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Abstract. Given a formula in quantifier-free Presburger arithmetic, if it has a satisfying
solution, there is one whose size, measured in bits, is polynomially bounded in the size
of the formula. In this paper, we consider a special class of quantifier-free Presburger
formulas in which most linear constraints are difference (separation) constraints, and the
non-difference constraints are sparse. This class has been observed to commonly occur in
software verification. We derive a new solution bound in terms of parameters character-
izing the sparseness of linear constraints and the number of non-difference constraints, in
addition to traditional measures of formula size. In particular, we show that the number
of bits needed per integer variable is linear in the number of non-difference constraints
and logarithmic in the number and size of non-zero coefficients in them, but is otherwise
independent of the total number of linear constraints in the formula. The derived bound
can be used in a decision procedure based on instantiating integer variables over a finite
domain and translating the input quantifier-free Presburger formula to an equi-satisfiable
Boolean formula, which is then checked using a Boolean satisfiability solver. In addition to
our main theoretical result, we discuss several optimizations for deriving tighter bounds in
practice. Empirical evidence indicates that our decision procedure can greatly outperform
other decision procedures.

1. Introduction

Presburger arithmetic [Pre29] is the first-order theory of the structure 〈N, 0, 1,6,+〉, where
N denotes the set of natural numbers. The satisfiability problem for Presburger arith-
metic is decidable, but of super-exponential worst-case complexity [FR74]. Fortunately, for
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many applications, such as in program analysis (e.g., [Pug91]) and hardware verification
(e.g., [BD02]), the quantifier-free fragment suffices.

A formula Φ in quantifier-free Presburger arithmetic (QFP) is constructed by combining
linear constraints with Boolean operators (∧, ∨, ¬). Formally, the ith linear constraint is
of the form

∑n
j=1 ai,jxj ≥ bi, where the coefficients and the constant terms are integer con-

stants and the variables x1, x2, . . . , xn are integer-valued1. In this paper, we are concerned
with the satisfiability problem for QFP, viz., that of finding a valuation of the variables such
that Φ evaluates to true. The NP-hardness of this problem follows from a straightforward
encoding of the 3SAT problem as a 0-1 integer linear program. That it is moreover in NP,
and hence NP-complete, can be concluded from the result that integer linear programming
is in NP [BT76, vzGS78, KM78, Pap81].

Thus, if there is a satisfying solution to a QFP formula, there is one whose size, measured
in bits, is polynomially bounded in the problem size. Problem size is traditionally measured
in terms of the parameters m, n, log amax, and log bmax, where m is the total number of
constraints in the formula, n is the number of variables, and amax = max(i,j) |ai,j| and
bmax = maxi |bi| are upper bounds on the absolute values of coefficients and constant terms
respectively.

The above result suggests the following approach to checking the satisfiability of a QFP
formula Φ:

(1) Compute the polynomial bound S on solution size.
(2) Search for a satisfying solution to Φ in the bounded space {0, 1, . . . , 2S − 1}n.

This approach has been successfully applied to highly restricted sub-classes of QFP, such as
equality logic [PRSS99] and difference logic2 [BLS02], and is termed as finite instantiation or
the small-domain encoding approach. The basic idea is to translate Φ to a Boolean formula
by encoding each integer variable as a vector of Boolean variables (a “symbolic bit-vector”)
of length S. The resulting Boolean formula is checked using a Boolean satisfiability (SAT)
solver. This approach leverages the dramatic advances in SAT solving made in recent years
(e.g., [MMZ+01, GN02]). It is straightforward to extend the approach to additionally handle
the theory of uninterpreted functions and equality, by using, for example, Ackermann’s
technique of eliminating function applications [Ack54].

However, a näıve implementation of a decision procedure based on finite instantiation fails
for QFP formulas encountered in practice. The problem is that the bound on solution
size, S, is O(log m + log bmax + m[log m + log amax]). In particular, the presence of the
m log m term means that, for practical problems involving hundreds of linear constraints,
the Boolean formulas generated are likely to be too large to be decided by present-day SAT
solvers.

In this paper, we explore the above finite instantiation-based approach to deciding QFP
formulas, but with a focus on formulas generated in software verification. It has been
observed, by us and others, that formulas from this domain have:

1While Presburger arithmetic is defined over N, we interpret the variables over Z as it is general and
more suitable for applications. It is straightforward to translate a formula with integer variables to one
where variables are interpreted over N, and vice-versa, by adding (linearly many) additional variables or
constraints.

2Difference logic has also been referred to as separation logic in the literature.
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Project Maximum Fraction of Maximum Width of a
Non-Difference Constraints Non-Difference Constraint

Blast 0.0255 6
Magic 0.0032 2
MIT 0.0087 3
WiSA 0.0091 4

Table 1: Linear Arithmetic Constraints in Software Verification are Mostly Dif-

ference Constraints. For each software verification project, the maximum frac-
tion of non-difference constraints is shown, as well as the maximum width of a
non-difference constraint, where the maximum is taken over all formulas in the
set. The Blast formulas were generated from device drivers written in C, the
Magic formulas from an implementation of openssl written in C, the MIT formu-
las from Java programs, and the WiSA formulas were generated in the checking
of format string vulnerabilities.

(1) Mainly Difference Constraints: Of the m constraints, m − k are difference con-
straints, where k ≪ m. Difference constraints, also called separation or difference-
bound constraints, are of the form xi − xj ⊲⊳ bt or xi ⊲⊳ bt, where bt is an integer
constant, and ⊲⊳ stands for a relational symbol in the set {>,≥,=, <,≤}.

(2) Sparse Structure: The k non-difference constraints are sparse, with at most w vari-
ables per constraint, where w is “small”. We will refer to w as the width of the
constraint.

Pratt [Pra77] observed that most inequalities generated in program verification are differ-
ence constraints. More recently, the authors of the theorem prover Simplify observed in the
context of the Extended Static Checker for Java (ESC/Java) project that “the inequalities
that occur in program checking rarely involve more than two or three terms” [DNS03].
We have performed a study of formulas generated in various recent software verification
projects: the Blast project at Berkeley [HJMS02], the Magic project at CMU [CCG+03],
the Wisconsin Safety Analyzer (WiSA) project [Wis], and the software upgrade checking
project at MIT [ME03]. The results of this study, indicated in Table 1, support the afore-
mentioned observations regarding the “sparse, mostly difference” nature of constraints in
QFP formulas. To our knowledge, no previous decision procedure for QFP has attempted
to exploit this problem structure.

We make the following novel contributions in this paper:

• We derive bounds on solutions for QFP formulas, not only in terms of the traditional
parameters m, n, amax, and bmax, but also in terms of k and w. In particular, we
show that the worst-case number of bits required per integer variable is linear in k,
but only logarithmic in w. Unlike previously derived bounds, ours is not in terms
of the total number of constraints m.

• We use the derived bounds in a sound and complete decision procedure for QFP
based on finite instantiation, and present empirical evidence that our method can
greatly outperform other decision procedures.
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Related Work. There has been much work on deciding quantifier-free Presburger arith-
metic; we present a brief discussion here and refer the reader to a recent survey [GBD02]
for more details. Recent techniques fall into four categories:

• The first class comprises procedures targeted towards solving conjunctions of con-
straints, with disjunctions handled by enumerating terms in a disjunctive normal
form (DNF). Examples include the Omega test [Pug91] (which is an extension of
Fourier-Motzkin elimination for integers) and solvers based on other integer linear
programming techniques. The drawback of these methods is the need to enumerate
the potentially exponentially many terms in the DNF representation. Our work
is targeted towards solving formulas with a complicated Boolean structure, which
often arise in verification applications.

