
Deciding Quantifier-Free Presburger Formulas Using Parameterized Solution
Bounds

Sanjit A. Seshia Randal E. Bryant
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213, USA�
Sanjit.Seshia, Randy.Bryant � @cs.cmu.edu

Abstract

Given a formula � in quantifier-free Presburger arith-
metic, it is well known that, if there is a satisfying solu-
tion to � , there is one whose size, measured in bits, is poly-
nomially bounded in the size of � . In this paper, we con-
sider a special class of quantifier-free Presburger formulas
in which most linear constraints are separation (difference-
bound) constraints, and the non-separation constraints are
sparse. This class has been observed to commonly occur
in software verification problems. We derive a new solution
bound in terms of parameters characterizing the sparseness
of linear constraints and the number of non-separation con-
straints, in addition to traditional measures of formula size.
In particular, the number of bits needed per integer vari-
able is linear in the number of non-separation constraints
and logarithmic in the number and size of non-zero coef-
ficients in them, but is otherwise independent of the total
number of linear constraints in the formula. The derived
bound can be used in a decision procedure based on instan-
tiating integer variables over a finite domain and translat-
ing the input quantifier-free Presburger formula to an equi-
satisfiable Boolean formula, which is then checked using a
Boolean satisfiability solver. We present empirical evidence
indicating that this method can greatly outperform other de-
cision procedures.

1. Introduction

Presburger arithmetic [28] is defined as the first-order the-
ory of the structure �����	�
������������ , where � denotes the
set of natural numbers. The satisfiability problem for Pres-
burger arithmetic is decidable, but of super-exponential
worst-case complexity [13]. Fortunately, for many applica-

tions, such as in program analysis (e.g., [29]) and hardware
verification (e.g., [8]), the quantifier-free fragment suffices.

A formula � in quantifier-free Presburger arithmetic
(QFP) is constructed by combining linear constraints
with Boolean operators (� , � , �). Formally, the � th con-
straint is of the form ����	���! #"%$ ��&'�)(+* " , where the coef-
ficients and the constant terms are integer constants and
the variables &!� � &-, ��.�.�./� & � are integer-valued1. In this pa-
per, we are concerned with the satisfiability problem
for QFP, viz., that of finding a valuation of the vari-
ables such that � evaluates to true. The NP-hardness
of this problem follows from a straightforward encod-
ing of the 0 SAT problem as a � - � integer linear pro-
gram. That it is moreover in NP, and hence NP-complete,
can be concluded from the result that integer linear pro-
gramming is in NP [6, 37, 18, 24].

Thus, if there is a satisfying solution to a QFP formula,
there is one whose size, measured in bits, is polynomi-
ally bounded in the problem size. Problem size is tradition-
ally measured in terms of the parameters 1 , 2 , 3546 '798	: ,
and 3;4<6 * 798	: , where 1 is the total number of constraints
in the formula, 2 is the number of variables, and '798	:>=?A@CB-D "E$ �	FHG #"E$ � G and * 798	:I= ?A@CB " G * " G are upper bounds on
the absolute values of coefficients and constant terms re-
spectively.

The above result suggests the following approach to check-
ing the satisfiability of a QFP formula � :

1. Compute the polynomial bound J on solution size.

2. Search for a satisfying solution to � in the bounded

1 While Presburger arithmetic is defined over K , we interpret the vari-
ables over L as it is general and more suitable for applications. It is
straightforward to translate a formula with integer variables to one
where variables are interpreted over K , and vice-versa, by adding (lin-
early many) additional variables or constraints.

space � � �����.�.�. �������)��� � .

This approach has been successfully applied to highly re-
stricted sub-classes of QFP, such as equality logic [26] and
separation logic [9], and is termed as finite instantiation.
The basic idea is to translate � to a Boolean formula by en-
coding each integer variable as a vector of Boolean vari-
ables (a “symbolic bit-vector”) of length J . The resulting
Boolean formula is checked using a Boolean satisfiabil-
ity (SAT) solver. This approach leverages the dramatic ad-
vances in SAT solving made in recent years (e.g., [22, 15]).
It is straightforward to extend the approach to additionally
handle the theory of uninterpreted functions and equality,
by using, for example, Ackermann’s technique of eliminat-
ing function applications [1].

However, a naı̈ve implementation of a decision procedure
based on finite instantiation fails for QFP formulas encoun-
tered in practice. The problem is that the bound on solution
size, J , is 	�
E3546 1 � 3546 * 798	: � 1�� 3;4<6 1 � 3;4<6 798 :��� . In
particular, the presence of the 1 3;4<691 term means that, for
practical problems involving hundreds of linear constraints,
the Boolean formulas generated are likely to be too large to
be decided by present-day SAT solvers.

In this paper, we explore the above finite instantiation-based
approach to deciding QFP formulas, but with a focus on
formulas generated in software verification. It has been ob-
served, by us and others, that formulas from this domain
have:

1. Mainly Separation Constraints: Of the 1 constraints,
1���� are separation constraints, where ��� 1 . Sep-
aration constraints, also called difference-bound con-
straints, are of the form & " � &'����� *�� or & " ��� *�� , where* � is an integer constant, and ����� ��� � (� = �! �#"$� .

2. Sparse Structure: The � non-separation constraints are
sparse, with at most % variables per constraint, where
% is “small”. We will refer to % as the width of the con-
straint.

