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Abstract. Binary Moment Diagrams (BMDs) provide
a canonical representations for linear functions similar
to the way Binary Decision Diagrams (BDDs) represent
Boolean functions. Within the class of linear functions,
we can embed arbitrary functions from Boolean vari-
ables to real, rational, or integer values. BMDs can thus
model the functionality of data path circuits operating
over word level data. Many important functions, includ-
ing integer multiplication, that cannot be represented
efficiently at the bit level with BDDs have simple repre-
sentations at the word level with BMDs. Furthermore,
BMDs can represent Boolean functions with around the
same complexity as BDDs.

We propose a hierarchical approach to verifying arith-
metic circuits, where component modules are first shown
to implement their word-level specifications. The overall
circuit functionality is then verified by composing the
component functions and comparing the result to the
word-level circuit specification. Multipliers with word
sizes of up to 256 bits have been verified by this tech-
nique.

1 Introduction

Binary Decision Diagrams (BDDs) have proved success-
ful for representing and manipulating Boolean functions
symbolically [4] in a variety of application domains. Build-
ing on this success, there have been several efforts to
extend the BDD concept to represent functions over
Boolean variables, but having non-Boolean ranges, such
as integers or real numbers [1,8,13,20,22,21]. This class
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of functions is sometimes termed “pseudo-Boolean” [17].
Many tasks can be expressed in terms of operations on
such functions, including integer linear programming,
matrix manipulation, spectral transforms, and word-level
digital system analysis. To date, the proposed represen-
tations for these functions have proved too fragile for
routine application—too often the data structures grow
exponentially in the number of variables.

In this paper we propose a new representation called
Multiplicative Binary Moment Diagrams (¥*BMDs) that
improve on previous methods. *BMDs incorporate two
novel features: they are based on a decomposition of a
linear function in terms of its “moments,” and they have
weights associated with their edges which are combined
multiplicatively. These features have as heritage ideas
found in previous function representations, namely the
Reed-Muller decomposition used by Functional Decision
Diagrams (FDDs) [11,19], and the additive edge weights
found in Edge-Valued Binary Decision Diagrams (EVB-
DDs) [20,21]. The relations between the various repre-
sentations are described more fully below.

*BMDs are particularly effective for representing dig-
ital systems at the word level, where sets of binary sig-
nals are interpreted as encoding integer (fixed point)
or rational (floating point) values. Common integer and
floating point encodings have efficient representations as
*BMDs, as do operations such as addition and multipli-
cation. ¥BMDs can also represent Boolean functions as
a special case, with size comparable to BDDs.

*BMDs can serve as the basis for a hierarchical method-
ology for verifying circuits such as multipliers. At the low
level, we have a set of building blocks such as add step-
pers, Booth steppers, and carry save adders described at
both the bit level (as combinational circuits) and at the
word level (as algebraic expressions). Using a method-
ology proposed by Lai and Sastry [20], we verify that
the bit-level implementation of each block implements
its word-level specification. At the higher level (or lev-
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Boolean Numeric
Terminal Edge-Weighted
Point-wise BDD MTBDD, ADD EVBDD
Moment FDD BMD *BMD

Table 1. Categorization of Graphical Function Represen-
tations.
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Fig. 1. Example Function Decompositions. MTBDDs are

based on a point-wise decomposition (left), while BMDs are based
on a linear decomposition (right).

els), a system is described as an interconnection of blocks
having word-level representations, and the specification
is also given at the word-level. We then verify that the
composition of the block functions corresponds to the
system specification. By this technique we can verify sys-
tems, such as multipliers [5], that cannot be represented
efficiently at the bit level. We also can handle a more ab-
stract level of specification than can methodologies that
work entirely at the bit level.

2 Graphical Function Representations

Methods related to ordered BDDs for representing func-
tions as graphs can be categorized as shown in Table 1.
First, the range of a function can be either Boolean or
numeric, e.g., integer, rational, or real. Second, we will
consider two methods of decomposing a function with
respect to a Boolean variable z: in terms of its value
at # = 1 and « = 0 (point-wise decomposition), or its
“moments,” i.e., its value at z = 0 and how this value
changes as z changes to 1. Finally, the values of a nu-
meric function can be expressed in terms of values as-
sociated with the leaves or with the edges. Note that in
all cases we assume a total ordering of the variables and
that variables are tested according to this ordering along
any path from the root to a leaf.

To illustrate the two ways of decomposing a function,
consider the function F' over a set of Boolean variables
y and z, yielding the integer values shown in the table
of Figure 1. A point-wise decomposition characterizes

a function by its value for every possible set of argu-
ment values. By extending BDDs to allow numeric leaf
values, the point-wise decomposition leads to a “Multi-
Terminal” BDD (MTBDD) representation of a function
[8,13] (also called “ADD” [1]), as shown on the left side
of Figure 1. In our drawings of graphs based on a point-
wise decomposition, the dashed line from a vertex de-
notes the case where the vertex variable is 0, and the
solid line denotes the case where the variable is 1. Ob-
serve that the leaf values correspond directly to the en-
tries in the function table.

Exploiting the fact that the function variables take
on only the values 0 and 1, we can write a linear expres-
sion for function F' directly from the function table. For
variable y, the assignment y = 1 is encoded as y, and
the assignment y = 0 is encoded as 1 — y:

8 El—yg(l—z)—i—
—12 (1 — z  +

Pz = yy (1—-z) +
—6 Y z

Expanding this expression and combining common
terms yields the expression:

F(y,z) =8 —20z + 2y + 4yz
= 8y°20 + —20y°21 + 2y 20 + 4yl 2t

This representation is called the “monomial expansion”
of F. It represents the function as a sum of terms ay®v z°-
where a is a numeric coefficient and both b, and b, are
either 0 or 1. This expansion leads to the BMD repre-
sentation of a function, as shown on the right side of
Figure 1. In our drawings of graphs based on a moment
decomposition, the dashed line from a vertex indicates
the case where the function is independent of the vertex
variable z (b; = 0), while the solid line indicates the case
where the function varies linearly (b, = 1).

2.1 Recursive Decompositions of Functions

The graph representations of functions we consider ex-
pand a function one variable at a time, rather than in
terms of all the variables, as do the tabular form and
the monomial expansions of Figure 1. Better insight can
be gained by considering recursive decompositions of the
function, where a function is decomposed in terms of a
variable into two subfunctions. In our graphical repre-
sentation, each vertex denotes a function. The outgoing
branches from the vertex indicate the subfunctions re-
sulting from the decomposition with respect to the ver-
tex variable.

For function f over a set of Boolean variables, let f.
(respectively, fz) denote the positive (resp., negative)
cofactor of f with respect to variable z, i.e., the func-
tion resulting when constant 1, (resp., 0) is substituted
for z. BDDs are based on a point-wise decomposition,
where the function is characterized with respect to some
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variable x in terms of its cofactors. Function f can be
expressed in terms of an expansion (variously credited
to Shannon and to Boole):

JF = ZNfg V zA[f

In this equation we use A and V to represent Boolean
sum and product, and overline to represent Boolean com-
plement.

For expressing functions having numeric range, the
Boole-Shannon expansion can be generalized as:

f=0-2)fz+2z [ (1)

where -, +, and — denote multiplication, addition, and
subtraction, respectively. Note that this expansion relies
on the assumption that variable z is Boolean, i.e., it will
evaluate to either 0 or 1. Both MTBDDs and EVBDDs
[20,22] are based on such a point-wise decomposition. As
with BDDs, each vertex v describes a function f in terms
of its decomposition with respect to variable x = Var(v).
The two outgoing arcs: Lo(v) and Hi(v) denote functions
fz and f,, respectively. A leaf vertex v in an MTBDD
has an associated value Val(v).

The moment decomposition of a function is obtained
by rearranging the terms of Equation 1:

f=fHF+2z(fe —fF)
=fr+ z fsz (2)

where fs. = f: — f7 1s called the linear moment of f
with respect to z. This terminology arises by viewing f
as being a linear function with respect to its variables,
and thus fs5, is the partial derivative of f with respect
to x. Since we are interested in the value of the function
for only two values of x, we can always extend it to a
linear form. The negative cofactor will be termed the
constant moment, i.e., it denotes the portion of function
f that remains constant with respect to x, while fs,
denotes the portion that varies linearly. Relating to the
monomial expansion presented earlier, the two moments
of function f partition the set of monomial terms into
those that are independent of z, i.e., by = 0 (fF), and
those that vary linearly with z, i.e., by = 1 (fs5z).