• The second set of methods attempt to remedy this problem by instead relying on
modern SAT solving strategies. The approach works as follows. A Boolean abstrac-
tion of the QFP formula Φ is generated by replacing each linear constraint with a
corresponding Boolean variable. If the abstraction is unsatisfiable, then so is Φ. If
not, the satisfying assignment (model) is checked for consistency with the theory of
quantifier-free Presburger arithmetic, using a ground decision procedure for conjunc-
tions of linear constraints (i.e., a procedure for checking feasibility of integer linear
programs). Assignments that are inconsistent are excluded from later consideration
by adding a “lemma” to the Boolean abstraction. The process continues until ei-
ther a consistent assignment is found, or all (exponentially many) assignments have
been explored. Examples of decision procedures in this class that have some support
for QFP include CVC [BDS02, BGD03] and ICS [dMRS02].3 The ground decision
procedures used by provers in this class employ a combination framework such
as the Nelson-Oppen architecture for cooperating decision procedures [NO79] or a
Shostak-like combination method [Sho84, SR02]. These methods are only defined
for combining disjoint theories. In order to exploit the mostly-difference structure
of a formula, one approach could be to combine a decision procedure for a theory
of difference constraints with one for a theory of non-difference constraints, but this
needs an extension of the combination methods that applies to these non-disjoint
theories.

• Strichman [Str02] presents SAT-based decision procedures for linear arithmetic (over
the rationals) and QFP. For QFP, the basic idea is to create a Boolean encoding
of all the possible variable projection steps performed by the Omega test. Since
Fourier-Motzkin elimination (and therefore, the Omega test) has worst-case double-
exponential complexity in both time and space [Cha93], this approach leads to a
SAT problem that, in the worst-case, is doubly-exponential in the size of the original
formula and takes doubly-exponential time to generate. In contrast, in our approach
the SAT-encoding is polynomial in the size of the original formula, and is generated
in polynomial time.

• The final class of methods are based on automata theory (e.g., [WB95, GBD02]).
The basic idea in these methods is to construct a finite automaton corresponding
to the input QFP formula Φ such that the language accepted by the automaton
consists of the binary encodings of satisfying solutions of Φ. According to a recent

3The general idea for combining a SAT solver with a linear programming engine originates in a paper by
Wolfman and Weld [WW99].
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experimental evaluation with other methods [GBD02], these techniques are better
than others at solving formulas with very large coefficients, but do not scale well
with the number of variables and constraints.4

The approach we present in this paper is distinct from the categories mentioned above. In
particular, the following unique features differentiate it from previous methods:

• It is the first finite instantiation method and the first tractable procedure for trans-
lating a QFP formula to SAT in a single step. The clear separation between the
translation and the SAT solving allows us to leverage future advances in SAT solving
far more easily than other SAT-based procedures.

• It is the first technique, to the best of our knowledge, that formally exploits the
structure of formulas commonly encountered in software verification.

In addition to the above, the bounds we derive in this paper are also of independent theo-
retical interest. For instance, they indicate that the solution bound does not depend on the
number of difference constraints.

Outline of the paper. The rest of this paper is organized as follows. In Section 2, we
discuss background material on bounds on satisfying solutions of integer linear programs.
An integer linear program (ILP) is a conjunction of linear constraints, and hence is a special
kind of QFP formula. The bounds for QFP follow directly from those for ILPs. Our main
theoretical results are presented in Section 3. Section 3.1 gives bounds for ILPs for the
case of k = 0, when all constraints are difference constraints. In Section 3.2, we compute a
bound for ILPs for arbitrary k. In Section 3.3, we show how our results extend to arbitrary
QFP formulas. Techniques for improving the bound in practice are discussed in Section 4.
We report on experimental results in Section 5, and conclude in Section 6.

2. Background

In this section, we define the integer linear programming problem formally and state the
previous results on bounding satisfying solutions of ILPs. A more detailed discussion on the
steps outlined in Section 2.1 can be found in reference books on ILP (e.g. [Sch86, PS82]).

2.1. Preliminaries. Consider a system of m linear constraints in n integer-valued vari-
ables:

Ax ≥ b (2.1)

Here A is an m× n matrix with integral entries, b is a m× 1 vector of integral entries, and
x is a n × 1 vector of integer-valued variables. A satisfying solution to system (2.1) is an
evaluation of x that satisfies (2.1).

In system (2.1), the entries in x can be negative. We can constrain the variables to be
non-negative by adding a dummy variable x0 that refers to the “zero value,” replacing each
original variable xi by x′

i − x0, and then adjusting the coefficients in the matrix A to get a

4Note that automata-based techniques can handle full Presburger arithmetic, not just the quantifier-free
fragment.
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new constraint matrix A′ and the following system:5

A′x′ ≥ b

x′ ≥ 0
(2.2)

Here the system has n′ = n+1 variables, and x′ = [x′

1, x
′

2, . . . , x
′

n, x0]
T . A′ has the structure

that a′i,j = ai,j for j = 1, 2, . . . , n and a′i,n+1 = −
∑n

j=1 ai,j. Note that the last column of A′

is a linear combination of the previous n columns. It is easy to show that system (2.1) has
a solution if and only if system (2.2) has one.

Finally, adding surplus variables to the system, we can rewrite system (2.2) as follows:

A′′x′′ = b

x′′ ≥ 0
(2.3)

where A′′ = [A| − Im] is an m × (n′ + m) integer matrix formed by concatenating A with
the negation of the m × m identity matrix Im.
For convenience we will drop the primes, referring to A′′ and x′′ simply as A and x.

Rewriting system (2.3) thus, we get

Ax = b

x ≥ 0
(2.4)

Hereafter we will mostly use the definition in (2.4).

Remark 1. A solution to system (2.4) also satisfies system (2.2).

We next define two useful terms: solution bound and enumeration bound.

Definition 1. Given a QFP formula Φ, a solution bound is an integer d such that Φ has
an integer solution if and only if it has an integer solution in the n-dimensional hypercube
∏n

i=1[0, d].

Definition 2. Given a QFP formula Φ, an enumeration bound is an integer d such that
Φ has an integer solution if and only if it has an integer solution in the n-dimensional
hypercube

∏n
i=1[−d, d]. The interval [−d, d] is termed as an enumeration domain.

The following proposition is easily obtained.

Proposition 1. A solution bound d ≥ 0 for system (2.2) is an enumeration bound for
system (2.1).

Proof. Given a solution x′∗ to system (2.2), we construct a solution x∗ to system (2.1) by
setting x∗

j = x′

j
∗ − x∗

0. Since each x′

j
∗ and x∗

0 are in [0, d], x∗

j ∈ [−d, d] for all j.

5Note that this procedure can increase the width of a constraint by 1. The statistics in Table 1 shows the
width before this procedure is applied, computed from constraints as they appear in the original formulas.
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Similarly, if d is an enumeration bound for system (2.1), then 2d is a solution bound for
system (2.2).

Finally, we introduce symbols amax and bmax with the following associated meanings: amax =
max(i,j) |ai,j | and bmax = maxt |bt|. In words, amax and bmax are tight upper bounds on the
absolute values of entries of A and b respectively.

2.2. Previous Results. The results of this paper build on results obtained by Borosh,
Treybig, and Flahive [BT76, BFT86] on bounding the solutions of systems of the form (2.4).
We state their result in the following theorem:

Theorem 1. Consider the augmented matrix [A|b] of dimension m × (n′ + m + 1). Let ∆
be the maximum of the absolute values of all minors of this augmented matrix. Then, the
system (2.4) has a satisfying solution if and only if it has one with all entries bounded by
(n + 2)∆.

However, note that the determinant of a matrix can be more than exponential in the
dimension of the matrix [BC72]. In the case of the Borosh-Flahive-Treybig result, it means

that ∆ can be as large as µm(m+1)(m+1)/2

2m , where µ = max(amax, bmax).