Pratt [27] observed that most inequalities generated in pro-
gram verification are separation constraints. More recently,
the authors of the theorem prover Simplify observed in the
context of the Extended Static Checker for Java (ESC/Java)
project that “the inequalities that occur in program check-
ing rarely involve more than two or three terms” [12]. We
have performed a study of formulas generated in various
recent software verification projects: the Blast project at
Berkeley [16], the Magic project at CMU [10], the Wiscon-
sin Safety Analyzer (WiSA) project [35], and the software
upgrade checking project at MIT [20]. The results of this
study, indicated in Table 1, support the afore-mentioned ob-
servations regarding the “sparse, mostly separation” nature
of constraints in QFP formulas. To our knowledge, no pre-

vious decision procedure for QFP has attempted to exploit
this problem structure.

We make the following novel contributions in this paper:

& We derive bounds on solutions for QFP formulas, not
only in terms of the traditional parameters 1 , 2 , '798	: ,
and * 798	: , but also in terms of � and % . In particular,
we show that the worst-case number of bits required
per integer variable is linear in � , but only logarithmic
in % . Unlike previously derived bounds, ours is not in
terms of the total number of constraints 1 .

& We use the derived bounds in a sound and complete
decision procedure for QFP based on finite instantia-
tion, and present empirical evidence that our method
can greatly outperform other decision procedures.

Related Work. There has been much work on deciding
quantifier-free Presburger arithmetic; we present a brief dis-
cussion here and refer the reader to a recent survey [14] for
more details. Recent techniques fall into three categories:

& The first class comprises procedures targeted towards
solving conjunctions of constraints, with disjunctions
handled by enumerating terms in a disjunctive normal
form (DNF). Examples include the Omega test [29]
and solvers based on other integer linear programming
techniques. The drawback of these methods is the need
to enumerate the potentially exponentially many terms
in the DNF representation.

& The second set of methods attempt to remedy this
problem by instead relying on modern SAT solv-
ing strategies. The approach works as follows. A
Boolean abstraction of the QFP formula � is gener-
ated by replacing each linear constraint with a cor-
responding Boolean variable. If the abstraction is
unsatisfiable, then so is � . If not, the satisfying as-
signment (model) is checked for consistency with the
theory of quantifier-free Presburger arithmetic, us-
ing a ground decision procedure for conjunctions
of linear constraints. Assignments that are inconsis-
tent are excluded from later consideration by adding
a “lemma” to the Boolean abstraction. The pro-
cess continues until either a consistent assignment
is found, or all (exponentially many) assignments
have been explored. Examples of decision proce-
dures in this class that have some support for QFP
include CVC [2, 3] and ICS [11]. The ground deci-
sion procedures used by provers in this class employ a
combination framework such as the Nelson-Oppen ar-
chitecture for cooperating decision procedures [23] or
a Shostak-like combination method [32, 31]. These
methods are only defined for combining disjoint the-
ories. In order to exploit the mostly-separation struc-

Project Maximum Fraction of Maximum Width of a
Non-Separation Constraints Non-Separation Constraint

Blast 0.0276 6
Magic 0.0032 2
MIT 0.0087 3

WiSA 0.0054 4

Table 1. Linear Arithmetic Constraints in Software Verification are Mostly Separation Constraints. For
each software verification project, the maximum fraction of non-separation constraints is shown, as
well as the maximum width of a non-separation constraint, where the maximum is taken over all
formulas in the set. The Blast formulas were generated from device drivers written in C, the Magic
formulas from an implementation of openssl written in C, the MIT formulas from Java programs, and
the WiSA formulas were generated in the checking of format string vulnerabilities.

ture of a formula, one approach could be to combine
a decision procedure for a theory of separation con-
straints with one for a theory of non-separation
constraints, but this needs an extension of the com-
bination methods that applies to these non-disjoint
theories.

& The final class of methods are based on finite automata
theory (e.g., [38, 14]). The basic idea is to construct a
finite automaton corresponding to the input QFP for-
mula � , such that language accepted by the automa-
ton consists of the binary encodings of satisfying so-
lutions of � . According to a recent experimental eval-
uation with other methods [14], these techniques are
better than others at solving formulas with very large
coefficients, but do not scale well with the number of
variables and constraints.2

The approach we present in this paper is distinct from the
categories mentioned above. In particular, the following
unique features differentiate it from previous methods:

& It is the first finite instantiation method and the first
procedure based on translating a QFP formula to SAT
in a single step. The clear separation between the trans-
lation and the SAT solving allows us to leverage fu-
ture advances in SAT solving far more easily than other
SAT-based procedures.

& It is the first technique, to the best of our knowledge,
that exploits the structure of formulas commonly en-
countered in software verification.

Outline of the paper. The rest of this paper is organized as
follows. In Section 2, we discuss background material on
bounds on satisfying solutions of integer linear programs.
An integer linear program (ILP) is a conjunction of linear

2 Note that automata-based techniques can handle full Presburger arith-
metic, not just the quantifier-free fragment.

constraints, and hence is a special kind of QFP formula. The
bounds for QFP follow directly from those for ILPs. Our
main theoretical results are presented in Sections 3–5. Sec-
tion 3 gives bounds for ILPs for the case of � = � , when all
constraints are separation constraints. In Section 4, we com-
pute a bound for ILPs for arbitrary � . In Section 5, we show
how our results extend to arbitrary QFP formulas. We re-
port on experimental results in Section 6, and conclude in
Section 7.