We will define two forms of graphs representing func-
tions according to a moment decomposition. In both
cases, vertex v denoting function f is labeled by a vari-
able # = Var(v), and has two outgoing arcs: Lo(v) denot-
ing function fz and Hi(v) denoting function f5,. We will
term graphs of this form “Moment” Diagrams (MDs)
as opposed to “Decision” Diagrams (DDs). The distinc-
tion is based on the rules used to evaluate a function for
some valuation of the variables. In a decision diagram
one simply traverses the unique path from the root to a
leaf determined by the variable values, possibly accumu-
lating edge weights. For example, consider the evaluation
of a MTBDD for Boolean variable assignment ¢. That

is, ¢ denotes a function that for each variable z assigns

Fig. 2. Different Representations for Binary-Weighted
Bits. All represent the function X = 4z5 + 271 + zg.

a value ¢(z) equal to either 0 or to 1. The evaluation
starting at vertex v can be defined as:

MTBDDeval(v,¢) =

Val(v), v is leaf
{ MTBDDeuval(Lo(v), ¢), ¢(Var(v)) =0 (3)
MTBDDeval(Hi(v),¢), ¢(Var(v)) =1

In a moment diagram, evaluation requires consider-
ation of multiple paths in the graph. For every vertex
v labeled by a variable z that evaluates to 1, subgraphs
Lo(v) and Hi(v) must both be evaluated and their results
summed. The evaluation of BMD for Boolean variable
assignment ¢ starting at vertex v can be defined as:

BMDEval(v, ¢) =

{ Val(v v is leaf

BMDEwval(Lo(v), ¢) ¢(Var(v)) = q4)
BMDEuval(Lo(v), ¢) + BMDEval(Hi(v), $) ¢(Var(v)) =1

In return for the more complex evaluation rule of mo-

ment diagrams, we obtain graphs that are potentially

much more compact.

By way of comparison, the moment decomposition
of Equation 2 is analogous to the Reed-Muller expan-
sion (also called the positive Davio expansion [11]) for
Boolean functions:

f=l&aN(fe®f7)

The expression f; @ fz is referred to as the Boolean dif-
ference of f with respect to z [25], and in many ways is
analogous to our linear moment. Other researchers [11,
19] have explored the use of graphs for Boolean functions
based on this expansion, calling them Functional Deci-
sion Diagrams (FDDs). By our terminology, we would
refer to such a graph as a “moment” diagram rather
than a “decision” diagram.

2.2 Edge Versus Terminal Weights

One method to represent functions yielding numeric val-
ues, used by MTBDDs and by BMDs, is to simply in-

troduce a distinct leaf vertex for each constant value
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needed. This approach has the drawback, however, that
many leaves may be required, often exponential in the
number of variables. Figure 2 illustrates the complexity
of the function mapping a vector of Boolean variables:
Zp—1,--.,2&1, Lo to an integer value according to its inter-
pretation as an unsigned binary number. As can be seen,
the MTBDD representation will grow exponentially with
the word size, since there are 2" different values for the
function.

A second method for defining function values is to as-
sociate weights with the edges. This idea was originated
by Lai, et al in their definition of EVBDDs. In their case,
edge weights are combined additively, i.e., the value of a
function is determined by following a path from a root
to a leaf, summing the edge weights encountered. As
shown on the right side of Figure 2, the edge weights
of EVBDDS can lead to a much more compact repre-
sentation than with MTBDDs. In our drawings of EVB-
DDs, edge weights are shown in square boxes, where an
edge without a box has weight 0. For representing a sum
of weighted bits, this representation achieves a linear
complexity. Various schemes can be used for “normal-
izing” edge weights so that the resulting graph provides
a canonical form for the function. For example, the stan-
dard formulation of EVBDDs requires that edge Lo(v)
for any vertex v have weight 0.

The bottom of Figure 2 shows the BMD represen-
tation of the same function. Observe that the graph for
this function grows linearly with word size. In our draw-
ings for BMDs, the solid line leaving vertex v indicates
Hi(v), the linear moment. The linear moment of X with
respect to any variable z; is simply its binary weight 2,
giving rise to the simple linear structure shown. Thus,
the moment decomposition is sufficient for simplifying
the representation of this function.

*BMDs also have edge weights, although the weights
combine multiplicatively rather than additively. Although
not the case for Figure 3, edge weighting can lead to a
much more concise representation of a function. As an
illustration, Figure 3 shows three representations of the
function 8 — 20z 4+ 2y 4+ 4yz + 12z + 24zz + 152y. The
upper graph is a BMD, with the leaf values correspond-
ing to the coefficients in the monomial expansion. As the
figure shows, the BMD data structure misses some op-
portunities for sharing of common subexpressions. For
example, the terms 2y + 4yz and 12z + 24x2z can be fac-
tored as 2y(1 + 2z) and 12z(1 + 2z), respectively. The
representation could therefore save space by sharing the
subexpression 1 + 2z. For more complex functions, one
might expect more opportunities for such sharing.

The two forms of *BMDs, shown at the bottom of
Figure 3 indicate how *BMDs are able to exploit the
sharing of common subexpressions. In our drawings of
*BMDs, we indicate the weight of an edge in a square
box. Unlabeled edges have weight 1. In evaluating the
function for a set of arguments, the weights are multi-
plied together when traversing downward. There are a

Rational Weights

Integer Weights

Fig. 3. Examples of BMD and *BMDs. All represent the
function & — 20z + 2y + 4yz + 12z + 24zz + 15zy. *BMDs have
weights on the edges that combine multiplicatively.

variety of different rules for manipulating edge weights,
resulting in different representations. We will describe
two different sets of rules—one that results in rational
weights, even when manipulatinginteger functions (left),
and one that yields integer weights, but is only applica-
ble for integer functions (right). Observe that these two
rules yield graphs with identical branching structure, but
differing in edge weights.

For the remainder of the presentation we will con-
sider mainly *BMDs, The effort required to implement
weighted edges is justified by the savings in graph sizes.
For functions with integer ranges, we will use integer
edge weights. Keeping edge weights as integers is easier
than maintaining rational numbers. If we approximate
rational numbers with floating point representations, the
vagaries of the rounding behavior could greatly compli-
cate the use of *BMDs in formal verification.

2.3 Algebraic Structure

Although we have presented BMDs and *BMDs as meth-
ods for representing functions over Boolean variables,
they can also be viewed as representing arbitrary lin-
ear functions. For example, the BMD of Figure 1 can be
viewed as representing the function F'(z,y) = 8 — 20z +
2y + 4yz for arbitrary values of y and z. The rule for
evaluating a graph given a numeric variable assignment



Randal E. Bryant, Yirng-An Chen: Verification of Arithmetic Circuits Using Binary Moment Diagrams 5

¢ then becomes:

LinFEval (v, ¢) =

{ Val(v), v is leaf )
LinEval(Lo(v), ) + #(Var(v)) - LinEval (Hi(v), ¢) otherwige

The class of linear functions can be defined as either
those that can be expressed as a sum of monomial terms,
or as those functions that obey Equation 2 for all vari-
ables.

An algebraic structure for linear functions provides
further insight into our representation. Let L denote the
set of linear functions, and for a variable assignment ¢
let f(¢) denote the result of evaluating linear function
f according to this assignment. We can define addition
of linear functions in the usual way, i.e., the sum of two
functions f + g is a function h such that h(¢) = f(¢) +
9(¢). Tt can be seen that the algebraic structure (L, +)
forms a group, having as identity element the function
that always evaluates to 0.

We could define multiplication over functions in a
similar fashion, but then the class of linear functions
would not be closed under this operation. The product
of two linear functions could yield a quadratic function.
In particular, the product of functions f and g, denoted
f - g can be defined recursively as follows. If these func-
tions evaluate to constants a and b, respectively, then
their product is simply f-g = a-b. Otherwise assume the
functions are given by their moment expansions (Equa-
tion 2) with respect to some variable z. The product of
the functions can then be defined as:

f'g :f5g5+r(ffgéx+f5x 'gf)+$2f(5x'g5:c (6)

One can readily show that this definition is unambiguous—

the result is independent of the ordering of the variables
in the successive decompositions.

Instead of conventional multiplication, we can define
an operation - with similar properties, except that it pre-
serves linearity. This involves “demoting” the quadratic
term in the equation for conventional multiplication to a
linear term. The linear product of functions f and g, de-
noted f" g, is defined recursively as follows. If these func-
tions evaluate to constants a and b, respectively, then
their linear product is simply their product: f g = a -b.
Otherwise assume the functions are given by their mo-
ment expansions (Equation 2) with respect to some vari-
able z. Their linear product is defined as

[y :ff?gf'i'x(fffgéx+f6x?gf+f6x?g(5x) (7)

One can show that the definition is independent of the
ordering in the decomposition. The algebraic structure
(L,+,") forms a ring. That is, * is associative, and it dis-
tributes over +. Furthermore, the function that always
yields 1 serves as a unit for this ring.