Papadimitriou [Pap81, PS82] also gives a bound of similar size, stated in the following
theorem:

Theorem 2. If the ILP of (2.4) has a satisfying solution, then it has a satisfying solution
where all entries in the solution vector are bounded by (n′ + m)(1 + bmax)(m amax)

2m+3.

Papadimitriou’s bound implies that we need O(log m + log bmax + m[log m + log amax]) bits
to encode each variable (assuming n′ = O(m)). The Borosh-Flahive-Treybig bound implies
needing O(m[log m + log µ]) bits per variable, which is of the same order.

3. Main Theoretical Results

3.1. Bounds for a System of Difference Constraints. Let us first consider computing
solution bounds for an ILP for the case where k = 0, i.e., system (2.4) comprises only of
difference constraints.

In this case, the left-hand side of each equation comprises exactly three variables: two
variables xi and xj where 0 ≤ i, j ≤ n and one surplus variable xl where n + 1 ≤ l ≤ n + m.

The tth equation in the system is of the form xi − xj − xl = bt.

As we noted in Section 2.1, the matrix A can be written as [Ao| − Im] where Ao comprises
the first n′ = n + 1 columns, and Im is the m × m identity matrix.

The important property of Ao is that each row has exactly one +1 entry and exactly one
−1 entry, with all other entries 0. Thus, AT

o can be interpreted as the node-arc incidence
matrix of a directed graph. Therefore, AT

o is totally unimodular (TUM), i.e., every square
submatrix of AT

o has determinant in {0,−1,+1} [PS82]. Therefore, Ao is TUM, and so is
A = [Ao| − Im].

Now, let us consider using the Borosh-Flahive-Treybig bound stated in Theorem 1. This
bound is stated in terms of the minors of the matrix [A|b]. For the special case of this
section, we have the following bound on the size of any minor:
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Theorem 3. The absolute value of any minor of [A|b] is bounded above by s bmax, where
s = min(n + 1,m).

Proof. Consider any minor M of [A|b]. Let r be the order of M .

If the minor is obtained by deleting the last column (corresponding to b), then it is a minor
of A, and its value is in {0,−1,+1} since A is TUM. Thus, the bound of s bmax is attained
for any non-trivial minor with s ≥ 1 and bmax ≥ 1.

Suppose the b column is not deleted.

First, note that the matrix A is of the form [Ao| − Im] where the rank of Ao is at most
s′ = min(n,m). This is because Ao has dimensions m × n + 1, and the last column of Ao,
corresponding to the variable x0, is a linear combination of the previous n columns. (Refer
to the construction of system (2.2) from system (2.1).)

Next, suppose the sub-matrix corresponding to M comprises p columns from the −Im part,
r−p−1 columns from the Ao part, and the one column corresponding to b. Since permuting
the rows and columns of M does not change its absolute value, we can permute the rows
of M and the columns corresponding to the −Im part to get the corresponding sub-matrix
in the following form:























0 . . . 0 −1 bt1

0 . . . −1 0 bt2

Ao

... · · ·
...

...
...

part −1 . . . 0 0 btp

0 . . . 0 0 btp+1

... · · ·
...

...
...

0 . . . 0 0 btr























Expanding M along the last column, we get

|M | = |bt1M1 − bt2M2 + bt3M3 − . . . (−1)r−1btrMr|

where each Mi is a minor corresponding to a submatrix of A.

However, notice that Mi = 0 for all 1 ≤ i ≤ p, since each of those minors have an entire
column (from the −Im part) equal to 0. Therefore, we can reduce the right-hand side to
the sum of r − p terms:

|M | ≤ |btp+1Mp+1| + |btp+2Mp+2| + . . . |btrMr|

Notice that, so far, we have not made use of the special structure of A.

Now, observing that A is TUM, |Mi| ≤ 1 for all i.

|M | ≤ |btp+1 | + |btp+2 | + . . . + |btr |

For all i, |bti | ≤ bmax. Further, since each non-zero Mi can be of order at most s′, r − p ≤
s = min(s′ + 1,m).6 Therefore, we get

|M | ≤ s bmax

6We use s′ + 1 and not s′ to account for the case where p = 0. The minimum with m is taken because
s′ + 1 can exceed m but b has only m elements.
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Using the terminology of Theorem 1, we have ∆ ≤ s bmax. Thus, the bound in this case is
(n + 2) s bmax.

Thus, S, the bound on the number of bits per variable, is

⌈log(n + 2) + log s + log bmax⌉

Formulas generated from verification problems tend to be overconstrained, so we assume
n < m. Thus, s = n + 1, and the bound reduces to O(log n + log bmax) bits per variable.

Remark: The only property of the A matrix that the proof of Theorem 3 relies on is the
totally unimodular (TUM) property. Thus, Theorem 3 would also apply to any system
of linear constraints whose coefficient matrix is TUM. Examples of such matrices include
interval matrices, or more generally network matrices. Note that the TUM property can be
tested for in polynomial time [Sch86].

3.2. Bounds for a Sparse System of Mainly Difference Constraints. We now con-
sider the general case for ILPs, where we have k non-difference constraints, each referring
to at most w variables.

Without loss of generality, we can reorder the rows of matrix A so that the k non-difference
constraints are the top k rows, and the difference constraints are the bottom m − k rows.
Reordering the rows of A can only change the sign of any minor of [A|b], not the absolute
value. Thus, the matrix [A|b] can be put into the following form:











A1 b1

−Im b2

A2
...

bm











Here, A1 is a k×n + 1 dimensional matrix corresponding to the non-difference constraints,
A2 is a m − k × n + 1 dimensional matrix with the difference constraints, Im is the m × m

identity corresponding to the surplus variables, and the last column is the vector b.

For ease of presentation, we will assume in the rest of Sections 3.2 and 3.3 that k ≤ n + 1.
We will revisit this assumption at the end of Section 3.

The matrix composed of A1 and A2 will be referred to, as before, as Ao. Note that each
row of A1 has at most w non-zero entries, and each row of A2 has exactly one +1 and one
−1 with the remaining entries 0. Thus, A2 is TUM.

We prove the following theorem:

Theorem 4. The absolute value of any minor of [A|b] is bounded above by s bmax (amax w)k,
where s = min(n + 1,m).

Proof. Consider any minor M of [A|b], and let r be its order.

As in Theorem 3, if M includes p columns from the −Im part of A, then we can infer that
r − p ≤ s. (Our proof of this property in Theorem 3 made no assumptions on the form of
Ao.)



10 S. A. SESHIA AND R. E. BRYANT

If M includes the last column b, then as in the proof of Theorem 3, we can conclude that

|M | ≤ (r − p) bmax [
r

max
j=1

|Mj |] (3.1)

where Mj is a minor of Ao.

If M does not include b, then it is a minor of A. Without loss of generality, we can
assume that M does not include a column from the −Im part of A, since such columns only
contribute to the sign of the determinant.

So, let us consider bounding a minor Mj of Ao of order r (or r − 1, if M includes the b

column).

Since Ao =
[

A1
A2

]

, consider expanding Mj , using the standard determinant expansion by

minors along the top k rows corresponding to non-difference constraints. Each term in the
expansion is (up to a sign) the product of at most k entries from the A1 portion, one from
each row, and a minor from A2. Since A2 is TUM, each product term is bounded in absolute
value by ak

max. Furthermore, there can be at most wk non-zero terms in the expansion, since
each non-zero product term is obtained by choosing one non-zero element from each of the
rows of the A1 portion of Mj , and this can be done in at most wk ways.