2. Background

In this section, we define the integer linear programming
problem formally and state the previous results on bound-
ing satisfying solutions of ILPs. A more detailed discussion
on the steps outlined in Section 2.1 can be found in refer-
ence books on ILP (e.g. [30, 25]).

2.1. Preliminaries

Consider a system of 1 linear constraints in 2 integer-
valued variables:

��� (* (1)

Here
�

is an 1�� 2 matrix with integral entries, * is a 1��A�
vector of integral entries, and

�
is a 2�� � vector of integer-

valued variables. A satisfying solution to system (1) is an
evaluation of

�
that satisfies (1).

In system (1), the entries in
�

can be negative. We can con-
strain the variables to be non-negative by adding a dummy
variable &�� that refers to the “zero value,” replacing each
original variable & " by &��" � & � , and then adjusting the co-
efficients in the matrix

�
to get a new constraint matrix

� �

and the following system:3

� � � � (*
� � (� (2)

Here the system has 2 � = 2 � � variables, and
� � =

� & � � � & �, ��.�.�.!� &��� � & �
�

.
� � has the structure that �"%$ � = #"E$ �

for
� = �<��� ��.�.�.!� 2 and �"E$ ��� � = � � ��	��� "E$ � . Note that

the last column of
� � is a linear combination of the previ-

ous 2 columns. It is easy to show that system (1) has a so-
lution if and only if system (2) has one.

Finally, adding surplus variables to the system, we can
rewrite system (2) as follows:

� � � � � � = *
� � � (� (3)

where
� � � = � � G ����� is an 1 �
E2 � � 1 � integer matrix

formed by concatenating
�

with the negation of the 1 ��1
identity matrix � � .
For convenience we will drop the primes, referring to

� � �
and

� � � simply as 	 and
�

. Rewriting system (3) thus, we
get

��� = *
� (� (4)

Hereafter we will use the definition in (4). Let 798	: =?�@ B D "E$ �	FHG "E$ � G and * 798 : = ?A@CB � G * � G be upper bounds on
the absolute values of entries of

�
and * respectively.

2.2. Previous Results

The results of this paper build on results obtained by
Borosh, Treybig, and Flahive [6, 5] on bounding the solu-
tion of systems of the form (4). We state their result in the
following theorem:

Theorem 1 Consider the augmented matrix � � G * of di-
mension 1 �
%2 � ��1 � � � . Let
 be the maximum of the ab-
solute values of all minors of this augmented matrix. Then,
the system (4) has a satisfying solution if and only if it has
one with all entries bounded by
E2 � � �
 .

However, note that the determinant of a matrix can be
more than exponential in the dimension of the matrix [7].
In the case of the Borosh-Flahive-Treybig result, it means

that
 can be as large as ��
D � � � F�� � ���������,
� , where � =?�@ B
 798 : � * 798 :�� .

Papadimitriou [24, 25] also gives a bound of similar size,
stated in the following theorem:

3 Note that this procedure can increase the width of a constraint by � .
The statistics in Table 1 shows the width before this procedure is ap-
plied, computed from constraints as they appear in the original formu-
las.

Theorem 2 If the ILP of (4) has a satisfying solution, then
it has a satisfying solution where all entries in the solution
vector are bounded by
%2 � � 1 �
 � � * 798	: �
E1 798 : � , � ��� .
Papadimitriou’s bound implies that we need 	�
E3546 1 �
3;4<6 * 798	: � 1�� 3546 1 � 3546 798	:#�� bits to encode each vari-
able (assuming 2 � = 	�
E1 �). The Borosh-Flahive-Treybig
bound implies needing 	�
E1�� 3546 1 �)3;4<6�� �� bits per vari-
able, which is of the same order.

3. Bounds for a System of Separation Con-
straints

Let us first consider computing solution bounds for an ILP
for the case where � = � , i.e., system (4) comprises only of
separation constraints.

In this case, the left-hand side of each equation comprises
exactly three variables: two variables & " and & � where � "
��� � " 2 and one surplus variable &�� where 2 � � " � "
2 � 1 . The ! th equation in the system is of the form & " �& � � & � = * � .
As we noted in Section 2.1, the matrix

�
can be written as

� �#" G �#��� where
�#"

comprises the first 2 � = 2 ��� columns,
and ��� is the 1 � 1 identity matrix.

The important property of
�#"

is that each row has exactly
one � � entry and exactly one � � entry, with all other en-
tries � . Thus,

� � "
can be interpreted as the node-arc inci-

dence matrix of a directed graph. Therefore,
� � "

is totally
unimodular (TUM), i.e., every square submatrix of

� � "
has

determinant in � � �#� �� � ��� [25]. Therefore,
� "

is TUM,
and so is

� = � � " G �$� � .
Now, let us consider using the Borosh-Flahive-Treybig
bound stated in Theorem 1. This bound is stated in terms of
the minors of the matrix � � G * . For the special case of this
section, we have the following bound on the size of any mi-
nor:

Theorem 3 The absolute value of any minor of � � G * is
bounded above by % * 798	: , where % = ?'&)(
%2A����	1 � .
Proof:

Consider any minor * of � � G * . Let + be the order of * .

If the minor is obtained by deleting the last column (corre-
sponding to *), then it is a minor of

�
, and its value is in

� �
�!� �� � ��� since
�

is TUM. Thus, the bound of % * 798 : is
attained for any non-trivial minor with % (� and * 798 : (� .
Suppose the * column is not deleted.