Although the linear product operation is not the same
as conventional multiplication, there are two important
cases where we can safely use f°g as a replacement for

4
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Fig. 4. Representations of Signed Integers. All commonly
used encodings can be represented easily.

f - g. First, under the Boolean domain restriction, i.e.,
considering only variable assignments ¢ such that ¢(z) €
{0, 1}, we are guaranteed that [f - g](¢) = [f " g](6). Sec-
ond, define the support of a function f as those variables
z such that fs; # 0. Under the independent support as-
sumption, where functions f and g have disjoint support
sets, we have that f.-g = f'g¢ for any variable assign-
ment. In particular, for any variable 2 we must have that
either fs, or g5, 1s identically 0, and hence the quadratic
term of Equation 6 drops out.

In general, we can “linearize” any operation op to
create an operation op such that for any Boolean vari-
able assignment ¢, we have [f dp g](¢) = f(&) op 9(d).
This involves generating moments with respect to each
variable z as:

[fopglz = fropgz (8)
[f op glse = [fopgle — [f op glz
= [fz 0p 9z] — [f7 op 97]
= [(fz + fse) op(97 + 950)] — [fz 0P g7] (9)

As before, the definition is independent of the variable
ordering. In general, this linearization would not yield
valid results for non-Boolean variable assignments, whether
or not the arguments have independent support. For ex-
ample, the linearized form of exponentiation would con-
vert (z 4 2)Y into 1 +y + zy.

3 Representation of Numeric Functions

*BMDs provide a concise representation of functions de-
fined over “words” of data, i.e., vectors of bits having
a numeric interpretation. Let x represent a vector of
Boolean variables: x,_1,..., 21, xy. These variables can
be considered to encode an integer X according to some
encoding, e.g., unsigned binary, two’s complement, BCD,
etc. As Figure 2 shows, the *BMD (as well as BMD)
representations for X according to an unsigned binary
encoding have linear complexity. Figure 4 illustrates the
*BMD representations of several common encodings for
signed integers, where z,_1 is the sign bit. The sign-
magnitude encoding gives integer value X = —1%»-1 X’
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Form X+Y X*Y X’ X
MTBDD | exponential exp. exp. exp.
EVBDD linear exp. exp. exp.

BMD linear quadratic  quadratic exp.

*BMD linear linear quadratic  linear

Table 2. Word-Level Operation Complexity. Expressed in
how the graph sizes grow relative to the word size.

where X’ is the unsigned integer encoded by the remain-
ing bits. Observe that this can be expressed in the linear
form (1 — 2z,_1)X’, yielding a graph structure where
both moments for variable z,,_; point to the graph for
X', but having edge weights 1 and —2. As the other
graphs in the figure illustrate, both two’s complement
and one’s complement encodings can be viewed as sums
of weighted bits, where the sign bit is weighted either
—27=1 (two’s complement) or 1 — 2"~ (one’s comple-
ment) [23].

The conciseness of *BMDs arises from two impor-
tant properties of typical encodings. First, many encod-
ings are based on a sum of weighted bits. In terms of
the monomial expansion, this implies that the terms are
all of low degree. Second, the regularity of the encod-
ings gives rise to many subexpressions differing only by
multiplicative factors. This leads to sharing of subgraphs
in the *BMD, with edge weights denoting the different
factors.

3.1 Word-Level Operations

Table 2 provides a comparative summary of the four
function representations for a number of word-level oper-
ations on unsigned data. *BMD examples of these func-
tions are included in this paper. As can be seen, MTB-
DDs are totally unsuited for this class of functions. The
range of the functions to be represented is simply too
large. EVBDDs yield better results for representing word-
level data and for representing “additive” operations (e.g,
addition and subtraction) at the word level. This ca-
pability was exploited by Lai and Sastry in verifying
adder circuits against word-level specifications [20]. On
the other hand, EVBDDs cannot efficiently represent
more complex functions such as multiplication, squar-
ing, and exponentiation. Thus, for example, they cannot
be used for verifying multipliers. In fact, all published
examples that can be handled efficiently at the word
level using EVBDDs can be handled at the bit level us-
ing BDDs. Their utility in verifying circuits is mainly for
providing a more abstract form of specification.

Both BMDs and *BMDs are much more effective
for representing word-level operations. BMDs remain of
polynomial (quadratic) size for both multiplication and
for squaring, although they grow exponentially for expo-
nentiation. *BMDs do even better, being quadratic for
squaring and linear for all other operations listed. By

Fig. 5. Representations of Word-Level Sum and Product.
The graphs grow linearly with word size.

Fig. 6. Representations of Word-Level Product for Other
Variable Orderings. The graphs grow linearly with the word
size regardless of the variable ordering.

verifying circuits at the word level with *BMDs, we can
handle classes of systems that are beyond the capability
of BDDs and other bit-level techniques.

Figure 5 illustrates the *BMD representations of ad-
dition and multiplication expressed at a word level. Ob-
serve that the sizes of the graphs grow only linearly with
the word size n. Word-level addition can be viewed as
summing a set of weighted bits, where bits z; and y;
both have weight 2¢. Word-level multiplication can be
viewed as summing a set of partial products of the form

As with BDDs, the representation of a function de-
pends on the variable ordering. For example, Figure 6
shows the *BMDs for word-level multiplication under
two additional variable orderings. Observe that although
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Fig. 7. Representations of Unary Operations at Word-
Level. The graph for 2% grows linearly with the word size, while
that for X2 grows quadratically.

these graphs appear more complex than the one of Fig-
ure 5, their complexity still grows only linearly with n. In
our experience, ¥BMDs are much less sensitive to vari-
able ordering than are BDDs.

Figure 7 illustrates the *BMD representations of two
unary operations on word-level data. For representing
the function ¢X (in this case ¢ = 2), the *BMD has
linear complexity. It expresses the function as a product
of factors of the form ¢2' %+ = (021)”“. Since z; evaluates
to either 0 or to 1, the exponentiation can be linearized
as: a® = 1+ (a—1)z;. In the graph, a vertex labeled by
variable z; has outgoing edges with weights 1 and ¢ —1
both leading to a common vertex denoting the product
of the remaining factors.

For representing the function X2, both the BMD
and the *BMD have quadratic complexity. The repre-
sentation can be seen to follow a recursive expansion of
the function based on the decomposition: X = X, =
2" lg._1 4+ X, _1, where X} denotes the weighted sum
of variables zy through zg_1. In terms of this decompo-
sition we have:

XT2L = (2n_1xn—1 +Xn—1)2
220252 42, X1+ X2,

Since z,_1 is Boolean-valued, we can demote the quadratic

term xfl_l to a linear term x,_1. Thus, the constant mo-
ment for the function is X,zl_l, while the linear moment
is 22772 4 27X, _1 = 2"(X,_1 + 2"~ %). In our example
with n = 4, the left subgraph represents the function X2,
while the right side represents the subgraph 16(Xs +4).
Observe that the different constant offsets for each bit
cause the growth of the graph to be quadratic rather
than linear. That is, there is no sharing between the
graphs for the terms X;_; + 2i=2 for different values of
1. For many applications, this quadratic complexity is
acceptable. For example, we could represent the square
of a 32-bit number by a graph of around 530 vertices.

ExcLusIVE-OR

AND

Fig. 8. Representations of Boolean Functions. Representa-
tions as *BMDs are comparable in size to BDDs.

4 Representation of Boolean Functions

Boolean functions are just a special case of numeric func-
tions having a restricted range. Therefore such functions
can be represented as BMDs or *BMDs. The algebraic
structure introduced in Section 2.3 provides a convenient
notation for translating Boolean operations into opera-
tions on linear functions. In particular, let f and g denote
functions have Boolean ranges. Then we can define the
standard Boolean operations as:

f=1-f
fhNg=1TF-9g
fVvg=F+g—-(f-9)
feg=Ff+g9g-2(f9) (10)

Figure 8 illustrates the *BMD representations of sev-
eral common Boolean functions over multiple variables,
namely their Boolean product and sum, as well as their
exclusive-or sum. As this figure shows, the *BMD of
Boolean functions may have values other than 0 or 1
for edge weights and leaf values. Under all variable as-
signments, however, the function will evaluate to 0 or to
1. As can be seen in the figure, these functions all have
representations that grow linearly with the number of
variables, as is the case for their BDD representations.
The representation for AND follows due to the parallel
between Boolean and linear products. The representa-
tion for OR can be seen to follow an iterative struc-
ture. In particular, let F,, denote the OR of variables
Z1,Za, ..., Ly, and G, denote their NoRr,ie., G, = 1-F,.
Function F),, can be rewritten as:

Fn =In \/Fn—l
Ln +Fn—1 - (Zn 'Fn—l)
=F,_1+ rn(l - Fn—l)

=1+ 2,Gp
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BDD with Negative Edges

*BMD

Fig. 9. Bit-Level Representations of Addition Functions.
Each graph represents all four outputs of a 3-bit adder.

