently serial computation is performed

by the CPU, and parallel computation by the GPU. On this

system, the less stream based a parallel application is, the

more unnatural it is to run it on a GPU. By instead pairing

a GPU with XMT we can achieve the best of both worlds.

Graphics applications can run predominantly on the GPU

while all other applications, both serial and parallel, run on

the XMT chip.

This type of setup offers several advantages over the hy-

brid approach above. With one general-purpose chip and

one specialized graphics chip neither has to compromise

any of its functionality to more closely match the other

model. Future GPU development can focus more on graph-

ics and streaming without losing anything in an attempt to

be more general than needed. XMT development can con-

tinue to focus on running PRAM algorithms quickly with-

out losing anything to specialization.

7. Conclusion

In order to better support applications whose demands

lay outside of the traditional graphics pipeline, graph-

ics processor architectures have become more similar to

general-purpose parallel architectures. At the same time,

technological developments have put the prospect of a true

general-purpose multiprocessor, one that closely matches

the PRAM model for parallel programming, within reach.

We have shown that such a general-purpose on-chip mul-

tiprocessor can be competitive with current GPU hardware

in some graphics applications, while maintaining all of the

benefits that come from being designed from the ground up

as a general-purpose architecture.

This suggests that development and implementation of

general-purpose CPUs will affect the future of GPU devel-

opment. GPU designs can borrow both programming mod-

els and architectural ideas from the general-purpose par-

allel community in order to support a wider range of al-

gorithms. Alternatively they can drift further away from

general-purpose, recognizing that their co-processor can

aptly handle more complicated forms of parallelism.

A possible consequence is that in the short term GPUs

will continue to broaden their outreach. However, once

CPU vendors become as aggressive about the incorpora-

tion of parallelism towards faster completion of single tasks

(e.g., using many-core architecture) as GPU vendors al-

ready are, these new CPUs will start competing with GPUs

on applications for which the CPUs will be good enough.

This could cause, in turn, an eventual retreat of GPUs to co-

processors engineered to handle the more graphics-specific

forms of parallelism that will be reserved for GPUs.
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