First, note that the matrix
�

is of the form � � " G �,� � where
the rank of

�#"
is at most % � = ?-&)(
E29�	1 � . This is because�."

has dimensions 1 � 2 � � , and the last column of
�/"

,

corresponding to the variable & � , is a linear combination of
the previous 2 columns. (Refer to the construction of sys-
tem (2) from system (1).)

Next, suppose the sub-matrix corresponding to * com-
prises � columns from the � � � part, +���� � � columns
from the

� "
part, and the one column corresponding to* . Since permuting the rows and columns of * does not

change its absolute value, we can permute the rows of *
and the columns corresponding to the � � � part to get the
corresponding sub-matrix in the following form:�����������

�

� .�.�. � � � * � �
� .�.�. � � � * � �

�." ... ����� ...
...

...
part � � .�.�. � � * ���

� .�.�. � � *�� � ���
... ����� ...

...
...

� .�.�. � � * �
	

�����������
�

Expanding * along the last column, we get

G * G = G *�� � * � � * � � * , � *��
� * � � .�.�.!
 � � ����� � *��
	 * � G
where each * " is a minor corresponding to a submatrix of�

.

However, notice that * " = � for all ��" � "�� , since each
of those minors have an entire column (from the � � � part)
equal to � . Therefore, we can reduce the right-hand side to
the sum of + ��� terms:

G * G " G *�� � ��� *�� � � G � G * � � ��� *�� � , G ��.�.�. G *��
	 * � G
Notice that, so far, we have not made use of the special
structure of

�
.

Now, observing that
�

is TUM, G * " G " � for all � .
G * G " G *�� � � � G � G * � � ��� G � .�.�. � G *��
	 G

For all � , G * �
� G " * 798	: . Further, since each non-zero * " can
be of order at most % � , + ��� " % = 1 � 2
 % � � ��	1 � .4 There-
fore, we get G * G " % * 798	:�
Using the terminology of Theorem 1, we have
�" % * 798 : .
Thus, the bound in this case is
E2 � � � % * 798	: .
Thus, J , the bound on the number of bits per variable, is� 3546
E2 � � � � 3;4<6 % � 3;4<6 * 798	:��
4 We use ���! � and not ��� to account for the case where "$#&% . The

minimum with ' is taken because �(�(� can exceed ' but) has only' elements.

Formulas generated from verification problems tend to be
overconstrained, so we assume 2 1 . Thus, % = 2 � � ,
and the bound reduces to 	�
E3546 2 �I3;4<6 * 798 : � bits per vari-
able.

Remark. The only property of the
�

matrix that the proof
of Theorem 3 relies on is the totally unimodular (TUM)
property. Thus, Theorem 3 would also apply to any system
of linear constraints whose coefficient matrix is TUM. Ex-
amples of such matrices include interval matrices, or more
generally network matrices. Note that the TUM property
can be tested for in polynomial time [30].

4. Bounds for a Sparse System of Mainly Sep-
aration Constraints

We now consider the general case for ILPs, where we have �
non-separation constraints, each referring to at most % vari-
ables.

Without loss of generality, we can reorder the rows of ma-
trix

�
so that the � non-separation constraints are the top �

rows, and the separation constraints are the bottom 1 � �
rows. Reordering the rows of

�
can only change the sign

of any minor of � � G * , not the absolute value. Thus, the ma-
trix � � G * can be put into the following form:����

�
� � *��

� � � * ,
� , ...* �

����
�

Here,
� � is a � � 2 ��� dimensional matrix corresponding

to the non-separation constraints,
� , is a 1 � � ��2 � � di-

mensional matrix with the separation constraints, � � is the
1 � 1 identity corresponding to the surplus variables, and
the last column is the vector * .
The matrix comprised of

� � and
� , will be referred to, as

before, as
�#"

. Note that each row of
� � has at most % non-

zero entries, and each row of
� , has exactly one � � and

one � � with the remaining entries � . Thus,
� , is TUM.

We prove the following theorem:

Theorem 4 The absolute value of any minor of � � G * is
bounded above by % * 798	:
 798 : % ��* , where % = ?'&)(
%2 �
��	1 � .
Proof:

Consider any minor * of � � G * , and let + be its order.

As in Theorem 3, if * includes � columns from the � � �
part of

�
, then we can infer that + �+� " % . (Our proof of this

property in Theorem 3 made no assumptions on the form of�."
.)

If * includes the last column * , then as in the proof of The-
orem 3, we can conclude that

G * G "
 +$� � � * 798	: � �?A@ B�	� � G * � G (5)

where * � is a minor of
� "

.

If * does not include * , then it is a minor of
�

. Without
loss of generality, we can assume that * does not include
a column from the � � � part of

�
, since such columns only

contribute to the sign of the determinant.

So, let us consider bounding a minor * � of
� "

of order +
(or + �)� , if * includes the * column).

Since
� " = ��� �� ��� , consider expanding * � , using the stan-

dard determinant expansion by minors along the top � rows
corresponding to non-separation constraints. Each term in
the expansion is (up to a sign) the product of at most � en-
tries from the

� � portion, one from each row, and a minor
from

� , . Since
� , is TUM, each product term is bounded in

absolute value by *798 : . Furthermore, there can be at most
% * non-zero terms in the expansion, since each non-zero
product term is obtained by choosing one non-zero element
from each of the rows of the

� � portion of * � , and this can
be done in at most % * ways.