Thus, the moments of function F,, with respect to vari-
able z,, are Fj,_; and G,,_1. Based on this result, func-
tion GG, can be rewritten as:

Ghp=1-F,
=1- Fn—l - InGn—l
= Gn—1+$n(_Gn—1)

Thus, the moments of function G, with respect to vari-
able z, are G,_; and —G,_1. In the center graph of
Figure 8, the vertices on the left side denote the sequence
of Or functions, while those on the right side denote the
sequence of NOR functions.

The representation for EXCLUSIVE-OR follows a sim-
ilar iterative structure. It can be generated by defin-
ing function F, to be the EXCLUSIVE-OR of variables
Z1,Za,..., Ty, while letting GG, denote the function G,, =
1—2F,. It can be shown that F,, has moments F,,_; and
G'1,_1, while G, has moments G,,_1 and —2G,,_1.

Figure 9 illustrates the similarity between BDDs and
*BMDs when representing the Boolean functions de-
scribing an adder circuit at the bit level. Observe the
relation between the word-level representation (Figure
5) and the bit-level representation of addition. Both are
functions over variables representing the adder inputs,
but the former is a single function yielding an integer
value, while the latter is a set of Boolean functions: one
for each output signal for the circuit. The relation be-
tween these two representations will be discussed more
fully in our development of a verification methodology.

The BDD representation shown in Figure 9 employs
two techniques to reduce its size [3]. First, it represents
a set of functions by a single graph with multiple roots,
allowing different functions to share common subgraphs.

In fact, the set of functions is maintained in strong canon-
tcal form, where every function to be represented is de-
noted by a unique root vertex. The *BMD representa-
tion can also use this form of sharing and maintained in
strong canonical form. Second, the BDD contains “neg-
ative edges” (indicated by dots on the edge) to denote
Boolean complementation. The use of edge weights in
*BMDs has a similar effect, although edge weights can-
not be used to directly represent the complement oper-
ation: f = 1 — f. Observe in any case that the *BMD
representation for these functions has a similar structure
to the BDD representation. Both grow linearly with the
word size, with the *BMD requiring 7 vertices per bit
position, and the BDD requiring 5.

In all of the examples shown, the *BMD representa-
tion of a Boolean function is of comparable size to its
BDD representation. In general this will not always be
the case. Enders [12] has characterized a number of dif-
ferent function representations and shown that *BMDs
can be exponentially more complex than BDDs, and
vice-versa. The two representations are based on differ-
ent expansions of the function, and hence their complex-
ity for a given function can differ dramatically. In our
experience, ¥*BMDs generally behave almost as well as
BDDs when representing Boolean functions.

5 Factoring and Other Decision Properties

One powerful property of BDDs is that, given a BDD
representation of a function f over a set of variables x,
one can easily find solutions to the equation f(x) = 0 by
tracing paths from the root to the leaf with value 0. This
strength of BDDs is also a limitation. Since any problem
that can be expressed as a function f having an efficient
BDD representation is amenable to easy solution, this
implies that BDDs cannot efficiently represent functions
corresponding to intractable problems.

Imagine for example, that it were possible to con-
struct the 2n BDDs giving a bit-level representation of
multiplication over n-bit integers x and y. Then we could
potentially factor a large number K, by solving the equa-

tion:
2n—1

\/ Pi(X,y)@ki =0

i=0
where P; is the function representing bit ¢ of the prod-
uct, and k; is the ¢th bit of K. Observe in this equation
that the values k; are constants, and therefore the com-
putation involves forming the product of either true or
complemented multiplier output functions. Experts con-
sider factoring to be a “hard” problem. In fact, the RSA
encryption algorithm [27] relies on the assumption that
given the public key, one cannot derive the two prime
factors of the key in a reasonable amount of time. Thus,
one would expect that some step in the above scheme for
factoring would break down. In the case of BDDs, the
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Fig. 10. Representation of Factoring Problem. Solving re-
quires finding variable assignment that evaluates to 0—not an easy
task.

problem comes in trying to generate the BDD represen-
tations of the functions P;. It can be shown that these
graphs grow exponentially with the word size [5].

Define the task of “finding a zero for function f”
as finding a (Boolean) variable assignment such that
f(z) = 0. We will call a representation for functions “eas-
ily invertible” if it is always possible to find a zero for the
function in time polynomial in the size of the represen-
tation. Both BDDs and MTBDDs have this property—
one simply finds a path to the leaf with value 0. One
can also show that FDDs are easily invertible [2], even
though evaluation does not involve simply following a
single path in the graph.

On the other hand, EVBDDs are not easily invert-
ible, assuming P # N P. The following argument shows
that the problem of finding a zero of a function repre-
sented by an EVBDD is NP-complete. First, the problem
is clearly NP, since given an assignment to the variables,
one can evaluate an EVBDD and determine whether the
function yields 0 for this assignment. Furthermore, any
instance of the NP-complete Partition problem [14] can
readily be translated into an EVBDD solution problem.
This problem is defined as: given a set of n elements A,
where each element ¢ has a nonnegative integer “size”
s;, determine whether there exists a subset A’ such that

E 53 = E 53
i€A’ iIEA—-A'

To translate this into an equation solution problem, let
S = ZiEA s;, and define the function f as:

fr,.an) = =S/2 4 ws; (11)
i=1

This function has an EVBDD with n nonterminal ver-

tices. It is similar in structure to that of Figure 2, except

that the outgoing solid arc from a vertex with variable z;
has weight s;, and the root has weight —S/2. The chal-
lenge of solving this problem for EVBDDs can be seen to
lie with the edge weights. One must find a path through
the graph such that the edge weights encountered sum
to 0.

By a similar argument, one can show that BMDs
and *BMDs also do not form easily invertible represen-
tations. Both are clearly in NP, since evaluation can be
performed in time linear in the graph sizes. Furthermore,
both provide linear-sized representations of the function
defined in Equation 11. For example, the BMD repre-
sentation of this function has structure similar to that
of Figure 2. The solid arc from a vertex with variable z;
points to a leaf with value s;, while the dashed arc from
the vertex with variable zy points to a leaf with value
—S5/2. The *BMD has similar structure, but possibly
with weights moved up into the edges.

The challenge of finding a zero of a BMD or *BMD
can be seen to lie with the evaluation rule, given by

Equation 4—evaluation requires considering multiple paths

in the graph. We can readily represent the factoring
problem, as shown in Figure 10 by constructing a *BMD
representation of the function X -Y — K (in this exam-
ple K = 35). The BMD representation of this function
is somewhat more complex, but still of size quadratic in
n. The lack of an efficient inversion algorithm prevents
one from factoring by this method.

The example of factoring illustrates the fact that
the strengths and weaknesses of BDDs versus *BMDs
are somewhat orthogonal. Tasks that can easily be per-
formed on BDDs are much more difficult to perform on
*BMDs. On the other hand, *BMDs can represent cir-
cuit functions that cause exponential blow up for BDDs
or to their extensions as MTBDDs and EVBDDs.

6 Algorithms

In this section we describe key algorithms for construct-
ing and manipulating *BMDs. The algorithms have a
similar style to their counterparts for BDDs. Unlike op-
erations on BDDs where the complexities are at worst
polynomial in the argument sizes, most operations on
*BMDs potentially have exponential complexity. We will
show in the experimental results, however, that these ex-
ponential cases do not arise in our applications.