Therefore, |Mj | is bounded by (amax w)k. Combining this with the inequality (3.1), and
since r − p ≤ s, we get

|M | ≤ s bmax (amax w)k

which is what we set out to prove.

Thus, we conclude that ∆ ≤ s bmax(amax w)k, where s = min(n + 1,m). From Theorems 1
and 4, and Remark 1, we obtain the following theorem:

Theorem 5. A solution bound for the system (2.2) is

(n + 2)∆ = (n + 2) · s · bmax · (amax w)k

Thus, the solution size S is

⌈log(n + 2) + log s + log bmax + k(log amax + log w)⌉

We make the following observations about the bound derived above, assuming as before,
that n < m, and so s = n + 1:

• Dependence on Parameters: We observe that the bound is linear in k, logarithmic
in amax, w, n, and bmax. In particular, the bound is not in terms of the total number
of linear constraints, m.

• Worst-case Asymptotic Growth: In the worst case, k = m, w = n+1, and n = O(m),
and we get the O(log m + log bmax + m[log m + log amax]) bound of Papadimitriou.

• Typical-case Asymptotic Growth: As observed in our study of formulas from software
verification, w is typically a small constant, so the number of bits needed per variable
is O(log n+log bmax+k log amax+k). In many cases, amax and k are also bounded by
a small constant. Thus, S is typically O(log n + log bmax). This reduces the search
space by an exponential factor over using the bound expressed in terms of m.
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• Representing Non-difference Constraints: There are many ways to represent non-
difference constraints and these have an impact on the bound we derive. In par-
ticular, it is possible to transform a system of non-difference constraints to one
with at most three variables per constraint. For example, the linear constraint
x1 + x2 + x3 + x4 = x5 can be rewritten as:

x1 + x′

1 = x5

x2 + x′

2 = x′

1

x3 + x4 = x′

2

For the original representation, k = 1 and w = 5, while for the new representation
k = 3 and w = 3. Since our bound is linear in k and logarithmic in w, the original
representation would yield a tighter bound.

Similarly, one can eliminate variables with coefficients greater than 1 in absolute
value by introducing new variables; e.g., 2x is represented as x+x′ with an additional
difference constraint x = x′. This can be used to adjust w, amax, and n so that the
overall bound is reduced.

The derived bound only yields benefits in the case when the system has few non-difference
constraints which themselves are sparse. In this case, we can instantiate variables over a
finite domain that is much smaller than that obtained without making any assumptions on
the structure of the system.

Finally, from Proposition 1 and Theorem 5, we obtain an enumeration bound for sys-
tem (2.1):

Theorem 6. An enumeration bound for system (2.1) is

(n + 2) · s · bmax · (amax w)k

Note that the values of amax and w in the statement of Theorem 6 are those for system (2.2).

3.3. Bounds for Arbitrary Quantifier-Free Presburger Formulas. We now return
to the original goal of this paper, that of finding a solution bound for an arbitrary QFP
formula Φ.

Suppose that Φ has m linear constraints φ1, φ2, . . . , φm, of which m − k are difference
constraints, and n variables x1, x2, . . . , xn. As before, we assume that each non-difference
constraint has at most w variables, amax is the maximum over the absolute values of co-
efficients ai,j of variables, and bmax is the maximum over the absolute values of constants
bi appearing in the constraints. Furthermore, let us assume that the zero variable (used in
transforming system 2.1 to system 2.2) have already been introduced into the constraints.

We prove the following theorem.

Theorem 7. If Φ is satisfiable, there is a solution to Φ that is bounded by (n + 2)∆ where

∆ = s (bmax + 1) (amax w)k

and s = min(n + 1,m).
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Proof. Let σ be a (concrete) model of Φ. Let m′ constraints, φi1 , φi2 , . . . , φim′ , evaluate to
true under σ, the rest evaluating to false. Let A′ = [ai,j] be a m′×n matrix in which each
row comprises the coefficients of variables x1, x2, . . . , xn in a constraint φik , 1 ≤ k ≤ m′.
Thus, A′ = [ai,j ] where i ∈ {i1, . . . , im′}.

Now consider a constraint φik where k > m′, that evaluates to false under σ. φik is the
inequality

n
∑

j=1

aik,jxj ≥ bik

Then σ satisfies ¬φik which is the inequality
n

∑

j=1

aik,jxj < bik

or equivalently,
n

∑

j=1

−aik,jxj ≥ −bik + 1

Let A′′ be a (m−m′)×n matrix corresponding to the coefficients of variables in constraints
¬φim′+1

, ¬φim′+2
, . . ., ¬φim. Thus, A′′ = [−ai,j] where i ∈ {im′+1, . . . , im}.

Finally, let b = [bi1 , bi2 , . . . , bim′ ,−bim′+1
+ 1,−bim′+2

+ 1, . . . ,−bim + 1]T

Clearly, σ is a satisfying solution to the ILP given by
[

A′

A′′

]

x ≥ b (3.2)

Also, if the system (3.2) has a satisfying solution then Φ is satisfied by that solution. Thus,
Φ and the system (3.2) are equi-satisfiable, for every possible system (3.2) we construct in
the manner described above.

By Theorems 1 and 4, we can conclude that if system (3.2) has a satisfying solution, it has
one bounded by (n + 2)∆ where

∆ = s (bmax + 1) (amax w)k

and s = min(n + 1,m). Moreover, this bound works for every possible system (3.2).

Therefore, if Φ has a satisfying solution, it has one bounded by (n + 2)∆.

Thus, to generate the Boolean encoding of the starting QFP formula, we must encode each
integer variable as a symbolic bit-vector of length S given by

S = ⌈log[(n + 2)∆]⌉ = ⌈log(n + 2) + log s + log(bmax + 1) + k(log amax + log w)⌉

Remark 2. If the zero variable is not introduced into the formula Φ, we can search for
solutions in

∏n
i=1[−d, d], where d = (n + 2)∆. As noted earlier, values of amax and w used

in computing ∆ are those obtained after introducing the zero variable.

Remark 3. In Section 3.2, we assumed, for ease of presentation, that k ≤ n + 1. If this
does not hold, we can simply replace k in the results of Sections 3.2 and 3.3 by min(k, n+1).
This is because the dimension of the minor Mj of Ao (mentioned in the proof of Theorem 4)
is limited by n + 1.
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We conclude this section by summarizing the symbols used to represent formula parameters
and the quantities derived therefrom. For easy reference, they are listed in Table 2.

Symbol Meaning

n Number of variables
m Number of constraints

bmax Maximum constant term
amax Maximum variable coefficient

k Number of non-difference constraints
w Maximum number of non-zero coefficients in any constraint
s min(n + 1,m)

∆ s · (bmax + 1) · (amax w)k

S ⌈ log[(n + 2)∆] ⌉

Table 2: Parameters and Derived Quantities.

4. Improvements

The bounds we derived in the preceding section are conservative. For a particular problem
instance, the size of minors can be far smaller than the bound we computed. However,
this cannot be directly exploited by enumerating minors, since the number of minors grows
exponentially with the dimensions of the constraint matrix. Also, there is a special case
under which one can improve the (n + 2)∆ bound. If all the constraints are originally
equalities and the system of constraints has full rank, a bound of ∆ suffices [BFRT89].
However, in our experience, even if the linear constraints are all equalities, they still tend to
be linearly dependent. Thus, we have not been able to make use of this special case result.

Fortunately, there are other techniques for improving the solution bound that we have found
to be fairly useful in practice. These include theoretical improvements as well as heuristics
that are useful in practice. We describe these methods in this section.