Therefore, G * � G is bounded by
 798 : % ��* . Combining this
with the inequality (5), and since + ��� " % , we get

G * G " % * 798 :
 798 : % � *
which is what we set out to prove.

�
Thus, we conclude that
 " % * 798 :
 798	: % ��* , where % =?'&)(
%2 �I�� 1 � . From Theorems 1 and 4, the solution bound
is
E2 � � �
 . Thus, J is� 3;4<6
E2 � � � � 3;4<6 % � 3546 * 798	: � �
%3;4<6 798 : � 3546 % � �
We make the following observations about the bound de-
rived above, assuming as before, that 2 1 , and so
% = 2 ��� :
& Dependence on Parameters: We observe that the

bound is linear in � , logarithmic in '798 : , % , 2 , and* 798	: . In particular, the bound is not in terms of the to-
tal number of linear constraints, 1 .

& Worst-case Asymptotic Growth: In the worst case, � =
1 , % = 2 � � , and 2 = 	�
E1 � , and we get the
	�
E3546 1 � 3;4<6 * 798	: � 1�� 3;4<6 1+� 3546 798	:��� bound
of Papadimitriou.

& Typical-case Asymptotic Growth: As observed
in Section 1, % is typically a small constant,
so the number of bits needed per variable is
	�
E3546 2 � 3546 * 798	: � � 3546 798	: � � � . In many

cases, 798	: is also a small constant, simplify-
ing the bound to 	�
%3;4<6 2 � 3;4<6 * 798	: � � � bits per
variable.

& Representing Non-separation Constraints: There are
many ways to represent non-separation constraints and
these have an impact on the bound we derive. In par-
ticular, it is possible to transform a system of non-
separation constraints to one with at most three vari-
ables per constraint. For example, the linear constraint& � � &-, � & � � &�� = &	� can be rewritten as:

& � � & � � = & �
& , � & �, = & � �& � � & � = & �,

For the original representation, � = � and % =�
 ,
while for the new representation � = 0 and % = 0 .
Since our bound is linear in � and logarithmic in % , the
original representation would yield a tighter bound.

Similarly, one can eliminate variables with coeffi-
cients greater than � in absolute value by introducing
new variables; e.g., � & is represented as & � & � with
an additional separation constraint & = & � . This can be
used to adjust % , 798	: , and 2 so that the overall bound
is reduced.

The derived bound only yields benefits in the case when
the system has few non-separation constraints which them-
selves are sparse. In this case, we can instantiate variables
over a finite domain that is much smaller than that obtained
without making any assumptions on the structure of the sys-
tem.

5. Bounds for Arbitrary Quantifier-Free
Presburger Formulas

We now return to the original goal of this paper, that of
finding a solution bound for an arbitrary QFP formula � .
Suppose that � has 1 linear constraints � � �� , ��.�.�.!���� ,
of which 1 � � are separation constraints, and 2 vari-
ables &!� � & , ��.�.�.!� & � . As before, we assume that each non-
separation constraint has at most % variables, '798	: is the
maximum over the absolute values of coefficients
"E$ � of
variables, and * 798 : is the maximum over the absolute val-
ues of constants * " appearing in the constraints.

We prove the following theorem.

Theorem 5 If � is satisfiable, there is a solution to � that
is bounded by
%2A� � �
 where

 = %
 * 798	: ��� �
 798	: % � *
and % = ?'&)(
%2 ����	1 � .

Proof: Let � be a (concrete) model of � . Let 1 � con-
straints, � " � �� " � ��.�.�.!��� "

�
� , evaluate to

�������
under � , the

rest evaluating to 	�
��� � . Let
� � = � #"E$ � be a 1 � �I2 ma-

trix in which each row comprises the coefficients of vari-
ables &!� � & , ��.�.�.H� & � in a constraint � "�� , �$" � ")1 � . Thus,� � = � #"%$ � where � � ��� � ��.�.�.!� � � � � .
Now consider a constraint � "�� where � � 1 � , that evaluates
to 	�
���� � under � . � " � is the inequality

��
�	� � "�� $ ��& � (* "��

Then � satisfies � � "�� which is the inequality

��
�	� � " � $ ��& � * " �

or equivalently,

��
�	��� � #" � $ ��&'� (� * " � ���

Let
� � � be a
%1 �I1 � � � 2 matrix corresponding to the co-

efficients of variables in constraints � � "
�
� ��� , � � "

�
� � � , .�.�. ,

� � "
�

. Thus,
� � � = � � "%$ � where � � ��� � � � � ��.�.�./� ��� � .

Finally, let * = � * " � � * " � ��.�.�.H� * "
�
� �!� * "

�
� � � ����!� * "

�
� ��� �

���.�.�. �!� * "
�
� � �

Clearly, � is a satisfying solution to the ILP given by� � �� � � � � (* (6)

Also, if the system (6) has a satisfying solution then � is
satisfied by that solution. Thus, � and the system (6) are
equi-satisfiable, for every possible system (6) we construct
in the manner described above.

By Theorems 1 and 4, we can conclude that if system (6)
has a satisfying solution, it has one bounded by
E2 � � �

where

 = %
 * 798 : � � �
 798	: % � *
and % = ?-&�(
E2 � �� 1 � . Moreover, this bound works for
every possible system (6).

Therefore, if � has a satisfying solution, it has one bounded
by
E2 � � �
 .