6.1 Representation of *BMDs

We will represent a function as a “weighted pair” of the
form (w,v) where w is a numeric weight and v desig-
nates a graph vertex. Weights can either be maintained
as integers or real numbers. Maintaining rational-valued
weights follows the same rules as the real case. Vertex
v = A denotes a terminal leaf, in which case the weight
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pair MakeBranch(variable z, pair (wi, v), pair (wn, vn))
{ Create a branch, normalize weights. }
{ Assumes that + < Var(vy) and z < Var(v;) }

if wn = 0 then return {(w, v;)

w < NormWeight(wi, wp)

w — w/w

whp — wp/w

v « UniqueVertex(z, (wi, v), (wn, va))

return (w, v)

vertex Unique Vertez(variable z, pair (w;, v), pair (ws, vs))
{ Maintain set of graph vertices without duplication }

key « [z, w, Uid(w), wn, Uid(vs)]

found, v < LookUp( UTable, key)

if found then return v

v + New(vertex)

Var(v) « z; Uid(v) < Unid();

Lo(v) — <wz,vz>; Hi(v) — (wh,vh>

Insert( UTable, key, v)

return v

integer NormWeight(integer w;, integer wp)
{ Normalization function, integer weights. }
w + ged(wr, wh)
ifur < Oor (wy = 0and w, < 0)
then return —w
else return w

real NormWeight(real w;, real wp)
{ Normalization function, real weights }
ifuwy, =0
then return wy
else return w;

Fig. 11. Algorithms for Maintaining *BMD. These algo-
rithms preserve a strong canonical form.

denotes the leaf value. The weight w must be nonzero,
except for the terminal case. Each vertex v has the fol-
lowing attributes:

Var(v) The vertex variable.

Hi(v) The pair designating the linear moment.
Lo(v) The pair designating the constant moment.
Uid(v) Unique identifier for vertex.

Observe that each edge in the graph is also represented
as a weighted pair.

6.2 Maintaining Canonical Form

The functions to be represented are maintained as a sin-
gle graph in strong canonical form. That is, pairs (wy, v1)
and (ws, v2) denote the same function if and only if
wy = wy and vy = vy. We assume that the set of variables
is totally ordered, and that all of the vertices constructed
obey this ordering. That is, for any vertex v, its variable
Var(v) must be less than any variable appearing in the

subgraphs Lo(v) and Hi(v).

pair ApplyWeight(wtype w’', pair (w, v))
{ Multiply function by constant }

if w' = 0 then return (0, A)

return (v’ - w, v)

Fig. 12. Algorithm for Multiplying Function by Weight.
This algorithm ensures that edge to a nonterminal vertex has
weight 0.

Arguments Results

X

ola

Fig. 13. Normalizing Transformations Made by Make-
Branch. These transformations enforce the rules on branch
weights.

Maintaining a canonical form requires obeying a set
of conventions for vertex creation and for weight manip-
ulation. These conventions are expressed by the pseudo-
code shown in Figures 11 and 12. The MakeBranch al-
gorithm provides the primary means of creating and
reusing vertices in the graph. It is given as arguments a
variable and two moments, each represented as weighted
pairs. It returns a pair representing the function given
by Equation 2. It assumes that the argument variable is
less than any variable in the argument subgraphs. The
steps performed by MakeBranch are illustrated in Fig-
ure 13. In this figure two moments are drawn as weighted
pointers.

When the linear moment is the constant 0, we can
simply return the constant moment as the result, since
this function is independent of variable zz. Observe that
this rule differs from the reduction rule for a graph based
on a point-wise decomposition such as BDDs. In such
cases a vertex can be eliminated when both of its children
are identical. This reflects the difference between the two
different function decompositions. Our rule for *BMDs
is similar to that for FDDs [11,19].

For other values of the linear moment, the routine
first factors out some weight w, adjusting the weights
of the two arguments accordingly. We show two versions
of a function Norm Weight according to whether integer
or real-valued weights are to be used. For the integer
case, we want to extract any common factor while en-
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Termination conditions

op {(wi,v) (w2, v2) (w, v)

+ <07 A> <u}27 U2>

+ <07 A> <w17 U1>

+  {wi,v)  ({wa,v) | ApplyWeight(w: + w2, (1, v))
*  (wp, A) ApplyWeight(w:, (w2, v2))
* (wz, A) ApplyWeight(ws, (w1, v1))
= (wz, AYy | ApplyWeight(1/wz, (w:, v1))

Table 3. Termination Cases for Apply Algorithms. Each
line indicates an operation, a set of terminations, and the returned
result.

suring that all weights are integers. Hence we take the
greatest common divisor (ged) of the argument weights.
In addition, we adopt the convention that the sign of
the extracted weight matches that of the constant mo-
ment. This assumes that ged always returns a nonneg-
ative value. For real-valued weights we adopt the con-
vention that the weighted pair designating the constant
moment for a vertex always has weight 0 (only when this
moment is the constant 0) or 1. In the former case the
weight of the pair designating the first moment will have
weight 1. Thus, normalizing real-valued weights involves
moving one of the argument weights up and adjusting
the other.

Once the weights have been normalized MakeBranch
calls the function Unique Vertez to find an existing vertex
or create a new one. This function maintains a table
(typically a hash table) where each entry is indexed by
a key formed from the variable and the two moments.
Every vertex in the graph is stored according to such a
key and hence duplicate vertices are never constructed.

Figure 12 shows the code for a function ApplyWeight
to multiply a function, given as a weighted pair, by a con-
stant value, given as a weight w’. This procedure simply
adjusts the pair weight, detecting the special case where
the multiplicative constant is 0.

As long as all vertices are created through calls to
the MakeBranch function and all multiplications by con-
stants are performed by calls to ApplyWeight, the graph
will remain in strongly canonical form.

6.3 The Apply Operations

As with BDDs, *BMDs are constructed by starting with
base functions corresponding to constants and single vari-
ables, and then building more complex functions by com-
bining simpler functions according to some operation.
In the case of BDDs this combination is expressed by
a single algorithm that can apply an arbitrary Boolean
operation to a pair of functions. In the case of *BMDs
we require algorithms tailored to the characteristics of
the individual operations. To simplify the presentation,
we show only a few of these algorithms and attempt to
do so in as uniform a style as possible. These algorithms
are referred to collectively as “Apply” algorithms.

pair PlusApply(pair (wi, v1), pair (w2, v2))

{ Compute sum of two functions }
done, (w,v) « TermCheck(+, (w1, v1), (w2, v2))
if done then return (w, v)

w’', (w1, v), (w2, v2) « Rearrange(+, (w1, v1), (w2, v2))
key « [+, w1, Uid(v1), wa, Uid(v2)]

found, {w, v) < LookUp(OpTable, key)

if found then return Apply Weight(w', (w, v))

z + Min(Var(v), Var(v2))

{ Begin recursive section }
(w1, vi1) « SimpleMoment({w;, v1), z, 0)
(war, va1) « SimpleMoment({w2, v2), z, 0)
(win, v1n) < SimpleMoment({w;, v1), z, 1)
(won, van) « SimpleMoment({ws, v2), z, 1)
(wi, w) < PlusApply({wir, v11), (war, v21))
(wn,vn) < PlusApply({win, vir), {w2n, van)))
{ End recursive section }

(w,v) « MakeBranch(z, (wi, vi), (wn, va))
Insert( Op Table, key, (w, v))
return Apply Weight(w', (w, v))

pair Simple Moment(pair (w, v), variable z, integer b)

{ Find moment of function under special condition. }

{ Variable either at root vertex v, or not present in graph. }
{b = 0 for constant moment, & = 1 for linear }

if Var(v) # =z
iftb =0
then return (w, v)
else return (0, A)
iftb =0
then return Apply Weight(w, Lo(v))
else return Apply Weight(w, Hi(v))

Fig. 14. Apply Algorithm for Adding Two Functions. The
algorithm is similar to the counterpart for BDDs.

Figure 14 shows the fundamental algorithm for adding
two functions. The function PlusApply takes two weighted
pairs indicating the argument functions and returns a
weighted pair indicating the result function. This algo-
rithm can also be used for subtraction by first multi-
plying the second argument by weight —1. This code
closely follows the Apply algorithm for BDDs [3]. It uti-
lizes a combination of recursive descent and “memoiz-
ing,” where all computed results are stored in a table
and reused whenever possible. The recursion is based
on the property that taking moments of functions com-
mutes with addition. That is, for functions f and g and
for variable x:

[f+9lz=fr+9z
[f +g]6x = f(ix + 9oz



12 Randal E. Bryant, Yirng-An Chen: Verification

Rearrangements
Arguments Results
op Condition w’ (wy, v1) (w2, va)
* Uid(vy) > Uid(v2) wy - Wa (1, v1) (1, va)
* Uid(vy) < Uid(w2) wy - wa (1, va) (1, v1)
+ |wi] > |wal w wy/w' v wafw', va
+ |wi] < |ws| w wa/w' va wifw', vy
- w1/ wa (1, v1) (1, va)

Table 4. Rearrangements for Apply Algorithms. W =
NormWeight(wz, wi). These rearrangements increase the likeli-
hood of reusing a previously-computed result.