4.1. Variable Classes. So far, we have used a single bit-vector length for all integer vari-
ables appearing in the formula Φ. This is overly conservative. In general, we can partition
the set of variables into classes such that two variables are placed in the same class if there
is a constraint in which they both appear with non-zero coefficients. Note, moreover, that
this partitioning optimization can be performed before adding the “zero” variable x0. A
different zero variable is then used for each variable class. For each class, we separately
compute parameters n, k, bmax, amax, and w, resulting in a separately computed bit-vector
length for each class.

For example, consider the formula

x1 + x2 ≥ 1 ∧
(

x2 − x3 ≥ 0 ∨ x4 − x5 ≥ 0
)

In this case, variables x1, x2, and x3 fall into one class, while x4 and x5 will be put into a
different class.

The correctness of this partitioning optimization follows from a reduction to ILP as per-
formed in the proof of Theorem 7, along with the following two observations:
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• By construction, different variable classes share neither variables nor constraints.
• A different zero variable can be introduced for each class because that transformation

preserves solutions in the same way as the transformation from system (2.1) to
system (2.2) does.

• A satisfying solution to a system of ILPs, no two of which share a variable, can be
obtained by solving them independently and concatenating the solutions.

4.2. Tighter Bounds for Special Constraint Classes. Consider specializing the solu-
tion bound of Section 3.3 to the special cases of equality logic and difference logic. (An
equality logic formula only has constraints of the form xi = xj.)

For equality logic, k = 0, and bmax = 0. Thus, our bound specializes to (n + 2) · s, which,
assuming n < m, is O(n2). For separation logic too, k = 0. This yields a bound of
(n + 2) · s · (bmax + 1).

However, both of these bounds are too conservative.

For an equality logic formula with n variables, it is well-known that a solution bound of n

suffices to decide the satisfiability of the formula.

Similarly, if the formula is in difference logic, a solution bound of min(n,m) · (bmax + 1)
suffices. We sketch the proof of this result here, omitting details. The proof is based on a
graph-theoretic view of difference-bound constraints, with each variable corresponding to
a vertex, and a constraint xi ≥ xj + bt corresponding to an edge from xi to xj of weight
bt. (The graph is constructed after first putting the formula into negation normal form;
see the paper by Strichman et al. [SSB02] for details on graph construction.) A satisfying
assignment is an assignment of integers to vertices such that the graph has no positive
cycles. Now note that, in this graph, the longest path is of length min(n,m) · (bmax + 1),
since there are n + 1 vertices in the graph (including that for the zero variable) and the
weight of any edge is at most bmax + 1. Thus, if there is a satisfying assignment, there is
one in which the separation between the minimum and maximum integer value does not
exceed min(n,m) · (bmax + 1). This concludes the proof sketch.

Clearly, if the formula is purely in equality logic or purely in difference logic, we can use the
tighter bounds for the appropriate logic. However, the optimization of computing variable
classes (presented in Section 4.1) allows us to exploit the tighter bounds even if the overall
formula is not in equality logic or difference logic: The tighter bounds can be used for
encoding variables in variable classes that comprise purely equality or purely difference
constraints. The correctness of this optimization follows for the same reasons as that of the
original variable class partitioning optimization.

4.3. Dealing with Large Coefficients and Widths. In the expression for S, the term
involving amax (and w) is multiplied by a factor of k. Thus, any increase in log amax gets
amplified by a factor of k. It is therefore useful, in practice, to more carefully model the
dependence of S on coefficients. We present two techniques to alleviate the problem of
dealing with large coefficients. These techniques also apply to dealing with large constraint
widths.

4.3.1. An nk-fold reduction. The coefficient of the zero variable x0 has, so far, been used in
computing amax. We will now show that we can ignore this coefficient, and also ignore any
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contribution of x0 to the width w. This optimization can result in a reduction of up to a
factor of nk in the solution bound d.

The largest reduction occurs when, in the original formula, we have a constraint of the form
∑

j aixj ≥ bi, where ai is the largest coefficient in absolute value. After adding the zero

variable, this constraint is transformed to (
∑

j aixj)−(n ·ai)x0 ≥ bi. Thus, amax now equals
n · ai, a factor of n times greater than in the original formula.

Let us revisit the transformation performed in Section 2.1 to convert system (2.1) to sys-
tem (2.2). A different and commonly-used transformation to non-negative variables is to
write each xj as x+

j − x−

j , where x+
j , x−

j ≥ 0 for all j. Let the resulting system be referred

to as system (2.2’). Let us assume that this different transformation is used in place of the
original one that generates system (2.2), leaving all successive transformations the same.

Now, consider the form of the matrix [A|b], as used in Section 3.2, reproduced below:










A1 b1

−Im b2

A2
...

bm











With the new transformation method, A1 is a k × 2n dimensional matrix corresponding to
the non-difference constraints, A2 is a (m− k)× 2n dimensional matrix with the difference
constraints, Im is the m × m identity corresponding to the surplus variables, and the last
column is the vector b.

Importantly, note that A2 is still totally unimodular and the ranks of A1 and A2 are the
same as they were with the use of the single zero variable x0. This is because any non-
singular sub-matrix of Ao must include exactly one of the columns corresponding to x+

i and
x−

i , since they are negations of each other. Therefore, the values of w and amax used in the
proof of Theorem 4 are those for the system (2.1).

Thus, if we use the transformation method of replacing xi with x+
j − x−

j , the values of w

and amax used in the statement of Theorem 4 are those for the system (2.1).

Note, however, that by replacing xi with x+
j − x−

j , the number of variables in the problem
doubles, and in particular, the number of input variables in the SAT-encoding is doubled.
This is rather undesirable.

Fortunately, there are two solutions that avoid the doubling of variables at the minor cost
of only 1 extra bit per variable.

(1) The first solution is based on the following proposition that mirrors Proposition 1.

Proposition 2. A solution bound d ≥ 0 for system (2.2’) is an enumeration bound
for system (2.1).

Proof. Given a solution x′∗ within the solution bound d to system (2.2’), we con-

struct a solution x∗ to system (2.1) by setting x∗

j = x+
j

∗

−x−

j

∗

. Clearly, x∗

j ∈ [−d, d]
for all j.

Thus, we can restrict our search to the hypercube
∏n

i=1[−d, d], where the solution
bound d is computed using the values of w and amax for the system (2.1).
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(2) The second solution uses the following proposition showing that we can use the tech-
nique of adding a zero variable x0 and the values of w and amax for the system (2.1),
while paying only a minor penalty of 1 extra bit per variable.

Proposition 3. Suppose d ≥ 0 is a solution bound such that system (2.2’) has a
solution in [0, d] iff system (2.1) is feasible. Then, system (2.2) has a solution in
[0, 2d] iff system (2.2’) has a solution in [0, d].

Proof. (if part): Suppose system (2.2’) has a solution in [0, d]; i.e., x+
j , x−

j ∈ [0, d]

for all j. Then, we construct a satisfying assignment to system (2.2) as follows:
• x0 is assigned the value maxj x−

j .

• xj, for j > 0, is assigned the value x+
j + (x0 − x−

j ).

Since 0 ≤ (x0 − x−

j ) ≤ d, we can conclude that 0 ≤ xj ≤ 2d for all j. It is easy to

see that the resulting assignment satisfies system (2.2).
(only if part): Suppose system (2.2) has a solution in [0, 2d]. This means that the

original system (2.1) is feasible. It follows that system (2.2’) has a solution in [0, d].

In both solutions, we must search 2d + 1 values for each variable xj , 1 ≤ j ≤ n. However,
the former avoids the need to add x0, and hence will have fewer input variables in the
SAT-encoding. Hence, the former solution is preferable.