�
Thus, to generate the Boolean encoding of the starting
QFP formula, we must encode each integer variable as a
symbolic bit-vector of length J = � 3;4<6 �
E2 ��� �
 � =� 3546
%2 � � � � 3;4<6 % � 3;4<6
 * 798 : � � � � �
E3546 798	: � 3;4<6 % � � .
Remark. In the preceding discussion, we have used a sin-
gle bit-vector length for all integer variables appearing in
the formula � . This is conservative. In general, we can par-
tition the set of variables into classes such that two variables

are placed in the same class if there is a constraint in which
they both appear with non-zero coefficients. For each class,
we separately compute parameters 2 , � , * 798	: , 798	: , and % ,
resulting in a separately computed bit-vector length for each
class. The correctness of this partitioning optimization fol-
lows from a reduction to ILP as performed in the proof of
Theorem 5, and the observation that a satisfying solution
to a system of ILPs, no two of which share a variable, can
be obtained by solving them independently and concatenat-
ing the solutions.

6. Implementation and Experimental Results

We used the bound derived in the previous section to im-
plement a decision procedure based on finite instantiation.
Integer variables in the QFP formula are encoded as sym-
bolic bit-vectors large enough to express any integer value
within the bound. Arithmetic operators are implemented as
arbitrary-precision bit-vector arithmetic operations. Equal-
ities and inequalities over integer expressions are trans-
lated to corresponding relations over bit-vector expressions.
The resulting Boolean formula is passed as input to a SAT
solver.

We implemented our procedure as part of UCLID [34],
which is written in Moscow ML [21]. In our implementation
we used the zChaff SAT solver [36] version 2003.7.22. We
compared UCLID’s performance with that of the SAT-based
prover ICS [17] (the latest version 2.0) and the automata-
based procedure LASH [33] While LASH is sound and
complete for QFP, ICS 2.0 is incomplete; i.e., it can report
a formula to be satisfiable when it is not. The ground deci-
sion procedure ICS uses is the Simplex linear programming
algorithm with some additional heuristics to deal with in-
teger variables. However, in our experiments, both UCLID
and ICS returned the same answer whenever they both ter-
minated within the timeout.5

For benchmarks, we used several formulas from the Wis-
consin Safety Analyzer project on checking format string
vulnerabilities. The benchmarks include both satisfiable and
unsatisfiable formulas in an extension of QFP with uninter-
preted functions. Uninterpreted functions were first elimi-
nated using Ackermann’s technique [1], and the decision
procedures were run on the resulting QFP formula. Some
characteristics of the formulas are displayed in Table 2.
For each formula, we indicate whether it is satisfiable or
not, and also give the values of parameters 2 , 1 , � , % , 798 : and * 798 : corresponding to the variable class for which

5 We also attempted comparisons with CVC-Lite (the new version of
CVC which includes a ground decision procedure for QFP [3]). How-
ever, at the time of writing, the implementation was too unstable to be
able to make useful comparisons.

J = � 3;4<6 �
E2 � � �
 � is largest, i.e, for which we need the
largest number of bits per variable. Note that the total num-
bers of variables and constraints, for all variable classes, are
larger: For example, for the benchmark xs-30-40, the for-
mula has ��
 variables and ��� � � constraints in all. The for-
mulas involve the combination of linear constraints by ar-
bitrary Boolean operators (� , � , �). The key characteristics
of formulas generated in this class of problems is that they
vary in 2 , 1 , and * 798 : , but the values of � , % , and 798 : are
fixed at a small value.

Experiments were performed on a Pentium-IV 2 GHz ma-
chine with 1 GB of RAM running Linux. A timeout of 0���<�
seconds was imposed on each run.

A comparison of UCLID versus ICS is displayed in Table 2.
LASH was unable to complete on any benchmark within
the timeout; we attribute this to the relatively large number
of variables and constraints in our formulas, and note that
Ganesh et al. obtained similar results in their study [14].
From Table 2, we observe that UCLID outperforms ICS on
all benchmarks, terminating within a minute on each one.
The reason for UCLID’s superior performance is the for-
mula structure, where � , % , and #798	: remain fixed at a
low value while 1 , 2 , and * 798 : increase. Thus, the max-
imum number of bits per variable is only moderately large
(about �<�), even as 1 increases substantially, and the re-
sulting SAT problem is within the capacity of zChaff. Also,
we note that the SAT time is almost always the larger por-
tion of UCLID’s run-time; this is not surprising since the
time to compute the parameter values and generate the SAT-
encoding is polynomial in the input size.
For ICS, we note that the run-time is dominated by the time
taken by the ground decision procedure. We observe that the
number of inconsistent Boolean assignments alone is not a
precise indicator of total run-time, which also depends on
the time taken by the ground decision procedure in ruling
out a single Boolean assignment.

7. Conclusions and Future Work

In this paper, we have presented a formal approach to ex-
ploiting the “sparse, mainly separation constraint” nature of
quantifier-free Presburger formulas encountered in software
verification. Our approach is based on deriving a new pa-
rameterized bound on satisfying solutions to QFP formulas.
Experimental results show the benefits of using the derived
bound in a SAT-based decision procedure based on finite in-
stantiation.