This routine, like the other Apply algorithms, first checks
a set of termination conditions to determine whether it
can return a result immediately. This test is indicated
as a call to function TermCheck having as arguments
the operation and the arguments of the operation. This
function returns two values: a Boolean value done indi-
cating whether immediate termination is possible, and a
weighted pair indicating the result to return in the event
of termination. Some sample termination conditions are
shown in Table 3. For the case of addition, the algorithm
can terminate if either argument represents the constant
0, or if the two arguments are multiples of each other,
indicated by weighted pairs having the same vertex ele-
ment.

Failing the termination test, the routine attempts to
reuse a previously computed result. To maximize possi-
ble reuse it first rearranges the arguments and extracts
a common weight w’. This process is indicated as a call
to the function Rearrange having the same arguments
as TermCheck. This function returns three values: the
extracted weight and the modified arguments to the op-
eration. Some sample rearrangements are shown in Table
4. For the case of addition rearranging involves normal-
izing the weights according to the same conditions used
in MakeBranch and ordering the arguments so that the
first has greater weight. For example, suppose at some
point we compute 6y—9z. We will extract weight —3 (as-
suming integer weights) and rearrange the arguments as
3z and —2y. If we later attempt to compute 152— 10y, we
will be able to reuse this previous result with extracted
weight 5.

If the routine fails to find a previously computed re-
sult, it makes recursive calls to compute the sums of the
two moments according to the minimum variable in its
two arguments. In generating the arguments for the re-
cursion, it calls a function SimpleMoment to compute
the moments. This routine can only compute a moment
with respect to a variable that either does not appear
in the graph or is at its root, a condition that is guar-
anteed by the selection of z as the minimum variable
in the two graphs. When the variable does not appear
in the graph, the constant moment is simply the orig-
inal function, while the linear moment is the constant
0. When the variable appears at the root, the result is
the corresponding subgraph multiplied by the weight of

of Arithmetic Circuits Using Binary Moment Diagrams

{ Begin recursive section }

(w11, vi1) « SimpleMoment({w;, v1), z, 0)

<w21, U21> — Sz’m}ole[\loment(<w27 v2>, z, 0)

(win, vin) < PlusApply(SimpleMoment({w:, v1), =, 1),
(w11, v11))

(won, van) < PlusApply(SimpleMoment({wz, v2), =, 1),
{war, var))

(wr, ) < BinApply(op, (w1, vi1), {(war, va1))
(wh, vn) « PlusApply( BinApply(op, (win, vin),

<w2h7 v2h>)7 <_wl7 Ul))
{ End recursive section }

Fig. 15. Recursive Section of Apply Algorithm for Arbi-
trary Binary Operation. This generic algorithm does not ex-
ploit particular properties of the operation.

the original argument. The final result of PlusApply is
computed by calling MakeBranch to generate the ap-
propriate function and multiplying this function by the
constant extracted when rearranging the arguments.

Observe that the keys for table OpTable index prior
computations by both the weights and the vertices of
the (rearranged) arguments. In the worst case, the rear-
ranging may not be effective at creating matches with
previous computations. In this event, the weights on the
arcs would be carried downward in the recursion, via
the calls to SimpleMoment. In effect, we are dynami-
cally generating BMD representations from the *BMD
arguments. Thus, if functions f and g have BMD repre-
sentations of size m; and my, respectively, there would
be no more than mymy calls to PlusApply, and hence the
overall algorithm has worst case complexity O(mgmy).
As we have seen, many useful functions have polyno-
mial BMD sizes, guaranteeing polynomial performance
for PlusApply. On the other hand, some functions blow
up exponentially in converting from a *BMD to a BMD
representation, in which case the algorithm may have
exponential complexity. We will see with the experimen-
tal results, however, that this exponential blow-up does
not occur for the cases we have tried. The termination
checks and rearrangements are very effective at stopping
the recursion. Enders [12] has shown that the complexity
of the addition operation on *BMD grows exponentially
in worst case.

The Apply algorithms for other operations have a
similar overall structure to that for addition, but differ-
ing in the recursive evaluation. Comments in the code of
Figure 14 delimit the “recursive section” of the routine.
In this section recursive calls are made to create a pair
of weighted pointers (wy, v;) and (wp, vp) from which the
returned result is constructed. For the remaining Apply
algorithms we show only their recursive sections.

Figure 15 shows the recursive section for applying an
arbitrary binary operation op to a pair of functions. This
algorithm can be seen to implement the linearized form
op defined by Equations 8 and 9. At each recursive step
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{ Begin recursive section }

(w11, v11) « SimpleMoment({w;, v1), z, 0)
<w21, U21> — Sz’m}ole[\loment(<w27 v2>, z, 0)
(win, v1in) < SimpleMoment({w, v1), z, 1)
(w2n, van) + SimpleMoment({ws, v2), z, 1)

(wi, w) « MultApply({wii, v}, {wai, var))

(whh, vrr) — MultApply({(win, vin), (wan, v2r))

(whi, vri) < MultApply({win, vin), {war, v21))

(win, vin) «— MultApply({wi, vii), (w2n, vor))

(wh, vn) < PlusApply({wrn, vrr), PlusApply({wri, vri),

(win; vin)))

{ End recursive section }

Fig. 16. Recursive Section for Apply Operation for Mul-
tiplying Functions. This operation exploits the ring properties
of linear product.

of the computation in Figure 15, we must sum the mo-
ments of the arguments to generate their positive cofac-
tors, recursively apply the operation to these cofactors,
and then subtract the constant moment to obtain a lin-
ear moment. By computing the positive cofactor at each
vertex, we in effect dynamically construct an MTBDD
representation of the arguments. Thus, one would ex-
pect that this computation would perform poorly unless
either the arguments have efficient MTBDD representa-
tions, or the termination checks and rearrangements can
stop the recursion from expanding into a large number
of cases.

Rather than resorting to the generic Apply algorithm
of Figure 15, it is preferable to exploit properties of the
operation so that the positive cofactors of the arguments
do not need to be generated. Figure 16 shows how this
can be done for multiplication, using the formulation of
linear product given by Equation 7. Each call to MultAp-
ply requires four recursive calls, plus two calls to PlusAp-
ply. With the rearrangements shown in Table 4, we can
always extract the weights from the arguments. Hence
if the arguments have *BMD representations of my and
myg vertices, respectively, no more than mj;m, calls will
be made to MultApply. Unfortunately, this bound on the
calls does not suffice to show a polynomial bound on the
complexity of the algorithm. The calls to PlusApply may
blow up exponentially. Enders [12] has shown that the
complexity of the multiplication operation on BMD and
*BMD grows exponentially in worst case.

6.4 Affine Substitution

Figure 17 shows an algorithm for performing a very gen-
eral form of function evaluation we will call affine sub-
stitution. The idea is to substitute for each variable z a
function of the form max + b. The result will be a func-
tion over the same set of variables, or possibly a subset
of these variables. By selecting different values of m and
b we can obtain many useful substitutions. For example,

AffineSubst(pair (w, v), assignment u, assignment 3)
{ Replace each variable zin function by u(z)- z + B(z) }
if v = A then return (w, v)
Key « [v, p, B]
found, {we, v;) < LookUp(SubstTable, key)
if found then return ApplyWeight(w, (w;, v:))
z « Var(z)
(wi, w) « AffineSubst(Lo(v), 1, B)
(wn, vn) < AffineSubst(Hi(v), u, B)
(wi, vy < PlusApply({(wi, vi), ApplyWeight(8(z), (wh, vn))
(wh, vn) «— ApplyWeight(u(z), (wn, vs))
(we, ve)  MakeBranch(z, (wi, v), (wh, va))
Insert(SubstTable, key, {w;, vt))
return Apply Weight(w, {(w;, vt))

Fig. 17. Affine Substitution Algorithm. Each variable in the
function is replaced by an affine transformation of the variable.

with b = @ and m = 0, we obtain the result of assigning
value a to the variable. Thus, this operation generalizes
the linear evaluation shown in Equation 5, including ac-
counting for the edge weights. With m = 1 and b = 0,
an identity substitution will be performed, and hence
the algorithm can be used for partial evaluation, where
some variables are assigned constants, while others are
unchanged. With m = —1 and & = 1, we replace the
variable by its Boolean complement.

The algorithm is shown as having functional argu-
ments g and 8. When applied to a variable z, these “as-
signments” yield the constant factors to be used in the
affine substitution. The algorithm follows from the lin-
ear expansion of function f with respect to each variable
z. Given that f = fz+ zfs;, substituting ma + b for «
yields:

f|x<—mx+b = ff"*’bféx +'rmf<5:c

and hence this substitution yields a function with mo-
ments fz+ bfs: and mfs;.