The reader must note, though, that this optimization is only relevant when the introduction
of the zero variable (significantly) affects the value of amax. (The impact on w is minor.)
If the value of amax is unaffected by the introduction of the zero variable x0, using x0 can
result in a more compact SAT-encoding than using an enumeration domain of [−d, d] for
each variable. If one uses the x0 variable, one introduces log d input Boolean variables for
x0 in the SAT-encoding. On the other hand, without the x0 variable, one introduces n

additional Boolean variables to encode sign bits. The relative size of the SAT-encoding,
and hence the decision to introduce x0, would depend on whether n significantly exceeds
log d.

4.3.2. Product of k largest coefficients and widths. There is a simpler optimization which
we have found to be useful in practice.

In the proof of Theorem 4, in deriving the (amax ·w)k term, we have assumed the worst-case
scenario of each term in the determinant expansion equaling ak

max and there being w terms
to choose from in each row.

In fact, we can replace ak
max with

∏k
i=1 amaxi, where amaxi denotes the largest coefficient in

row i, in absolute value. Similarly, wk can be replaced with
∏

i wi, where wi is the width
of constraint i.

4.4. Dealing with Large Constant Terms. For some formulas, the value of bmax is very
large due to the presence of a single large constant (or very few of them). In such cases, a
less conservative analysis or other problem transformations are useful. We present two such
techniques here.

4.4.1. Product of s largest constants. It is easy to see that, in the proof of Theorem 4, the
s bmax term can be replaced by

∑s
j=1 |bij |, where bi1 , bi2 , . . . , bis are the s largest elements
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of b in absolute value. Similarly, the expression for ∆ derived in Theorem 7 gets modified
to

∆ =

( s
∑

j=1

(|bij | + 1)

)

· (amax w)k

Like the optimization of Section 4.3.2, this has also proved fairly useful in practice.

4.4.2. Shift of origin. Another transformation that can be useful for dealing with large
constant terms is to replace a variable xj by xj −αj ; this corresponds to shifting the origin
in R

n by αj along the xj-axis.

The ith constraint is then transformed into
∑

j ai,j(xj −αj) ≥ bi. Rewriting this, we obtain

the form
∑

j ai,jxj ≥ b′i, where b′i = bi + (
∑

j ai,jαj).

The new value of bmax, after the transformation, is maxi |b
′

i|. Therefore, we wish to find
values of αjs so as to minimize the value of maxi |b

′

i|.

This problem can be phrased as the following integer linear program:

min z

subject to

z ≥ bi + (
∑

j

ai,jαj) 1 ≤ i ≤ m

z ≥ −bi − (
∑

j

ai,jαj) 1 ≤ i ≤ m

z ≥ 0

z ∈ Z, αj ∈ Z for 1 ≤ j ≤ n

This ILP has n+1 variables and 2m+1 constraints (including the non-negativity constraint
on z).

In fact, one can write one such ILP for each variable class, since they do not share any
variables or constraints. Then, the optimum value for each class will indicate the new value
of bmax to use for that class.

5. Implementation and Experimental Results

5.1. Implementation. We used the bound derived in the previous section to implement
a decision procedure based on finite instantiation.

The procedure starts by analyzing the formula to obtain parameters, and computes the
solution bound. We found that the optimizations of Section 4.1, 4.2, and 4.3.1 are al-
ways useful, especially since formulas tend to contain many variables classes comprising
of only difference constraints. Hence, our base-line implementation always includes these
optimizations. The impact of other optimizations is reported in Section 5.2.2.

Given the solution bound, integer variables in the QFP formula are encoded as symbolic bit-
vectors large enough to express any integer value within the bound. Arithmetic operators
are implemented as arbitrary-precision bit-vector arithmetic operations. Equalities and
inequalities over integer expressions are translated to corresponding relations over bit-vector
expressions. The resulting Boolean formula is passed as input to a SAT solver.
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We implemented our procedure as part of the UCLID verifier [UCL], which is written in
Moscow ML [Mos]. In our implementation we used the zChaff SAT solver [zCh] version
2004.5.13. In the sequel, we will refer to our decision procedure as the “UCLID” procedure.

5.2. Experimental Results. We report here on a series of experiments we performed to
evaluate our decision procedure against other theorem provers, as well as to assess the
impact of the various optimizations discussed in Section 4.7

All experiments were performed on a Pentium-IV 2 GHz machine with 1 GB of RAM
running Linux. A timeout of 3600 seconds (1 hour) was imposed on each run.

5.2.1. Benchmarks. For benchmarks, we used 10 formulas from the Wisconsin Safety Ana-
lyzer (WiSA) project on checking format string vulnerabilities, and 3 generated by the Blast
software model checker. The benchmarks include both satisfiable and unsatisfiable formulas
in an extension of QFP with uninterpreted functions. Uninterpreted functions were first
eliminated using Ackermann’s technique [Ack54],8 and the decision procedures were run on
the resulting QFP formula.

Some characteristics of the formulas are displayed in Table 3. For each formula, we indicate
whether it is satisfiable or not. We give the values of parameters n, m, k, w, amax and
bmax corresponding to the variable class for which S = ⌈log[(n + 2)∆]⌉ is largest, i.e, for
which we need the largest number of bits per variable. The values of the parameters for the
overall formula are also given (although these are not used in computing S for any variable
class); thus, the values of m and n in these columns are the total numbers of variables and
constraints for the entire formula.

The top 10 formulas listed in the table are from the WiSA project. One key characteristic
of these formulas is that they involve a significant number of Boolean operators (∧, ∨, ¬),
and in particular there is a lot of alternation of ∧ and ∨. The other important characteristic
of these benchmarks is that, although they vary in n, m, and bmax, the values of k, w, and
amax are fixed at a small value.

Three formulas from the Blast suite are listed at the bottom of Table 3. All these formulas
are unsatisfiable. Each formula is a conjunction of two sub-formulae: a large conjunction of
linear constraints, and a conjunction of congruence constraints generated by Ackermann’s
function elimination method. Thus, there is only one alternation of ∧ and ∨ in these
formulas.

5.2.2. Impact of optimizations. In this section, we discuss the impact of optimizations dis-
cussed in Sections 4.3 and 4.4.

Table 4 compares the following 4 different encoding options based on different ways of
computing the solution bound:

Base: The base-line method of computing the solution bound.
Coeff: Using the optimization of Section 4.3.2 alone.

7Note: The results presented in this section are an updated version of those reported in the LICS’04
conference version.

8Ackermann’s function elimination method replaces each function application by a fresh variable, and
then instantiates the congruence axiom for those applications. For instance, the formula f(x) = f(y) is
translated to the function-free formula vf 1 = vf 2 ∧ (x = y =⇒ vf 1 = vf 2).
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Formula Ans. Parameters corr. to max. S Max. parameters overall
n m k w amax bmax S n m k w amax bmax

s-20-20 SAT 28 263 5 4 4 21 36 64 550 5 4 4 255
s-20-30 SAT 28 263 5 4 4 30 36 64 550 5 4 4 255
s-20-40 UNS 28 263 5 4 4 40 37 64 550 5 4 4 255
s-30-30 SAT 38 383 5 4 4 31 37 82 800 5 4 4 255
s-30-40 SAT 38 383 5 4 4 40 37 82 800 5 4 4 255
xs-20-20 SAT 49 323 5 4 4 21 37 84 632 5 4 4 255
xs-20-30 SAT 49 323 5 4 4 30 38 84 632 5 4 4 255
xs-20-40 UNS 49 323 5 4 4 40 38 84 632 5 4 4 255
xs-30-30 SAT 69 473 5 4 4 31 39 114 922 5 4 4 255
xs-30-40 SAT 69 473 5 4 4 40 39 114 922 5 4 4 255
blast-tl2 UNS 54 67 7 3 1 0 24 145 274 7 3 1 128
blast-tl3 UNS 201 2669 19 6 1 15 70 260 2986 19 6 1 128
blast-f8 UNS 255 6087 0 2 1 2560 20 321 7224 0 2 1 2560

Table 3: Benchmark characteristics. The top half of the table consists of the WiSA
benchmarks and the bottom three are generated by the Blast software verifier.