Note that the bounds we have derived and used in our exper-
iments are conservative. First, the size of minors in a partic-
ular problem instance might be far smaller than the bounds
we have computed. It is unclear how this can be exploited,

since the number of minors grows exponentially with the di-
mensions of the constraint matrix. Second, for certain spe-
cial cases, one can improve the
E2 � � �
 bound. For ex-
ample, if all the constraints are originally equalities and
the system of constraints has full rank, a bound of
 suf-
fices [4]. Thirdly, in cases where the value of * 798 : is very
large due to the presence of a single large constant, one
might want to use a less conservative analysis than is per-
formed in the proof of Theorem 4. For instance, the % * 798	:
term can be replaced by ����	��� G * "�� G , where * " � � * " � ��.�.�.!� * "��
are the % largest elements of * in absolute value.

In our implementation, we translate a QFP formula to a
Boolean formula in a single step. An alternative approach
is to perform this transformation lazily, increasing the bit-
vector size “on demand”. This lazy encoding approach
works, in brief, as follows. (Details can be found in [19].)
We start with an encoding size for each integer variable that
is smaller than that prescribed by the bound. If the resulting
Boolean formula is satisfiable, so is the original QFP for-
mula. If not, the proof of unsatisfiability generated by the
SAT solver is used to generate a sound abstraction of the
original formula, which can be checked with a sound and
complete decision procedure for QFP (such as the one pro-
posed in this paper). If this decision procedure concludes
that the abstraction is unsatisfiable, so is the original for-
mula, but if not, it provides a counterexample which indi-
cates the necessary increase in the encoding size, and the
procedure repeats. The advantage of this lazy approach is
twofold: (1) It avoids using the conservative bounds we
have derived in this paper, and (2) if the generated abstrac-
tions are small, the sound and complete decision procedure
used by this approach will run much faster than if it were
fed the original formula. The bound J that we derive in this
paper implies an upper bound 2/J on the number of itera-
tions of this lazy encoding procedure; thus the lazy encod-
ing procedure needs only polynomially many iterations be-
fore it terminates with the correct answer. Using the deci-
sion procedure proposed in this paper with the above lazy
encoding approach is an interesting avenue for future work.

Acknowledgments

We are grateful to Joël Ouaknine for his inputs and a care-
ful reading of the proofs, and to Ofer Strichman and K.
Subramani for valuable discussions. We thank Sagar Chaki,
Michael Ernst, Vinod Ganapathy, Somesh Jha, Ranjit Jhala,
and Stephen McCamant for providing us with benchmark
formulas. We also thank Leonardo de Moura and Louis La-
tour for help with ICS and LASH respectively. This research
was supported by ARO grant DAAD19-01-1-0485.

Formula Ans. Max. Parameters UCLID Time ICS
2 1 � % 798	: * 798	: J (sec.) #(Inc. Time (sec.)

Enc. SAT Total assn.) Gnd. Total
s-20-20 SAT 28 437 6 5 4 21 41 4.11 8.18 12.29 904 23.32 23.76
s-20-30 SAT 28 437 6 5 4 30 41 4.15 9.05 13.30 1887 51.68 52.29
s-20-40 UNS 28 437 6 5 4 40 41 4.27 2.03 6.30 25776 658.01 669.99
s-30-30 SAT 38 792 6 5 4 31 42 6.42 22.82 29.24 2286 268.21 269.42
s-30-40 SAT 38 792 6 5 4 40 42 6.45 20.45 26.90 14604 1621.27 1625.15

xs-20-20 SAT 49 668 6 5 4 21 42 5.49 30.95 36.44 2307 97.21 98.32
xs-20-30 SAT 49 668 6 5 4 30 43 5.51 24.48 29.99 33103 1519.77 1540.27
xs-20-40 UNS 49 668 6 5 4 40 43 5.55 14.30 19.85 97427 3468.91 *
xs-30-40 SAT 69 1288 6 5 4 40 44 9.90 36.61 46.51 33754 3082.34 *

Table 2. Benchmark characteristics and experimental results. For UCLID, we list the time taken to
decide the formula including a breakup into the encoding time (“Enc.”) and the time taken by the
SAT solver (“SAT”). For ICS, we give the total time, the number of inconsistent Boolean assignments
analyzed by the ground decision procedure (“#(Inc. assn.)”), as well as the overall time taken by the
ground decision procedure (“Gnd.”). A “ � ” indicates that the decision procedure timed out after 0 ��<�
sec. LASH was unable to complete within the timeout on any formula.

References

[1] W. Ackermann. Solvable Cases of the Decision Problem.
North-Holland, Amsterdam, 1954.

[2] C. Barrett, D. L. Dill, and A. Stump. Checking satisfia-
bility of first-order formulas by incremental translation to
SAT. In E. Brinksma and K. G. Larsen, editors, Proc. 14th
Intl. Conference on Computer-Aided Verification (CAV’02),
LNCS 2404, pages 236–249. Springer-Verlag, July 2002.

[3] S. Berezin, V. Ganesh, and D. L. Dill. An online proof-
producing decision procedure for mixed-integer linear arith-
metic. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’03), LNCS 2619, pages
521–536, April 2003.

[4] I. Borosh, M. Flahive, D. Rubin, and L. B. Treybig. A
sharp bound for solutions of linear Diophantine equa-
tions. Proceedings of the American Mathematical Society,
105(4):844–846, April 1989.

[5] I. Borosh, M. Flahive, and L. B. Treybig. Small solu-
tions of linear Diophantine equations. Discrete Mathemat-
ics, 58:215–220, 1986.

[6] I. Borosh and L. B. Treybig. Bounds on positive integral
solutions of linear Diophantine equations. Proceedings of
the American Mathematical Society, 55(2):299–304, March
1976.