The routine maintains a table of previously com-
puted substitutions. Observe that for given assignments
p and () recursive calls are generated from a vertex only
once. The total number of calls to AffineSubst is there-
fore linear in the graph size. Of course, the resulting calls
to PlusApply could cause the algorithm to blow up expo-
nentially. For the special case of full evaluation, however,
where p(z) = 0 for all variables #, each recursive call
must return a constant function, and hence the overall
complexity is linear.

7 Verification Methodology

Figure 18 illustrates schematically an approach to cir-
cuit verification originally formulated by Lai and Sastry
[20] using EVBDDs. The overall goal is to prove a corre-
spondence between a combinational circuit, represented
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Circuit

— Bit Level
m \\/Ord L evel

Specification

Fig. 18. Formulation of Verification Problem. The goal of
verification is to prove a correspondence between a bit-level circuit
and a word-level specification

by a vector of Boolean functions f, and the specification,
represented by the word level function F'. More precisely,
assume that the circuit inputs are partitioned into vec-
tors of binary signals x!, ..., x* (in the figure k = 2). For
each set of signals x, we are given an encoding function
ENc; describing a word level interpretation of the sig-
nals. This function will typically be a standard encoding,
such as a 16-bit two’s complement integer. The circuit
implements a set of Boolean functions over the inputs,
denoted by the vector of functions f(x!,...,x*). Typi-
cally this circuit is given in the form of a network of logic
gates. Furthermore, we are given an encoding function
ENc, defining a word level interpretation of the output.
Finally, we are given as specification a word-level func-
tion F(Xy,...,Xg). The task of verification is then to
prove the equivalence:

ENG, (f(x},...,x*)) = F(Enci(x!),...,Encg(xF))  (12)

That is, the circuit output, interpreted as a word should
match the specification when applied to word interpre-
tations of the circuit inputs.

*BMDs provide a suitable data structure for this
form of verification, because they can represent both bit-
level and word-level functions efficiently. EVBDDs can
also be used for this purpose, but only for the limited
class of circuit functions having efficient word-level rep-
resentations as EVBDDs. By contrast, BDDs can only
represent bit-level functions, and hence the specification
must be expanded into bit-level form. While this can be
done readily for standard functions such as binary ad-
dition, a more complex function such as binary to BCD
conversion would be difficult to specify at the bit level.

7.1 Component Verification

The component partitioning allows us to efficiently rep-
resent both their bit-level and word-level functions. This
allows the test of Equation 12 to be implemented di-
rectly. As an example, consider the adder circuit having
bit-level functions given by the *BMD of Figure 9, where
this *BMD is derived from a gate-level representation of
the circuit using Apply operations, much as would be
done with BDDs. The word-level specification is given
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Fig. 19. Bit-Level Representation of Add-Stepper. This
circuit is a basic component of the Multplier.

by the left-hand *BMD of Figure 5. In generating the
*BMD from the specification we are also incorporating
the requirement that input words X and Y have an un-
signed binary encoding. Given that the output is also
to have an unsigned binary encoding, we would use our
Apply algorithms to convert the bit-level circuit outputs
to the word level as:
P = 2°.5+2".8 +22. 5, + 23 Cout

We would then compare the *BMD for P to the one
shown on the left-hand side of Figure 5.

For circuits that can be represented efficiently as
*BMDs at both the bit and the word level, the test
of Equation 12 can be implemented directly. As an ex-
ample, consider an n + m-Add-Stepper, illustrated in
Figure 19 for n = 3 and m = 2. This circuit forms a
basic building block for the class of multipliers we will
verify. It has as inputs an n + m-bit partial product in-
put p, split into high order elements h,_1, ..., hg, and
low order elements l,_1,...,lg. This naming conven-
tion is adopted to expedite the multiplier verification,
as will be discussed shortly. The other inputs are an n-
bit multiplicand z,_1, ..., g, and a single bit multiplier
y. It produces an n 4+ m + 1 bit partial product output
Zn4my -3 20

The bit-level structure for the circuit is shown in the
figure, consisting of AND gates and full adders blocks.
Each full adder has three inputs a, b, and ¢. It produces a
sum output at the right hand side with function a®bde.
It has a carry output at the top, with function expressed
in terms of linear operators as a-b+a-c+b-c—2a-b-c. From
this representation we can use the algorithms PlusApply
and MultApply to generate a *BMD representation of
fi(p,x,y), the function at each output z; for 0 < i <
n—+m.

The word-level specification for an n+m-Add-Stepper
is simply P+2™-y- X, where P and X are the word-level
interpretations of the partial product and multiplicand
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Fig. 20. Multiplier Circuits Different Levels of Abstraction Each square contains an AND gate and a full adder. The vertical
rectangles indicate the word-level partitioning yielding the representations shown on the right.

inputs. Both of these inputs are encoded as unsigned in-
tegers, as is the output. Verification therefore involves
proving that the weighted sum of the bit-level output
functions: Zi:o,n+m 2! f; is equivalent to the word-level
specification. As with BDDs, this process can be com-
pletely automated and works well even for more complex
realizations such as carry-lookahead adders.

7.2 Hierarchical Verification

For larger scale circuits, representing the bit-level func-
tionality becomes too cumbersome and hence the method
described above cannot be applied directly. For example,
attempting to construct the bit-level functions for a mul-
tiplier would cause exponential blow-up with *BMDs,
just as it does with BDDs. Instead, we can follow a hier-
archical approach in which the overall circuit is divided
into components, each having a word-level specification.
Verification then involves proving 1) that each compo-
nent implements its word-level specification, and 2) that
the composition of the word-level component functions
matches the specification. This approach works well for
circuits in which the components have simple word-level
specifications. Such is the case for most arithmetic cir-
cuits.

Figure 20 illustrates the design of two different 4-bit
multipliers. Each box labeled ¢, j in the figure represents
a “cell” consisting of an AND gate to form the partial
product z; A y;, and a full adder to add this bit into
the product. The vertical rectangles in the figure indi-
cate a word-level partitioning of the circuits, yielding
the component interconnection structure shown on the
upper right. All word-level data in the circuit uses an un-
signed binary encoding. Considering the design labeled
“Add-Step”, each “Add Step ¢” component has as input

the multiplicand word X, one bit of the multiplier y;,
and a (possibly 0) partial sum input word PI;. It gener-
ates a partial sum word PQ;, where the functionality is
specified as PO; = PI; + 2t - y; - X.

Verifying the multiplier therefore involves two steps.
First, we can verify that each component implements its
specification as mentioned in Section 7.1. Then, we must
prove that the composition of the word-level functions
matches that of integer multiplication, i.e.,

0+20-y0~X+21~y1~X+22~y2'X+23~y3-X

= <Zi:0,3 2 yi) X
=X.Y

Observe that upon completing this process, we have truly

verified that the circuit implements unsigned integer mul-
tiplication. By contrast, BDD-based approaches just show
that a circuit is equivalent to some (hopefully) “known

good” realization of the function. For such a simple ex-

ample, one can readily perform the word-level algebraic

manipulation manually. For more complex cases, how-

ever, we would like our verifier to compose and compare

the functions automatically.

7.3 Abstracting Carry Save Adders

In verifying actual multiplier circuits, we often encounter
“carry save adders” (CSAs), requiring an extension to
the methodology. For example, the multiplier design la-
beled “Diagonal” in Figure 20 is similar to the Add-Step
design, but where the carry output from each cell is di-
rected to the cell diagonally up and right, rather than di-
rectly up. This modification requires an additional stage
of full adders (FAs) to generate the final result, but it
also shortens the critical path length. Circuit C6288 of
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the ISCAS benchmarks has this form, with 16-bit input
word sizes and with each full adder realized by 9 Nor
gates.

In forming a word-level partitioning of the circuit,
shown in the lower right of Figure 20, we see that all
but the first and last components have two partial sum
inputs and two partial sum outputs. Each “CSA Step ¢”
component can be represented at the word level as hav-
ing input words SI; and C'I; and output words SO; and
CO;. The full adders take the form of a carry save adder,
reducing three input words to two. The word-level func-
tions realized by a carry save adder do not have a simple
description in terms of operations such as addition and
multiplication. Thus we cannot directly abstract their
behavior up to the word level.

To verify circuits containing CSAs we exploit the fact
that the correctness of the overall circuit behavior does
not depend on the individual CSA output functions, but
rather on their combined values. A CSA has the property
that the sum of its two outputs is equal to the sum of its
three inputs, perhaps weighting some inputs or outputs
by powers of two. We can give a word-level specification

for CSA Step ¢ as:

SO; + 2t .CO; = SL+2 -CL+2 -y X
Rearranging terms, we can view output SO; as depen-

dent on CO;:

SO; = SL+2-CL+2 -y -X—-2%.C0; (13)

In verifying component CSA Step i we verify this equiva-
lence using the *BMD representation of component out-
put CO;.