Const: Using the optimization of Section 4.4.1 alone.
All: Using optimization methods of both Sections 4.3.2 and 4.4.1.

The comparison is made with respect to the largest number of bits needed for any variable
class, and the run-times for both generating the SAT-encoding and for SAT solving.

Formula Ans. Max. #bits/var. Encoding Time (sec.) SAT Time (sec.)

B
as

e

C
oe

ff
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on

st

A
ll
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ff
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B
as

e

C
oe

ff

C
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st

A
ll

s-20-20 SAT 36 26 31 21 1.26 0.98 1.12 0.73 0.27 0.27 0.20 0.20
s-20-30 SAT 36 26 31 22 1.29 1.03 1.05 0.76 0.38 0.57 0.41 0.36
s-20-40 UNS 37 27 32 22 1.29 0.99 1.02 0.73 0.72 0.61 0.95 0.39
s-30-30 SAT 37 27 32 22 2.03 1.41 1.48 1.13 1.55 0.55 0.26 0.63
s-30-40 SAT 37 28 32 23 2.03 1.48 1.47 1.13 3.03 2.10 0.41 1.08
xs-20-20 SAT 37 28 32 22 1.89 1.36 1.40 1.04 0.51 0.55 0.97 0.31
xs-20-30 SAT 38 28 32 23 1.94 1.31 1.68 1.08 1.09 1.85 1.00 0.69
xs-20-40 UNS 38 29 33 23 1.91 1.42 1.55 1.09 4.45 4.41 3.90 2.80
xs-30-30 SAT 39 29 33 23 2.89 2.32 2.48 1.57 2.91 4.29 0.78 0.88
xs-30-40 SAT 39 30 33 24 2.86 2.36 2.67 1.61 1.61 2.88 0.92 1.55
blast-tl2 UNS 24 24 19 19 0.65 0.65 0.50 0.50 0.02 0.02 0.02 0.01
blast-tl3 UNS 70 53 62 46 29.20 19.12 22.29 16.94 0.82 0.62 0.66 0.49
blast-f8 UNS 20 20 12 12 17.54 17.56 10.37 10.36 2.02 2.02 0.96 0.96

Table 4: An experimental evaluation of encoding optimizations. We compare the
4 different UCLID encoding options with respect to the maximum number of bits
needed for any integer variable (“Max. #bits/var.”), the time taken to generate
the Boolean encoding, and the time taken by the SAT solver.
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First, we note that Coeff and Const both generate more compact encodings than Base; on
the WiSA benchmarks, they use about 5-10 fewer bits per variable in the largest variable
class. The reduction in the total number of bits, summed over all variables in all variable
classes, is similar, since most variables fall into a single class.

The encoding times decrease with reduction in number of bits; this is just as one would
predict.

However, the comparison of SAT solving times is more mixed; on a few benchmarks Coeff
and Const outperform Base, and on others, they do worse. The latter behavior is observed
especially on satisfiable formulas. The reason for this appears to be a relative ease in finding
larger solutions for those formulas than finding smaller solutions.

When Coeff and Const are both used (indicated as “All”), we find that not only are encod-
ing times smaller than the Base technique, but SAT solving times are also smaller in all
cases. This seems to indicate that a reduction in SAT-encoding size beyond a certain limit
overcomes any negative effects of restricting the search to smaller solutions.

We also performed an experiment to explore the use of the shift-of-origin optimization
described in Section 4.4.2. UCLID automatically formulated the ILP and solved it using
the CPLEX optimization tool [CPL] (version 8.1). Since none of the benchmarks listed in
Table 3 have especially large constants, we used a different, unsatisfiable formula from the
Blast suite which has only difference constraints, but with large constants.

Table 5 summarizes the key characteristics of this formula as well as the results obtained
by comparing versions of the base-line (Base) implementation with and without the op-
timization enabled. We list the values of parameters, with and without the shift-of-origin
optimization enabled, for the variable classes that yield the two largest values of S when
the optimization is disabled.

Shift-of-origin Param. for largest S Param. for 2nd largest S Total Time (sec.)
enabled? n m bmax S n m bmax S #bits Enc. SAT

No 230 6417 2162688 29 2 2 261133242 28 7510 24.68 0.70
Yes 230 6417 432539 27 2 2 0 1 6833 25.78 0.71

Table 5: Evaluating the shift-of-origin optimization. We list the values of parameters
corresponding to variable classes with the two largest values of S, as computed
without the shift-of-origin optimization. “Total #bits” indicates the number of
bits needed to encode all integer variables. Encoding time is indicated as “Enc.”
and SAT solving time as “SAT”.

With the optimization turned on, the largest constant in the entire formula falls from
261133242 to 432539, a 600-fold reduction. However, if we restrict our attention to the
largest variable class, comprising 230 variables, the reduction in bmax is more modest, about
a factor of 4. This yields a saving of 2 bits per variable for that variable class. The saving
in the total number of bits, summed over all variable classes, is 677. This is, however, not
large enough to reduce either the encoding time or the SAT time. In fact, the encoding time
increases by about a second; this is the time required to run CPLEX and for the processing
overhead of creating the ILP.
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Even though the shift-of-origin optimization has not resulted in faster run-times in our
experiments, it clearly has the potential to greatly reduce the number of bits, and might
prove useful on other benchmarks.

5.2.3. Comparison with other theorem provers. We compared UCLID’s performance with
that of the SAT-based provers ICS [ICS] (version 2.0) and CVC-Lite [CVC] (the new imple-
mentation of CVC, version 2.0.0),9 as well as the automata-based procedure LASH [LAS]
(version 0.9). While CVC-Lite and LASH are sound and complete for QFP, ICS 2.0 is
incomplete; i.e., it can report a formula to be satisfiable when it is not. The ground deci-
sion procedure ICS uses is the Simplex linear programming algorithm with some additional
heuristics to deal with integer variables. However, in our experiments, both UCLID and
ICS returned the same answer whenever ICS terminated within the timeout. The ground
decision procedure for CVC-Lite is a proof-producing variant of the Omega test [BGD03].

LASH was unable to complete on any benchmark within the timeout since it was unable
to construct the corresponding automaton; we attribute this to the relatively large number
of variables and constraints in our formulas, and note that Ganesh et al. obtained similar
results in their study [GBD02].

Formula Ans. UCLID Time ICS CVC-Lite
(sec.) #(Inc. Time (sec.) Total Time

Enc. SAT Total assn.) Ground Total (sec.)
s-20-20 SAT 0.73 0.20 0.93 904 23.32 23.76 1.45
s-20-30 SAT 0.76 0.36 1.12 1887 51.68 52.29 1.73
s-20-40 UNS 0.73 0.39 1.12 25776 658.01 669.99 *
s-30-30 SAT 1.13 0.63 1.76 2286 268.21 269.42 3.83
s-30-40 SAT 1.13 1.08 2.21 14604 1621.27 1625.15 4.28
xs-20-20 SAT 1.04 0.31 1.35 2307 97.21 98.32 1.78
xs-20-30 SAT 1.08 0.69 1.77 33103 1519.77 1540.27 2.04
xs-20-40 UNS 1.09 2.80 3.89 97427 3468.91 * *
xs-30-30 SAT 1.57 0.88 2.45 72585 3287.47 * 4.90
xs-30-40 SAT 1.61 1.55 3.16 33754 3082.34 * 4.36
blast-tl2 UNS 0.50 0.01 0.51 1 0.01 0.01 0.15
blast-tl3 UNS 16.94 0.49 17.43 0 0.00 0.01 2.66
blast-f8 UNS 10.36 0.96 11.32 1 0.01 0.05 14.55

Table 6: Experimental comparison with other theorem provers. The UCLID ver-
sion is the one with all optimizations turned on (“All”). For ICS, we give the total
time, the number of inconsistent Boolean assignments analyzed by the ground de-
cision procedure (“#(Inc. assn.)”), as well as the overall time taken by the ground
decision procedure (“Ground”). For CVC-Lite, we indicate the total run-time. A
“∗” indicates that the decision procedure timed out after 3600 sec. LASH did not
complete within the timeout on any formula.