[7] J. Brenner and L. Cummings. The Hadamard maximum
determinant problem. American Mathematical Monthly,
79:626–630, June-July 1972.

[8] R. Brinkmann and R. Drechsler. RTL-datapath verification
using integer linear programming. In Proceedings of the
IEEE VLSI Design Conference, pages 741–746, 2002.

[9] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling
and verifying systems using a logic of counter arithmetic
with lambda expressions and uninterpreted functions. In

E. Brinksma and K. G. Larsen, editors, Proc. Computer-
Aided Verification (CAV’02), LNCS 2404, pages 78–92, July
2002.

[10] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Mod-
ular verification of software components in C. In Proc. 25th
International Conference on Software Engineering (ICSE),
pages 385–395, 2003.

[11] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem prov-
ing for bounded model checking over infinite domains. In
Proc. 18th International Conference on Automated Deduc-
tion (CADE), pages 438–455, 2002.

[12] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem
prover for program checking. Technical Report HPL-2003-
148, HP Laboratories Palo Alto, 2003.

[13] M. J. Fischer and M. O. Rabin. Super-exponential com-
plexity of Presburger arithmetic. Proceedings of SIAM-AMS,
7:27–41, 1974.

[14] V. Ganesh, S. Berezin, and D. L. Dill. Deciding Pres-
burger arithmetic by model checking and comparisons with
other methods. In Formal Methods in Computer-Aided De-
sign (FMCAD ’02), LNCS 2517, pages 171–186. Springer-
Verlag, November 2002.

[15] E. Goldberg and Y. Novikov. BerkMin: A fast and ro-
bust SAT solver. In Design Automation and Test in Europe
(DATE) 2002, pages 142–149, 2002.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Proc. 29th ACM Symposium on Principles of
Programming Languages, pages 58–70, 2002.

[17] ICS: Integrated Canonizer and Solver. Available at
http://www.icansolve.com.

[18] R. Kannan and C. L. Monma. On the computational com-
plexity of integer programming problems. In Optimisa-
tion and Operations Research, volume 157 of Lecture Notes

in Economics and Mathematical Systems, pages 161–172.
Springer-Verlag, 1978.

[19] D. Kroening, J. Ouaknine, S. A. Seshia, and O. Strichman.
Abstraction-based satisfiability solving of Presburger arith-
metic. In Proc. 16th International Conference on Computer-
Aided Verification (CAV), July 2004. To appear.

[20] S. McCamant and M. D. Ernst. Predicting problems caused
by component upgrades. In Proceedings of the 11th ACM
SIGSOFT Symposium on Foundations of Software Engineer-
ing (FSE), pages 287–296, 2003.

[21] Moscow ML. Available at http://www.dina.dk/
˜sestoft/mosml.html.

[22] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In 38th
Design Automation Conference (DAC ’01), pages 530–535,
June 2001.

[23] G. Nelson and D. C. Oppen. Simplification by cooperating
decision procedures. ACM Transactions on Programming
Languages and Systems, 1(2):245–257, 1979.

[24] C. H. Papadimitriou. On the complexity of integer program-
ming. Journal of the ACM, 28(4):765–768, 1981.

[25] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity, chapter 13. Prentice-
Hall, 1982.

[26] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. De-
ciding equality formulas by small-domain instantiations. In
N. Halbwachs and D. Peled, editors, Computer-Aided Verifi-
cation, volume 1633 of Lecture Notes in Computer Science,
pages 455–469. Springer-Verlag, July 1999.

[27] V. Pratt. Two easy theories whose combination is hard. Tech-
nical report, Massachusetts Institute of Technology, 1977.
Cambridge, MA.

[28] M. Preßburger. Über die Vollst ändigkeit eines gewissen Sys-
tems der Arithmetik ganzer Zahlen, in welchem die Addition
als einzige Operation hervortritt. Comptes-rendus du Pre-
mier Congrès des Mathématiciens des Pays Slaves, 395:92–
101, 1929.

[29] W. Pugh. The omega test: A fast and practical integer pro-
gramming algorithm for dependence analysis. In Supercom-
puting, pages 4–13, 1991.

[30] A. Schrijver. Theory of Linear and Integer Programming.
John Wiley and Sons, 1998.

[31] N. Shankar and H. Rueß. Combining Shostak theories. In
S. Tison, editor, Proc. Rewriting Techniques and Applica-
tions, LNCS 2378, pages 1–18. Springer-Verlag, July 2002.

[32] R. E. Shostak. Deciding combinations of theories. Journal
of the ACM, 31(1):1–12, 1984.

[33] The LASH Toolset. Available at http://www. monte-
fiore.ulg.ac.be/˜boigelot/research/lash.

[34] The UCLID Verification System. Available at
http://www.cs.cmu.edu/˜uclid.

[35] The Wisconsin Safety Analyzer Project.
http://www.cs.wisc.edu/wisa.

[36] The zChaff Boolean Satisfiability Solver. Available at
http://ee.princeton.edu/˜chaff/zchaff.php.

[37] J. von zur Gathen and M. Sieveking. A bound on solutions
of linear integer equalities and inequalities. Proceedings of
the American Mathematical Society, 72(1):155–158, Octo-
ber 1978.

[38] P. Wolper and B. Boigelot. An automata-theoretic approach
to Presburger arithmetic constraints. In Proc. Static Analysis
Symposium, LNCS 983, pages 21–32, September 1995.