In composing the word-level functions, we replace
function C'O; by the unsigned integer C; represented by
a vector of Boolean variables ¢'. That is, function C; be-
comes input C'I;41 to the following stage, while function

SL+2 - CL+2 -y - X -2 .C;

becomes input STiy1. In doing this, we effectively ab-
stract the detailed value, treating word CO; as an ar-
bitrary unsigned binary-encoded integer. Verifying that
the final output functions match the word-level specifi-
cation X -Y indicates that the overall circuit behavior
is correct.

One way to view the methodology described above is
that at the component level we treat the carry outputs
as existentially quantified—for the particular carry func-
tions implemented by the CSA, Equation 13 must hold.
On the other hand, we treat these values as universally
quantified when composing the word-level component
functions—for any values of the carry output word, the
circuit realizes a multiplier as long as the sum output sat-
isfies Equation 13. Such a methodology is conservative—
if the verifier succeeds we are guaranteed the circuit is
correct, but if it fails it may simply indicate that the
overall behavior depends on the detailed sum and carry

Circuit CPU Time (Min.) Memory (MB)
16 64 256 16 64 256
Add-step 0.04 0.9 188 | 0.7 1.1 6.5
CSA XoR cells | 0.06 1.2 21.8 | 0.8 1.3 9.0
CSA NoR cells | 0.06 1.3 22.7 1 0.8 1.3 9.5
Booth 0.1 2.5 33.3 | 0.8 1.6 144

Bit-Pair 0.1 16 296 | 0.8 19 13.9

Table 5. Verification Results for Combinational Multipli-
ers. Results are shown for three different word sizes.

output functions rather than on their relative values. All
of the multiplier circuits containing CSAs we have en-
countered to date can be successfully verified despite this
conservatism.

7.4 Ezperimental Results

Table 5 indicates the results for verifying a number of
multiplier circuits. Performance is expressed as the num-
ber of CPU minutes and the number of megabytes of
memory required on a SUN Sparcstation 10. Observe
that the computational requirements are quite reason-
able even up to circuits with 256-bit word sizes, requir-
ing up to 653,056 logic gates. The time for the multiplier
verification grows quadratically in the word size. Given
that the hardware complexity scales quadratically in the
word size, this performance is reasonable. We know of no
other automated verification of a circuit of such size, re-
gardless of logic function. The design labeled “CSA Nor
cells” is based on the logic design of ISCAS ’85 bench-
mark C6288, a 16-bit version. Our verification of this
circuit requires less than 4 seconds.

These results are especially appealing in light of prior
results on multiplier verification. A brute force approach
based on BDDs cannot get beyond even modest word
sizes. Yang et al [28] have successfully built the OBDDs
for a 16-bit multiplier C6288. This required over 40 mil-
lion vertices and about 3.8GB memory on a 64-bit ma-
chine (i.e. 1.9GB on a 32-bit machine). Increasing the
word size by one bit causes the number of vertices to in-
crease by a factor of approximately 2.87, and hence even
more powerful computers will not be able to get much
beyond this point.

Burch [6] has implemented a BDD-based technique
for verifying certain classes of multipliers. His method
effectively creates multiple copies of the multiplier and
multiplicand variables, leading to BDDs that grow cubi-
cally with the word size. This approach works for multi-
pliers, such as ours, that form all possible product bits
of the form z; A y; and then sum these bits. Burch re-
ports verifying C6288 in 40 minutes on a Sun-3 using 12
MBytes of memory. The limiting factor in dealing with
larger word sizes would be the cubic growth in memory
requirement. Furthermore, this approach cannot handle
multipliers that use multiplier recoding techniques, al-
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though Burch describes extensions to handle some forms
of recoding.

Jain et al [18] have used Indexed Binary Decision
Diagrams (IBDDs) to verify several multiplier circuits.
This form of BDD allows multiple repetitions of a vari-
able along a path from root to leaf. They were able to
verify C6288 in 22 minutes of CPU time on a SUN-4/280,
generating a total of 149,498 graph vertices. They were
also able to verify a multiplier using Booth encoding, but
this required almost 4 hours of CPU time and generated
over 1 million vertices in the graphs.

8 Related Work

Our approach must partition a circuit into a hierarchi-
cal form, with the “leaf” elements being small enough to
have an efficient bit-level representation. Unfortunately,
some designs to not have a clean, hierarchical structure.
For example, logic synthesis tools will often flatten a de-
sign and perform transformations across module bound-
aries. It would be difficult for a user to define a hierarchi-
cal structure for the optimized design. To overcome this
constraint, Hamaguchi et al [16] proposed a method that
constructs a *BMD representation of a combinational
circuit by working backward from the encoded primary
outputs to the primary inputs. This approach avoids cre-
ating a bit-level representation of any part of the cir-
cuit and hence can be applied to a complete, flattened
netlist. For a 64x64 multiplier, Hamaguchi et al.[16] re-
ported 22,340 seconds of CPU time on Sun Sparc 10/51
machine. Their results show that the complexity grows
cubically with the word size for integer multipliers. Al-
though their method requires more computational effort
than our’s, its higher degree of automation is attractive.
Unfortunately, their experiments showed that even mi-
nor circuit design errors cause an exponential blow-up
of the *BMDs. Generally, users would like a tool to help
them diagnose defective circuits in addition to confirm-
ing the correctness of good circuits.

Adapting the idea of OKFDDs [11], Clarke, et al [9]
have developed a hybrid between MTBDDs and BMDs,
which they call Hybrid Decision Diagrams (HDDs). In
their representations, each variable can use one of six dif-
ferent decompositions. These include the Shannon and
positive Davio, corresponding to point-wise and moment
decompositions, respectively. In their experience, the vari-
ables for the control signals should use Shannon decom-
position to achieve smaller graph sizes. Clarke et al [10]
presented word-level SMV, a verification tool adding a
word-level specification to a BDD-based symbol model
checker. This tool uses BDDs for Boolean functions, HDDs
for integer functions and a layered backward substitution
method (a variant of Hamaguchi’s method) [7]. For inte-
ger multipliers, their complexity grows cubically, but the
constant factor is much smaller than Hamaguchi’s. Chen
et al [7] have applied word-level SMV to verify arith-

metic circuits in one of Intel’s processors. In this work,
floating-point circuits are partitioned into several sub-
circuits whose specifications can be expressed in terms
of integer operations, because HDDs can not represent
floating-point functions efficiently. Each sub-circuits are
verified in a flattened manner.

9 Conclusions

*BMDs provide an efficient representation for functions
mapping Boolean variables to numeric values. They can
represent a number of word-level functions in a compact
form. They also represent Boolean functions with com-
plexity comparable to BDDs. They are therefore suitable
for implementing a verification methodology in which
bit-level circuits are compared to word-level specifica-
tions. By exploiting circuit hierarchy, we are able to ver-
ify circuits having functions that are intractable to rep-
resent at the bit level.

Verification of multipliers and other arithmetic cir-
cuits using *BMDs seems quite promising, but these
ideas must be tested and extended further. In develop-
ing a comprehensive verification system based on our
hierarchical methodology, it would be good to have a
“proof manager” that keeps track of what components
have been verified, checks for compatibility between en-
codings, etc.

The hierarchical verification methodology described
here extends to sequential circuits as well. For modeling
such circuits, one could implement a form of symbolic
simulator, where blocks of the circuit can be modeled at
either the bit or the word level. For example, one could
verify a sequential multiplier by first simulating a single
cycle at the bit level to show it implements an add step,
and then a series of cycles at the word level to show this
implements multiplication.

Our method shows some promise for verifying float-
ing point hardware, although difficult obstacles must be
overcome. Using a version that supports rational num-
bers, we can efficiently represent the word level func-
tions denoted by standard floating point formats. This
fact follows from our ability to represent integer for-
mats plus exponentials. Floating point hardware, how-
ever, only computes approximations of arithmetic func-

tions. Thus, verification requires proving equivalence within

some tolerance, rather than the strict equivalence of the
current methodology. It is unclear whether such a test
can be performed efficiently.

Many techniques developed for improving the effi-
ciency and compactness of BDDs could be extended to
*BMDs. Among these are dynamic variable reordering
[24], and loosening the ordering requirement from a uni-
form total ordering to one in which variables may appear
in different orders along different paths in the graphs
[15,26]. Our experience thus far has been that variable
ordering is not as critical when representing functions
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at the word level as it is with bit-level representations.
Nonetheless, these ideas bear further investigation.
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