A comparison of UCLID versus ICS and CVC-Lite is displayed in Table 6. From Table 6,
we observe that UCLID outperforms ICS on all the WiSA benchmarks, terminating within

9Note that the results for CVC-Lite 2.0.0 are a significant improvement over those we previously ob-
tained [Ses05] using an older version.



22 S. A. SESHIA AND R. E. BRYANT

a few seconds on each one. However, ICS performs best on the Blast formulas, finishing
within a fraction of a second on all. CVC-Lite runs much faster than ICS on the satisfiable
WiSA formulas, but does not finish on either of the unsatisfiable WiSA formulas, and does
not outperform UCLID on any of the WiSA benchmarks. However, it outperforms UCLID
on one of the Blast formulas. Due to the unavailability of statistics on where CVC-Lite
spends its time, we can only present a detailed comparison between UCLID and ICS here.
We believe that CVC-Lite’s superior performance to ICS on satisfiable formulas is mainly
due to improved Boolean simplification heuristics and, to a lesser extent, due to a faster
ground decision procedure.10 The better performance compared to UCLID on one of the
Blast formulas is because that formula is propositionally unsatisfiable, as we will discuss in
more detail below.

Let us consider the WiSA benchmarks first. These formulas have a non-trivial Boolean
structure that requires ICS to enumerate many inconsistent Boolean assignments before
being able to decide the formula. The ICS run-time is dominated by the time taken by the
ground decision procedure. We observe that the number of inconsistent Boolean assignments
alone is not a precise indicator of total run-time, which also depends on the time taken by the
ground decision procedure in ruling out a single Boolean assignment. Further optimization
of ICS’s ground decision procedure might improve its overall run-time, at least on the
satisfiable formulas.
The reason for UCLID’s superior performance is the formula structure, where k, w, and

amax remain fixed at a low value while m, n, and bmax increase. Thus, the maximum number
of bits per variable stays about the same even as m increases substantially, and the resulting
SAT problem is within the capacity of zChaff. The times for both encoding and SAT solving
phases are small. In particular, the small SAT solving time on the unsatisfiable instances
indicates that the proof of unsatisfiability is also small.

Next, consider the results on the Blast formulas. The reason for ICS’s superior perfor-
mance on these can be gauged by the number of inconsistent Boolean assignments it has to
enumerate. On the formula named “blast-tl3”, purely Boolean reasoning suffices to decide
unsatisfiability. For the other two formulas, the reason for unsatisfiability is a mutually-
inconsistent subset amongst all the linear constraints that are conjoined together, and a
single call to ICS’s ground decision procedure suffices to infer the inconsistency. In all three
cases, the “proof of unsatisfiability” that ICS must find is small.
On the other hand, UCLID’s run-time is dominated by the encoding time. Once the

encoding is generated, the SAT solver decides unsatisfiability easily.

To summarize, it appears that decision procedures like ICS and CVC-Lite, which are based
on a lazy translation to SAT, are effective when the formula structure is such that only a
few calls to the ground decision procedure are required (i.e., satisfiable solutions are easy
to find, or the proof of unsatisfiability is shallow), and the ground decision procedure is
itself efficient. UCLID performs better on formulas with complicated Boolean structure
and comprising linear constraints with the sparse structure formalized in this paper.

10Based on personal communication with S. Berezin.
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6. Conclusions and Future Work

In this paper, we have presented a formal approach to exploiting the “sparse, mainly dif-
ference constraint” nature of quantifier-free Presburger formulas encountered in software
verification. Our approach is based on formalizing this sparse structure using new param-
eters, and deriving a new parameterized bound on satisfying solutions to QFP formulas.
We have also proposed several ways in which the bound can be reduced in practice. Ex-
perimental results show the benefits of using the derived bound in a SAT-based decision
procedure based on finite instantiation.

The work described in this paper can be extended in a few new directions. Some of these
are discussed below.

6.1. Computing the Solution Bound Lazily. In our implementation, we compute a
conservative bound and translate a QFP formula to a Boolean formula in a single step. An
alternative approach is to perform this transformation lazily, increasing the solution bound
“on demand”.

One such lazy encoding approach works, in brief, as follows. (Details can be found in the
paper by Kroening et al. [KOSS04].)

We start with an encoding size for each integer variable that is smaller than that prescribed
by the conservative bound (say, 1 bit per variable).

If the resulting Boolean formula is satisfiable, so is the original QFP formula. If not, the
proof of unsatisfiability generated by the SAT solver is used to generate a sound abstraction
of the original formula, which can be checked with a sound and complete decision procedure
for QFP (such as the one proposed in this paper). If this decision procedure concludes
that the abstraction is unsatisfiable, so is the original formula, but if not, it provides a
counterexample which indicates the necessary increase in the encoding size. A new SAT-
encoding is generated, and the procedure repeats.

The bound S on solution size that we derive in this paper implies an upper bound nS on
the number of iterations of this lazy encoding procedure; thus the lazy encoding procedure
needs only polynomially many iterations before it terminates with the correct answer.

The potential advantage of this lazy approach is two-fold: (1) It avoids using the conserva-
tive bounds we have derived in this paper, and (2) if the generated abstractions are small,
the sound and complete decision procedure used by this approach will run much faster than
if it were fed the original formula.

For the WiSA benchmarks discussed in Section 5, we found that a solution bound of 28 −1,
i.e., 8 bits per variable, is sufficient to decide satisfiability. However, the time required to
derive this bound using the method of [KOSS04] is much greater than the run-times we
report in Section 5. Still, the lazy approach might prove especially useful in cases in which
S is so large that the SAT problem is outside the reach of current SAT solvers.

6.2. Special Classes of Constraints. In Section 4.2, we saw that if all linear constraints
are difference constraints, a tighter solution bound can be used. Recently, we have derived
a tighter bound for a special class of constraints that is a superset of difference constraints.
Constraints in this class refer to at most two variables (w = 2), and all variable coefficients
are in {0,−1,+1} (i.e., amax ≤ 1). These constraints are referred to in literature as either
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generalized 2SAT constraints or unit two-variable per inequality constraints. For this special
case, we have derived a solution bound of 2 ·min(n,m) ·(bmax +1) [SSB04], exactly twice the
bound for difference logic. The proof techniques for deriving this bound are quite different
from those used in this paper.

It would be interesting to find other special constraint classes for which the bounds presented
in this paper can be further tightened.

6.3. Other Directions and Open Problems. As we have observed in Section 5, the
impact of reduction of number of bits on the SAT solving time is not always predictable.
We are currently trying to better understand the reasons for this.

Encoding to SAT is not the only way in which the bounds presented in this paper can be
used. It would be interesting to explore non-SAT-based decision procedures based on the
bounds we derive.

The theoretical results of this paper rest heavily on the bound (n + 2) ·∆ given by Borosh,
Treybig, and Flahive, stated in Theorem 1. In their 1992 paper [BT92], Borosh and Treybig
conjectured that this bound can be improved to just ∆. To our knowledge, this conjecture
is still open.

Finally, it would also be interesting to apply our work to areas outside of software verification
that share the special structure of linear constraints exploited in this paper.
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